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ABSTRACT

We derive a closed-form solution for the transient
magnetic field developed by a magnetic source located
above a thin conductive layer. The solution extends the
solution found by J.C. Maxwell for a conductive thin sheet.
In addition to Maxwell’s expression, the new solution
explicitly depends on the thickness of the conductive layer.
It can be used in a rapid inversion algorithm. The new
solution allows an interpreter to estimate the thickness and
conductivity of the conductive layer in addition to its
conductance.

INTRODUCTION

The transient solution found by Maxwell (1891) for a
planar homogeneous thin sheet surrounded by an insulator
and energised by a magnetic dipole is still widely used for
interpretation of airborne electromagnetic (AEM) data. In
this solution, the dipole moment is zero up to some moment
(t=0), then it changes to a non-zero value and remains
constant afterwards. The change in the primary magnetic
field induces an electric current in the conductor. In turn, the
induced current develops a secondary magnetic field. The
secondary field above the conductive layer is equivalent to
the field of another magnetic dipole located on the other
side of the thin sheet. The (imaginary) dipole at =0
coincides with a mitror image of the source. As time
increases, the imaginary dipole recedes from the conductive
layer at the speed of
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where S is the conductance of the layer, and po=4n-107
is the magnetic permeability of free space.

The simplicity of Maxwell’s solution is one of its benefits.
However, the thin sheet model is of limited utility in
interpretation of AEM data. A more practical model consists
a conductive layer of finite thickness (slab) rather than a thin
sheet. Immediately after the step-on change of the external
source, the induced current is concentrated at the upper
surface of the slab. The induced current decays and
redistributes itself deeper into the layer as time progresses.
At later times, the electric field is almost uniformly
distributed across the layer. From this moment, the response
of the layer becomes identical to the response of a thin sheet
with the conductance

S = ho , (2

where & and o are the layer thickness and conductivity,
respectively. Thus, the thin sheet solution becomes
applicable to a slab model at a late stage of the transient
process.

Interpretation of AEM data often involves a numerical
simulation of a slab model response. The solution can be
significantly accelerated when the analytic properties of the

response function in the frequency domain are known
(Goldman and Fitterman, 1987). A number of fast
approximate solutions are also used to estimate the response
(e.g., Macnae and Lamontagne, 1987). Nevertheless, the
simplicity and beauty of Maxwell’s solution is a good
incentive for finding a closed-form solution applicable to
the slab model.

THEORY

Consider a horizontal layer of thickness 4 and conducti-
vity ¢. The medium outside the layer is assumed to be non-
conductive. A cartesian coordinate system, with the OX- and
OY-axes directed along the surface of the layer and OZ -axis
pointing downwards is used in our consideration. We start in
the frequency domain using exp(-t@t) as the time factor.

As shown by Vasseur and Weidelt (1977), an electro-
magnetic field in a 1-D medium can be described using two
scalar potentials. The potentials define the toroidal and
poloidal modes of the electromagnetic field. Electric
currents of the toroidal mode are confined to horizontal
planes. The poloidal currents cross the layers comprising
the stratified structure.

In a stratified earth’s model energized by an external
current flowing above the earth, the poloidal mode is not
excited. Therefore, the electromagnetic field can be
expressed in terms of the potential of the toroidal mode V.
In particular, in the insulator
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where m=-e¢, is an upward unit vector. The potential
satisfies the Laplace’s equation

Viv =0 . 4)

Above the conductive layer, the magnetic field can also be
represented as a sum of the primary and secondary fields.
For a magnetic dipole

M=M_+Mn , (5
where M, and M, are the horizontal and vertical

components of the magnetic moment, the primary magnetic
field created by the source is

Hrz) =V

Mv—1 l (6)
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In this expression, the dipole is assumed to be located at
the point x=y =0, z=zq (the dipole altitude is -zy) and a
step current turned on at ¢= 0. Thus,

1 (7
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In the Fourier domain this equation implies that for
zo<z<0

P = S [vra0e™] ®)
where
EVP(k0) = -%[Mnﬂ%ﬂlt]eb" , 9)

and &1 denotes an inverse Fourier transform.
An arbitrary function f(r,z) and its Fourier image f(k,z)
are related by
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where r=xe, + ye, and k=k.e, + kye, are the horizontal
radius vector and the wave number, respectively.

The secondary magnetic field caused by the currents
induced in the conductive layer can be calculated using the
response function

y{w) = YkOw) an

which specifies the relative effect of the currents flowing
inside the earth to that of the external source. A similar
parameter is often used in the theory of global
electromagnetic induction in the earth (Schmidt, 1918).

Considering the slab model as a 1-D structure, it is easy to
see that

5 tanh[x, Al/x,
2k + [2k?+x3) tanhx, k] /x,

Yw)=- (12)

where

k() = [KZ-topo . (13)

The conductive layer can be considered as a thin layer if
the inequality

fko(@)| k= h‘/mpoc <1 (14)

is valid for the essential part of the frequency spectrum.
Another restriction

kh <« 1 (15)

should be imposed on the spatial frequency of the observed
response. For the model under consideration, these two
conditions are not independent, because
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where |z0| are |z| are the source and receiver altitudes,
respectively, and r is a horizontal separation between the
source and receiver.

For a thin layer, equation (12) specifying the “internal-to-:
external” response function reduces to !

, an:

where § is the layer conductance. j
From equation (11), the time-domain response can be
calculated as

Vik.z,t) =-VP(k0)e® x (18)
T )
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where, for an external source working in the step-on mode,

Vrs0.0) = - LD (19)
1 i

The integral in equation (18) can be calculated using the
residue theorem. For the response function (17), the!
secondary field potential

Vikzt) =-VP(k,0) x (20)
(l—kzhvst)ek z—%—h—v,t) .
3

The vertical derivative of the secondary potential
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From equations (3) and (9), the secondary magnetic field :
att>0 is

P -1 hvgt 52 :
(r.z,5) = ‘T 53 x (22)
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where

M =M -Mpn (23)

is a mirror image of the source magnetic dipole with respect
to the earth’s surface.
If the terms depending on the layer thickness A are
ignored, equation (22) coincides to the field of the image -
dipole that at r=0+ is located at x=y=0, z= -z and
recedes downwards at >0 with speed vg. In this approxi-
mation, equation (22) coincides with Maxwell’s solution.
From equations (14) and (16), the valid time range of this
solution is restricted by the condition

L3 <1 . 24)
vt ~
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Expressions (6) for the primary magnetic fields can also
presented in an alternative form

H(r,2) = €(ra-z) M , 25)

where matrix elements of the 3 x 3 matrix € are

O - if:; : (26)
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€,r2) = Z% ’

€. (r2) = €,(r2) = 43;523 i

€, 12 = €, (rz =_43;f;3 ,

€2 = €,z =—4_3ﬂ"Ri3

and R2=x2+y2+z2, E=x/R, N=y/R, {=z/R.
Similarly,
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To analyse the benefits of the improved asymptotic
solution, we consider a conductive slab of thickness of 50 m.
The primary field is generated by a vertical magnetic dipole
at an altitude of 120 m. The vertical magnetic field is
measured by a receiver at an attitude of 60 m. The horizontal
separation between the source and receiver is 100 m which
is a typical configuration of an airborne acquisition system.
We compare an “exact” expression for the slab response H L
with two asymptotic solutions. The exact numerical
response is calculated using a double Fourier-Bessel
transform and expression (12) for the slab response in the
Fourier domain. One of the asymptotic solutions (H3)
represents the model response calculated using Maxwell’s
analytic solution for an infinitely thin conductive sheet.
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Figure 1. Errors of improved (solid) and classic (dashed) solutions:
layer thickness 50 m. Altitudes: transmitter 120 m, receiver 60 m;
separation 100 m.

Another asymptotic solution (H>") accounts for the layer
thickness.

In Figure 1, the dashed curve represents the relative
error H /HE-1 of the classical thin sheet solution. The
solid curve shows the error H3*/ HE-1 of the new
asymptotic expression (22), which accounts for the layer
thickness.

The improved solution is more accurate at all time delays
after turning on the source. The error of the improved
solution does exceed 4%. Further numerical experiments
show that the maximum error of the new solution decreases
approximately as the second power of the layer thickness.

CONCLUSIONS

An analytic expression derived for a slab of finite
thickness preserves the advantage of the thin sheet solution
by I.C. Maxwell because it is also expressed in terms of
elementary functions. The model response described by
such a solution can be rapidly calculated. It can be used as
the basis for rapid inversion of airborne data. The improved
solution is much more accurate than the thin sheet solution
and is applicable over a wider time range.
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