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POSSMs: a parsimonious speciation model for metals in soils 
Stephen LoftsA,*

Environmental context. Predicting the chemistry of metals is important for understanding their movement and impacts in the 
environment. Metal chemistry models are generally complex and difficult to apply, but a simpler model, which does not need large 
amounts of input data, can also provide good results. A simpler model can be more easily included in large-scale models of metal 
transport and impacts in the environment.  

ABSTRACT 

Mechanistic geochemical models are useful for detailed study of the speciation of metals in well- 
characterised soils, but can be challenging to apply when driving soil compositional data are sparse, 
for example, at large scales. Empirical models, using minimal driving data, have been developed 
either for prediction of solid–solution partitioning or for the computation of the free metal ion 
from the total or geochemically active metal. This work presents an empirical speciation model, 
POSSMs (ParsimOniouS Speciation of Metals in soils), which predicts the free, solution-bound and 
sorbed metal in a soil in a single calculation, using a minimal set of soil parameters. The model has 
been parameterised for Ni, Cu, Zn, Cd and Pb using datasets of geochemically active soil metal and 
solution phase composition. The parameterised model can also be used to compute the free metal 
ion from the solution metal. The model was tested by applying it to literature datasets on the 
speciation of metals in soil solutions and extracts, and on the metal solid–solution partitioning. The 
performance of the model was comparable to other empirical models of similar complexity. Some 
test datasets produced biased predictions, particularly in the underestimation of measured free ion 
at circumneutral and alkaline pH, where the model predicted low free ion concentrations. The 
model is not a replacement for mechanistic geochemical models, but is a useful tool for soil metal 
speciation where comprehensive driving data are not available.  

Keywords: chemical speciation, dissolved organic matter, free metal ion, modelling, partition 
coefficient, pH, soil organic matter, soils, trace metals. 

Introduction 

Modelling of the equilibrium speciation of metals is a well-established approach in a 
range of research areas related to their environmental behaviour, such as their transport 
in soils and aquifers (Bonten et al. 2011; Bea et al. 2013), and their environmental 
bioavailability and toxicity (Crawford et al. 2017; Fornaroli et al. 2018). Speciation 
modelling may be used to predict metal forms in a solution alone or in a system also 
containing sorbing solid phases. The latter approach is useful to predict metal solubility 
in soils and so may be linked to modelling of metal transport and losses to deeper soil 
and/or surface waters. 

Mechanistic speciation modelling has the advantage of technical defensibility and, in 
principle, a broad range of applications, but at the costs of complexity, driving data 
requirements and model execution time. The issues of driving data and execution time 
become particularly onerous when an intensive model application is required. This may 
occur, for example, in large-scale application or where assessment of uncertainty 
and sensitivity is required using Monte Carlo techniques. There has thus been considera
ble interest in the development of simpler models that emulate the predictions 
of mechanistic models. Empirical approaches have been employed, for example, to 
derive relationships between the sorbed metal and the free ion in soil solution 
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(Tipping et al. 2003; Groenenberg et al. 2010a) or to predict 
the dissolved metal in the solution phase from the sorbed 
concentration (Groenenberg et al. 2012). Such approaches 
have been applied in dynamic modelling of metals in soils 
(Lofts et al. 2013). The use of the current empirical models 
does have limitations, most notably that they are limited to 
predicting the concentration of one species or form of metal 
(e.g. free ion, solution metal) from another (e.g. sorbed 
metal). Combined application of separate solubility and 
free ion models is technically feasible but there is a risk of 
inconsistency in the outcomes if the parameterisations are 
independent of each other. Thus, a modelling approach 
combining minimal data requirements and the prediction 
of both the free ion and solubility in a single computation 
would be a useful addition to existing approaches. The 
simultaneous computation of the free ion and the soluble 
concentration would make a model potentially suitable for 
combined assessment of metal solubility and bioavailability. 

This study outlines the development of a metal speciation 
framework for soils (POSSMs – ParsimOniouS Speciation 
of Metals in soils) that extends the empirical approach of  

Tipping et al. (2003) and Groenenberg et al. (2010a) for 
metal binding to solution phase ligands as well as sorption 
to the soil solid phase. The model can also be used to 
compute the free ion and bound metal in the solution 
phase only. The model is calibrated for Ni, Cu, Zn, Cd and 
Pb using existing datasets of soil and solution phase compo
sition, and its performance is evaluated against literature 
datasets of soil–solution partitioning and solution phase 
speciation. 

Experimental 

Model structure 

Table 1 provides a glossary of terms used in equations, 
including their units, and the reader is referred to this 
table for an explanation of the terms used within the text. 

We take the calculation framework of a mechanistic 
equilibrium model as a starting point and construct expres
sions for the concentrations of solution-bound and sorbed 

Table 1. Glossary of terms used in the text, including unitsA.     

Term Definition Units   

DMT Donnan membrane technique  

ISE Ion-selective electrode  

AGNES Absence of gradients and Nernstian equilibrium stripping  

RF Residual factor  

{M}geoact The geochemically active metal concentration, comprising 
the sorbed, solution-bound and free forms 

mol (g soil)−1 

[M]total,aq The solution geochemically active metal concentration, 
comprising the solution-bound and free forms 

mol (L aqueous phase)−1 

[M2+] Free metal ion concentration mol (L true solution)−1B 

[M]sbound Solution-bound metal concentration mol (L aqueous phase)−1 

[M]diss Dissolved metal concentration mol (L aqueous phase)−1 

{M}sorbed Sorbed metal concentration mol (g soil)−1 

[SOIL] Soil concentration g (L total water)−1 

Vf,ts Fractional true solution volume (L true solution) (L total water)−1 

vD,solid Diffuse layer volume of solid phase organic matter L diffuse layer (g organic matter)−1 

vD,solution Diffuse layer volume of solution organic matter L diffuse layer (g organic matter)−1 

aH Proton activity mol (L true solution)−1 

[DOM] Dissolved organic matter concentration in the solution g (L aqueous phase)−1 

[Fe] Iron concentration in the solution mol (L aqueous phase)−1 

{SOM} Soil organic matter concentration g (g soil)−1 

{POM} Solid phase organic matter concentration g (g soil)−1 

AConcentrations with units of mass or amount per unit volume of water use square brackets [ ]. Concentrations with units of mass or amount per unit mass of soil 
use braces { }. Activities of chemical species are denoted by aX, where X is the species formula. 
BThe fractional volume of water in the system not electrostatically held.  
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forms of metal as functions of the free metal ion. The 
model is applied by supplying a ‘geochemically active’ con
centration of metal, which comprises the sum of three forms 
(groups of metal species):  

• metal present in its free ionic form, i.e. not bound to any 
ligand in solution or to the solid phase. This metal is 
termed ‘free’; 

• metal bound to ligands in the solution, whether specifi
cally bound (complexed) or electrostatically associated. 
This metal is termed ‘solution-bound’;  

• metal bound to solid phase ligands, either specifically or 
electrostatically. This metal is termed ‘sorbed’. 

The concentrations of metal in each form are computed by 
iterative adjustment of the free ion concentration until the 
sum of the three computed forms equals the supplied ‘geo
chemically active’ concentration. The modelling initially took 
the approach of subdividing the water in the system into the 
water electrostatically held by the soil solids, the water held 
electrostatically by organic matter dissolved in the solution 
phase and the water not electrostatically held (the true solu
tion). This approach mimics that taken by mechanistic mod
els such as WHAM, although unlike such models, the bound 
metal is not subdivided into that bound by bond formation 
with organic molecules and that within the electrostatically 
held water. The concentration of the free ion is defined as the 
moles of free ion per litre of the true solution, and the 
concentration of solution-bound metal is defined as the 
moles of solution-bound metal per litre of the aqueous 
phase. The mass balance of metal in the system is given by 

V V
{M} =

([M ] × + [M] ) ×
[SOIL]

+ {M}

geoact

2+
f,ts sbound f,aq

sorbed (1)  

where Vf,ts is the volume of true solution per unit volume of 
the aqueous phase in the system and Vf,aq is the volume of 
water in the aqueous phase (not held electrostatically by 
the solid phase) per unit volume of total water in the 
system. The electrostatically held water in both the solid 
and solution phases is assumed to be held by organic 
matter, and the volumes vD,solution and vD,solid thus have 
units of L (g OM)−1. Initial model fitting and adjustment of 
vD,solution and vD,solid showed that their presence and variation 
exerted negligible influence on the model predictions, and so 
a simplified mass balance was adopted: 

{M} = [M ] + [M]
[SOIL]

+ {M}geoact
2+

sbound
sorbed (2)   

The concentrations of solution-bound and sorbed metal 
are given by 

K a[M] = [M ] [DOM]sbound sbound
2+

H (3) 

and 

K a{M} = [M ] {POM} ,sorbed sorbed 2+
H (4)  

where Ksbound, α, β, δ and Ksorbed, A, B, Δ are fitting param
eters. The form of Eqn 4 is similar to the C–Q relationship of  
Groenenberg et al. (2010a), but here a non-logarithmic form 
of the expression is used. The pH dependence of binding is 
computed as a function of proton activity rather than pH, so 
the sign of the coefficient B is the opposite of that of the pH 
coefficient in the C–Q relationship. In fitting, the coefficients 
α and A are constrained to be less than or equal to unity. 
This provides relationships between the solution-bound or 
sorbed metal and the free ion that are in accordance with 
the binding behaviour of metals to heterogeneous complex
ants, i.e. that the incremental strength of complexation 
decreases with increasing loading of the complexant. 

Preliminary modelling of the solution speciation using 
WHAM7 (Lofts and Tipping 2011; Tipping et al. 2011) (see 
Section Calibration dataset and modelling approach for 
details) suggested that with the exception of Pb, binding to 
DOM was a dominant mechanism across the full range of pH. 
In the case of Pb, precipitated iron(III) oxyhydroxide (FeOx) 
was predicted to largely be the main binding phase above pH 7 
(data not shown). Therefore, to investigate the possible impor
tance of FeOx as a variable in the solution speciation of Pb,  
Eqn 3 was extended to include solution phase Fe as a variable: 

K a[M] = [M ] [DOM] [Fe]sbound sbound
2+

H (5)  

with [Fe] being the Fe concentration in solution 
(mol (L aqueous phase)−1). 

The model was applied by supplying values of {M}geoact, 
[SOIL], aH, [DOM] and {POM}. Speciation was computed by 
iterative estimation of [M2+], computation of [M]sbound and 
{M}sorbed using Eqns 3 and 4, respectively, then computa
tion of {M}geoact according to Eqn 1, until the computed 
value matched the supplied value within tolerance limits. 
Iterative improvement of the estimate of [M2+] was done 
using the one-dimensional Newton–Raphson approach. The 
dissolved metal concentration in the solution phase (i.e. the 
porewater or an aqueous extraction of the soil), [M]diss, was 
the sum [M2+] + [M]sbound. 

A truncated version of the model may be used to compute 
the solution phase free metal ion from the total solution 
metal. In this case, a modified mass balance is used: 

K a[M] = [M ] + [M ] [DOM]total,aq
2+

sbound
2+

H (6)   

The partition coefficient, Kd (L (kg soil)−1) may also be 
computed: 

K

K a
K a

= {M}
[M]

= [M ] {POM}
[M ] + [M ] [DOM]

d
sorbed

total,aq

sorbed 2+
H

2+
sbound

2+
H

(7) 
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Model parameterisation was done using a bespoke script in 
R (R Core Team 2019). A version was also implemented 
as a Microsoft Excel user-defined function. This version, 
with additional function for data entry, is available from 
https://www.ceh.ac.uk/services/possms, or by contacting 
the author. 

General dataset considerations 

Application of POSSMs, both in calibration and for predic
tion, requires measurements of the geochemically active soil 
metal concentration and soil organic matter content, and the 
solution phase pH and DOM concentration. Geochemically 
active soil metal may be estimated by a number of methods. 
The most commonly used methods involve extraction of 
the soil using either a dilute mineral acid (e.g. 0.43 M nitric 
acid, Groenenberg et al. 2017) or a dilute solution of 
a strong metal-binding ligand (e.g. 0.05 M EDTA,  
Quevauviller 1998) to remove metal reversibly sorbed to 
the soil surface, either by providing a high concentration of 
an ion that competes with the metal for surface binding 
(H+ in the case of mineral acids) or a solution ligand that 
outcompetes the surface binding sites for metal. In practice, 
researchers have used a range of acid and/or strong ligand 
concentrations for estimation of the geochemically active 
metal. Pragmatically, it is not possible to identify a single 
‘best’ extraction because all have potential artefacts that 
may affect their performance in certain soil types, for exam
ple causing dissolution of readily soluble solid phases con
taining metal. Therefore, in this work, datasets where 
geochemically active metal has been estimated by room 
temperature extraction using either dilute mineral acid 
or EDTA have been accepted for calibration and testing 
purposes. 

The soil organic matter content, {SOM}, is typically mea
sured either by soil loss on ignition or by the difference 
between total and inorganic C measured using elemental 
analysis. In the latter case, conversion to organic matter is 
done by assuming a percentage of carbon content in the 
organic matter. This work used a carbon content of 50% 
throughout. Computation of sorbed metal within POSSMs 
requires the particulate organic matter content of the soil, 
{POM}. This must be computed from {SOM} by correcting 
for the organic matter in solution, [DOM]: 

{POM} = {SOM} [DOM]
[SOIL]

(8)  

This computation is done automatically in the model. 

Calibration dataset and modelling approach 

Three calibration datasets from the literature were used: 
(i) the dataset of Tipping et al. (2003); (ii) the dataset of  
Shotbolt and Ashmore (2004) and (iii) the datasets of Weng 
and co-workers (Weng et al. 2001, 2002). These will be 

referred to as the ‘UK1’, ‘UK2’ and ‘NL’ datasets respectively. 
Variable ranges within each dataset are shown in Table 2. 

The UK1 dataset comprises measurements on 98 non- 
forested upland surface soils (0–5 cm) sampled from five 
upland areas of England and Wales. The data used com
prises: (i) measurements of loss on ignition (LOI) by ashing 
at 450°C; (ii) estimates of geochemically active Cu, Zn, Cd 
and Pb by extraction with EDTA (0.1 mol L−1); (iii) mea
surements of pH, dissolved organic carbon (DOC) and fil
tered (0.2 µm) metals (Na, Mg, Al, K, Ca, Fe, Cu, Zn, Cd, Pb) 
in porewaters extracted from soil blocks previously satu
rated with deionised water to field capacity and incubated 
for a week prior to porewater extractions using Rhizon™ 
samplers. Further details of the analysis and sampling are 
provided by Tipping et al. (2003). The experimental 
approaches taken provide a dataset that has a reasonable 
degree of realism and field relevance, with soil:solution 
ratios that are closer to those expected in the field than 
those ratios typical of laboratory sorption experiments. 
The solid : liquid ratios of the saturated soils were calculated 
by the same method as Tipping et al. (2003). 

The UK2 dataset comprises measurements on 56 lowland 
and forested upland soils, and 23 soils from historic mining 
sites and nearby uncontaminated locations. Soil solutions 
were extracted using a method similar to that for the soils of 
dataset UK1. Solutions were analysed for pH and the con
centrations of DOC, Na, Mg, Al, K, Ca, Fe, Cl, NO3 and SO4, 
and Ni, Cu, Zn, Cd and Pb. Geochemically active Ni, Cu, 
Zn, Cd and Pb were estimated by soil extraction with 
0.1 mol L−1 EDTA. Loss on ignition was measured by the 
same method as for dataset UK1. 

The NL dataset comprises measurements on 32 soil samples 
taken from a field site near Wageningen, NE Netherlands, 
comprising plots with pH and Cu input rate adjusted 
(Weng et al. 2001, 2002). Surface samples (0–20 cm) were 
taken from eight plots and profiles (eight further samples, 
down to a depth of 1 m) from three of the plots. Soil 
organic matter content was estimated by LOI at 550°C 
and geochemically active metals were estimated using 
2 mol L−1 HNO3 extraction. Free metal ion concentrations 
in the solution phase were measured using the Donnan 
membrane technique (DMT), using 100 g of air-dried soil 
and 218 mL of solution (0.002 M Ca(NO3)2), giving a soil 
concentration of 459 g L−1. The pH and DOC concentrations 
of the solution phase were measured following equilibration 
of the solution with the soil. Because of the detection limit of 
the DMT approach, the free metal ion could not always be 
quantified. The number of determinations was 24, 20, 32, 21 
and 19 for Ni, Cu, Zn, Cd and Pb respectively. 

Because free metal ion concentrations were not measured 
for the UK1 and UK2 datasets, they were estimated by 
speciation of the porewater using WHAM/Model VII 
(Tipping et al. 2011). In the UK1 dataset, the concentrations 
of Cl and SO4 in the porewater were not measured, and 
so they were estimated by speciation, fixing the charge 
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Table 2. Variable medians, interquartile ranges and overall ranges in the POSSMs parameterisation datasets.                 

Code and 
reference 

pH SOM (g g−1) [SOIL] 
(g L−1) 

[DOM] 
(g L−1) 

p{M}labile,obs (mol (g soil−1)) p[M]total,aq (mol L−1) 

Ni Cu Zn Cd Pb Ni Cu Zn Cd Pb   

UK1 median 4.48 0.22 463 0.073  6.99 6.53 8.31 6.22  6.94 6.06 8.33 7.22 

UK1 IQRA 3.99–6.09 0.094–0.648 459–983 0.0450–0.152  7.24–6.71 6.96–6.24 8.57–8.15 6.72–5.81  7.07–6.64 6.34–5.73 8.61–8.00 7.83–6.65 

UK1 range 3.35–8.28 0.090–0.98 302–1520 0.0106–0.942  7.67–5.69 7.99–4.78 9.05–6.50 7.48–4.18  7.47–5.05 7.03–4.67 9.22–6.64 8.97–4.18 

UK2 median 3.8 0.216 975 0.0786 7.50 7.26 6.64 8.75 6.27 7.26 6.91 6.00 8.18 7.10 

UK2 IQRA 3.6–4.6 0.132–0.573 513–1260 0.0467–0.119 7.85–7.25 7.62–6.89 6.96–6.26 9.05–8.27 6.86–5.79 7.55–7.01 7.12–6.70 6.30–5.68 8.45–7.68 7.58–6.72 

UK2 range 3.1–7.3 0.046–0.97 304–2060 0.0080–0.384 8.78–6.57 8.20–5.49 8.34–4.04 9.05–6.97 8.11–3.90 8.29–6.33 7.80–5.75 6.85–3.90 9.05–6.53 8.47–4.97 

NL median 5.52 0.011 459 0.0292 7.93 6.20 7.29 9.08 7.02 6.39 5.97 5.90 7.87 8.00 

NL IQRA 4.25–5.75 0.005–0.039 – 0.0197–0.0454 8.06–7.71 6.69–5.84 7.61–7.05 9.40–8.89 7.97–6.94 6.78–6.00 6.74–5.57 6.47–5.31 8.48–7.16 8.39–7.46 

NL range 3.73–6.10 0.004–0.042 – 0.0134–0.0678 8.17–7.45 7.35–5.65 8.40–6.74 10.10–8.61 8.25–6.91 7.33–5.69 7.27–4.60 6.79–4.62 9.06–6.93 9.62–7.09 

AInterquartile range.  
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equivalent ratio of Cl : SO4 to 3 : 1 and adjusting the sum of 
Cl and SO4 to match the computed and observed pH values. 
Dissolved organic carbon was assumed to comprise 65% 
fulvic acid. Porewater Fe was assumed to be FeIII and 
allowed to form a colloidal oxyhydroxide precipitate (sus
pended in the porewater) if solubility limits were exceeded, 
using the parameters given in Lofts and Tipping (2011). The 
oxyhydroxide was assumed to have a chemically active 
surface, simulated using the model of Lofts and Tipping 
(1998). Aluminium was allowed to precipitate as its oxy
hydroxide with a standard log solubility product of 8.5 and 
an enthalpy of −106.9 kJ mol−1. 

Sorbed metal concentrations, {M}ads, were computed by 
correcting {Mgeoact} for the metal in the solution phase: 

V
{M} = {M}

[M]
[SOIL]ads geoact

pw f,aq (9)  

The median percentages of metal in the solution phase were 
0.4, 0.3, 0.9, 0.3 and 0.02% for Ni, Cu, Zn, Cd and 
Pb respectively. The highest percentages of metal in the 
solution phase were 27, 3.6, 43, 27 and 0.9 respectively, 
and, with the exception of Pb, were found in acidic 
(pH < 5), low SOM subsoils of the Netherlands dataset. 

Model parameters were optimised by minimising a com
posite root-mean-squared error term: 

n

RMSE =

(log[M ] log[M ] )

+ (log[M] log[M] )

+ (log{M} log{M} )

n

n

n

comb

1
2+ obs 2+ calc

2

1 sbound, obs sbound,calc

1 ads,obs ads,calc
2

(10)   

Optimal parameters, including uncertainties, and standard 
errors of prediction were computed by bootstrapping using 
bespoke R code. Parameter best estimates were obtained as 
the medians of estimates derived by model fitting to 2000 
sampled datasets. Parameter uncertainties were obtained by 
taking the 15.9 and 84.1 percentiles of each set of parameter 
estimates. Standard errors of prediction were obtained using 
the 0.632 estimator approach (Efron 1983). 

Application to literature studies 

To test the performance of the model, data on the speciation 
of Ni, Cu, Zn, Cd and Pb in soils and soil solutions were 
gathered from the literature. To be included in the testing, a 
dataset had to provide data allowing testing of (i) soil– 
solution partitioning and/or the relationship between the 
sorbed metal and the free ion, or (ii) the relationship 
between the solution metal concentration and the free ion. 
For prediction of the full speciation, therefore, measure
ments of (i) the geochemically active metal, (ii) dissolved 
and/or free metal activity or concentration in the solution 

phase, (iii) soil organic matter content and (iv) solution pH 
and DOC concentration were required. For prediction of the 
free ion in the solution phase, measurements of (i) solution 
and free metal activity or concentration and (ii) solution pH 
and DOC concentration were needed. 

The datasets are summarised in Supplementary Table S1. 
Two datasets (Koopmans et al. 2008; Groenenberg et al. 
2010b; DMT3) and Ren et al. (2015a, 2017) (DMT6) 
allowed full prediction of free, solution and sorbed forms 
for all the metals. Cancès et al. (2003) (DMT1) allowed full 
prediction for all metals except Ni, and Pampura et al. 
(2006) (DMT2, ISE1) allowed full assessment for Cu, using 
two analytical techniques for the free ion. Duffner et al. 
(2014) (DMT6) allowed prediction of free Zn2+ and sorbed 
zinc, but not the solution metal. de Groot et al. (1998) (KD1),  
Gooddy et al. (1995) (KD2) and Izquierdo et al. (2013) (KD3) 
allowed assessment of soil–solution partitioning. Twenty five 
datasets were found allowing prediction of the free metal 
from the solution phase only, including DMT1, DMT2/ISE1 
and DMT3. Of these, five allowed predictions of Ni specia
tion, all making measurements using DMT. For Cu, 15 data
sets allowed predictions, making measurements using DMT.  
Pampura et al. (2006) additionally measured Cu2+ activity 
using ISE. Five other datasets included free Cu measurements 
using ISE. Sixteen datasets had free Zn measurements, nine 
by DMT, four by cation exchange and one by a combination 
of anodic stripping voltammetry measurement of voltamme
trically labile Zn, coupled with speciation to obtain free Zn 
(Stephan et al. 2008) (V1). One dataset (Chito et al. 2012) 
(DMT14, AGNES1) comprised comparative measurements of 
free Zn by DMT and AGNES. Free Cd was measured in 13 
datasets, nine by DMT, three by cation exchange and one by 
a combination of differential pulse anodic stripping voltam
metry and speciation calculations (Sauvé et al. 2000) (V2). 
Free Pb was measured in ten datasets, nine by DMT and once 
by anodic stripping voltammetry and speciation calculations 
(Sauvé et al. 1997) (V3). 

The exact form of the quoted free ion measurements 
(activities or concentrations) in each dataset was obtained 
from the published experimental description, where explicitly 
given. The DMT method measures the true solution free ion 
concentration, and this assumption was made for all DMT 
datasets unless otherwise stated. Pampura et al. (2006) con
verted their measured DMT Cu2+ concentrations to activities. 

For consistency across the datasets, comparisons of mea
sured and computed free ion were made on the true solution 
ion concentration. Where free ion activities were quoted in 
the dataset, they were converted to true solution concentra
tions by the use of activity coefficient, γM:   

a[M ] =2+ M

M
(11)    

This correction was done for ten datasets, each of which 
required estimation of ionic strength of the solution phase 
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for activity coefficient calculation. For the studies of Sauvé 
and co-workers on the speciation of Zn, Cd and Pb (Sauvé 
et al. 1997, 2000; Stephan et al. 2008) and the dataset of  
Sanders (1982), an ionic strength of 0.01 M was assumed, 
being the ionic strength of the electrolyte used for soil 
solution extraction. Nolan et al. (2003) provided solution 
phase ionic strengths estimated from electrical conductivity.  
Vulkan et al. (2000) provided electrical conductivity mea
surements on the solution phase, which were converted to 
ionic strength using the relationship of Simón and García 
(1999). In Pampura et al. (2006), ionic strengths were esti
mated using soil solution compositions. Salam and Helmke 
(1998) provided solution phase major ion concentrations, 
which were used to compute ionic strength using WHAM/ 
Model VII (Cl concentrations were not provided and were 
estimated by forcing a charge balance in WHAM). All activity 
coefficients were computed using the Davies equation. 

Where required, soil concentrations were computed 
directly from soil masses and solution volumes provided. 
Where this information was not present, the soil concentra
tion was computed from the soil composition and the 
% saturation of soil pores (% water holding capacity) 
(see Supplementary material, default computation of soil 
concentration). 

Results 

POSSMs fitting 

No significant differences in the model fits for Pb were seen 
when Eqn 5 was used instead of Eqn 3, i.e. when the solution 
Fe concentration was included as an additional variable for 
modelling of solution-bound Pb. Therefore, all modelling of 
Pb was done using aH and [DOM] only as the variables for 
solution binding, as for the other metals. 

Fig. 1, 2 show the free ion concentrations and partition 
coefficients resulting from the model parameterisation 
respectively. Table 3 shows the optimised parameters for 
each metal, including ranges of uncertainty. Root-mean- 
squared errors (RMSEs), and the proportions of fitted values 
within half and one order of magnitude of observations, are 
shown in Table 4. Generally POSSMs fitted well to the 
observations, with a majority of fitted values of [M2+]aq, 
[M]total,aq and Kd consistently predicted to within half an 
order of magnitude of observation, and almost all fitted 
values consistently within one order magnitude of observa
tion. Prediction of aqueous phase free ions from the observed 
solution phase concentrations, in terms of RMSEs, was con
sistently better than the prediction from the whole soil fit
ting. The parameters for the relationship between the sorbed 
metal and the free ion concentration were comparable to 
those obtained by Groenenberg et al. (2010a) (note that 
both models include the UK1 data in the training set). 
Coefficients of pH had absolute values in the range 0.4–0.5 

for Ni, Zn and Cd in both models, and for Cu and Pb, the 
absolute values were approximately unity or greater. For Pb, 
the coefficient of the Groenenberg model was slightly greater 
(1.21 versus an absolute value of 1.05 for POSSMs). 
Coefficients of SOM in POSSMs were higher for all the metals 
with the exception of Pb, for which the POSSMs coefficient 
(0.60) was notably lower than the coefficient of Groenenberg 
et al. (2010a) (1.07). The coefficient of sorbed metal concen
tration in POSSMs was always predicted to be the maximum 
allowed value of unity, while Groenenberg et al. (2010a), 
who allowed the coefficient to take a value above unity, 
obtained values below unity except for Cd. 

To evaluate the performance of POSSMs in predicting 
solution metal and Kd values, the training datasets were 
fitted to a single equation for metal solubility, where the 
solution metal was predicted from the sorbed metal and soil 
properties: 

K a[M] = {SOM} [DOM] {M}w x y z
diss diss H ads (12)  

where Kdiss, w, x, y and z are fitting parameters. This expres
sion provides a single, more direct relationship between 
solution and sorbed metal than POSSMs, and thus provides 
a benchmark against which to compare POSSMs perform
ance. The differences in the goodness-of-fits for POSSMs and  
Eqn 12 were marginal (data not shown) with the largest 
differences in RMSE being 0.02 for solution Ni, and 0.01 for 
log Kd in Cd. 

No comparison with previous modelling was possible for 
the relationship between predicted free metal ion and 
solution-bound metal, but an evaluation of the fitted coeffi
cients was possible. The dependence of solution binding on 
pH (β) increases in the order Cd < Zn < Ni < Cu < Pb, 
which is a similar order to the pH dependence of sorption 
(Β). With the exception of Ni, the coefficient for solution 
binding was smaller than the coefficient for sorption. 

Supplementary Fig. S1 compares the free ion concentra
tions computed by WHAM/Model VII with POSSMs predic
tions by speciation of the solution only. Standard errors of 
prediction and numbers of points within half and one order 
of magnitude are shown in Table 4. Both the standard errors 
and the number of points within half and one order of 
magnitude were consistently lower than the corresponding 
values obtained for prediction of the free ion from the 
whole soil calibration. This suggested that the calibration 
approach taken is robust for deriving parameter sets 
for computation of the free ion from the whole soil or the 
solution phase. 

Application to literature data: (i) whole soil 

Fig. 3 compares the observed free ion concentrations with 
those predicted from whole soil speciation. Generally, the 
model predicted the majority of observed concentrations to 
within an order of magnitude. The RMSEs for the individual 
datasets (Supplementary Table S2) were somewhat variable, 
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particularly for Ni and Pb owing to the presence of a small 
number of poorly predicted points. The overall RMSEs are 
shown in Supplementary Table S4. With the exception of Cd, 
for which values were comparable, these errors were some
what higher than the standard errors of prediction for the 
training dataset (Table 4). The overall RMSEs for Ni and Pb 
were somewhat skewed by outliers (predictions of over two 
orders of magnitude different to the observation). 

Fig. 4 compares observed Kds in whole soil studies with 
POSSMs predictions. Predictions were generally satisfactory, 
with over 80% of predictions being within an order of mag
nitude of observations and over 50% being within half an 
order of magnitude, for all the metals. No systematic bias 

between observation and prediction was seen, with the pos
sible exception of copper, for which low Kds (>101 L kg−1) 
were consistently overestimated by the model, mostly by 
over an order of magnitude. These points were all derive 
from dataset KD2 (Gooddy et al. 1995). Supplementary 
Table S4 provides overall RMSEs. As was the case with the 
free ion predictions, the RMSEs were rather higher than the 
standard errors of prediction in the training dataset. 

Fig. 5 shows the prediction of average Kds in porewaters 
sampled from soil of the Elbe floodplain, Germany (Rennert 
et al. 2017, dataset F1). The model provided a reasonable 
prediction of the Kds, with the exception of Pb, for 
which Kds were on average overestimated, with two of the 
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four predictions over an order of magnitude different from 
observation. 

Application to literature data: (ii) dissolved phase 

Measured and predicted concentrations of metal free ions, as 
a proportion of the dissolved metal, are compared in Fig. 6, 
and RMSEs are shown in Supplementary Table S3. The 
model largely predicted the observed free ion to within an 
order of magnitude, although some larger differences were 
seen, particularly for Cu (66 of 259 observations) and Pb 
(37 of 147 observations). In the case of Cu, seven predicted 
values differed by more than three orders of magnitude from 
observation, while a further nine values differed by over two 

orders of magnitude. Two predicted Pb2+ concentrations 
differed from observation by more than three orders of 
magnitude and ten further predictions differed by more 
than two orders of magnitude. In all these cases, POSSMs 
gave a prediction of the free metal ion that was lower than 
observation. Plotting the ratio of calculated to observed free 
ion against the pH (Supplementary Fig. S2, S3) showed that 
underestimation of the free Cu2+ or Pb2+ by two orders of 
magnitude or more occurred at the upper end of the pH 
range: pH > 6 for Cu2+ and pH > 7 for Pb2+. Furthermore, 
the underestimation largely arose from observations in data
sets DMT8 (Kim and Owens 2009) and DMT9 (Nolan et al. 
2003). These two datasets exerted a strong influence on the 
prediction RMSEs for Cu and Pb in the DMT studies. 
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Table 3. Fitted parameters for the POSSMs model.           

Metal log Kcomp α β δ log Kads A B Δ   

Ni −1.58 (−1.94, −1.29) 1.00 (1.00, 1.00) −0.52 (−0.57, −0.46) 0.98 (0.84, 1.12) −1.36 (−1.63, −1.10) 1.00 (1.00, 1.00) −0.50 (−0.57, −0.42) 1.28 (1.18, 1.37) 

Cu −3.80 (−4.06, −3.55) 0.62 (0.57, 0.66) −0.60 (−0.64, −0.55) 0.75 (0.66, 0.83) −2.90 (−3.03, −2.77) 1.00 (1.00, 1.00) −1.02 (−1.04, −0.99) 0.97 (0.92, 1.03) 

Zn −2.60 (−2.87, −2.30) 0.80 (0.75, 0.84) −0.39 (−0.37, −0.42) 0.75 (0.66, 0.84) −1.97 (−2.06, −1.88) 1.00 (1.00, 1.00) −0.49 (−0.50, −0.47) 0.96 (0.91, 1.01) 

Cd −1.21 (−1.73, −1.05) 1.00 (0.93, 1.00) −0.34 (−0.36, −0.32) 0.70 (0.59, 0.81) −1.63 (−1.76, −1.51) 1.00 (1.00, 1.00) −0.47 (−0.49, −0.45) 1.08 (1.02, 1.14) 

Pb −2.90 (−3.11, −2.69) 0.88 (0.84, 0.93) −0.83 (−0.87, −0.78) 1.19 (1.10, 1.29) −2.72 (−2.84, −2.61) 1.00 (1.00, 1.00) −1.05 (−1.07, −1.02) 0.60 (0.55, 0.65) 

Note: Values in brackets represent upper and lower confidence intervals (±1 S.E.) obtained by bootstrapping.  

Table 4. Standard errors of prediction for POSSMs fitted to the UK and Netherlands datasets, and percentages of fitted points within half (RFY,0.5) and one (RFY,1.0) order of 
magnitude of observations.                  

{log[M2+]} {log[M]comp,aq} log Kd {log[M2+]} (solution only) 

Metal n SEpred RFY,0.5 RFY,1.0 SEpred RFY,0.5 RFY,1.0 SEpred RFY,0.5 RFY,1.0 SEpred RFY,0.5 RFY,1.0   

Ni  99  0.46  78  95  0.53  72  93  0.39  81  99  0.25  93  99 

Cu  196  0.50  70  96  0.36  86  100  0.33  90  100  0.41  83  98 

Zn  209  0.39  85  99  0.44  79  96  0.38  88  99  0.20  96  100 

Cd  192  0.44  81  96  0.47  75  97  0.43  81  97  0.16  98  100 

Pb  196  0.46  78  96  0.41  80  97  0.38  85  97  0.31  90  99   
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Removing the datasets from the computation reduced the 
overall RMSEs to 0.651 and 0.591 for Cu and Pb respec
tively. Further inspection of the larger DMT8 dataset 
showed no strong trend in the measured free Cu and Pb 
ion as a function of pH, in disagreement with what is known 
about the competitive effects of pH on metal ion binding to 
organic matter. Furthermore, Nolan et al. (2003) applied 
WHAM/Model VI to their data and found similar discrepan
cies between observations and predictions. 

For Ni, Zn and Cd, model predictions were generally close 
to observations, with some specific exceptions. Free ionic Zn 
and Cd were underestimated in DMT9, and the voltam
metric analyses of Sauvé and co-workers (datasets V1 and 
V2) were generally overestimated by the model. The reasons 
why this might be are not clear. The voltammetric approach 

entails measurement of voltammetrically labile metal and 
speciation to obtain the free ion on the assumption that the 
voltammetrically labile metal comprises the free ion and 
inorganic complexes. Stephan et al. (2008) showed that in 
fact the voltammetrically labile Zn might comprise rela
tively weakly organically bound metal also. However, if 
this were occurring in the soil solutions, it would result in 
overestimation of the voltammetrically labile metal and free 
ion, the opposite of what is found. It was also notable that 
the DOC concentrations in each study differed by approxi
mately an order of magnitude on average, even though the 
datasets overlapped in terms of site locations and the soil 
extraction procedure was the same, and that in dataset V1 
DOC was directly measured, while in dataset V2 it was 
estimated using UV absorbance. Differences in soil storage 
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and extent of drying may cause considerable changes in the 
concentration and metal-binding properties of DOM in soil 
solutions (Amery et al. 2007). Therefore it is worth consid
ering these results with some caution. It is also notable that 
the prediction of Pb2+ in dataset V3 was done using DOC 
taken from dataset V2 and showed scatter but only small 
bias (RMSE = 0.69, bias in log [M2+] = 0.026). 

For all the types of prediction, the influence of extending 
the model beyond the range of variables in the training 
dataset was assessed. RMSEs were recomputed after 
removing predictions for which one or more of the metal 
concentration, pH, SOM or DOM was outside the ranges in 
the training datasets (Table 2). The adjusted RMSEs are 
provided in Supplementary Tables S2–S5. Generally, there 
was no obvious pattern of increasing or reducing RMSEs 

once outlying points were discarded. This is likely to result, 
in part, from the nature of the specific datasets, some 
of which (e.g. DMT2, ISE1) are of soils known to be contam
inated with one or more metals. The clearest difference was 
seen for Cu Kd prediction, for which the RMSE dropped from 
0.83 to 0.46 when outlying data were discarded. This 
improvement in the fit was largely owing to the removal 
of most of the KD3 dataset, which largely has very low 
active soil Cu concentrations (excluding the two highest 
concentrations, which are from topsoil samples, the mean 
geochemically active Cu is 2.3 × 10−9 mol g−1, or 
0.15 µg g−1). These soils exhibit relatively low Kd values 
for copper, ranging from 10−1.64 to 101.18, and POSSMs 
cannot reproduce these values (predicted range 100.86– 
102.01). Conversely, the RMSEs for Cu free ion and Kd in 
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the DMT2 dataset increased after removal of data lines 
having geochemically active Cu concentrations above the 
range in the calibration dataset. 

Comparison with other models 

Parts of the testing dataset could be speciated using existing 
models for the prediction of either the free metal ion or 
solution phase metal concentration. The C–Q model of  
Groenenberg et al. (2010a) was used to predict free ion 
concentration from pH, SOM and geochemically active 
metal concentration, for datasets DMT1–7 and ISE1 
(Supplementary Fig. S4). The goodness-of-prediction (RMSE) 
values were 1.18, 0.96, 0.48, 0.45 and 1.10 for Ni, Cu, Zn, Cd 
and Pb respectively. For the same datasets, the POSSMs 
RMSEs were 1.18, 0.64, 0.53, 0.46 and 0.95 respectively. 
The solubility model of Groenenberg et al. (2012) predicts 
the solution phase metal concentration from the geo
chemically active soil metal, pH, solution phase DOC and 
up to three solid phase parameters (SOM, clay content and 
the sum of oxalate-extractable soil Al and Fe). It was applied 
to datasets DMT3, KD1 and KD3, and partly to KD2. For 
DMT3 and KD1 (Supplementary Fig. S5), the RMSEs in the 
log of solution metal were 0.53, 0.51, 0.68, 0.73 and 0.54 
respectively, while for POSSMs they were 0.59, 0.51, 0.75, 
0.78 and 0.56 respectively. For dataset KD2, the solubility 
model could not be applied for Ni and Zn owing to the 
requirement for the % clay content of soil, which was not 
supplied. For Cu, Cd and Pb, predictions were made on the 
basis of SOM, the sum of oxalate-extractable soil Al and Fe, 
solution phase pH and DOC (Supplementary Fig. S6). For Cu, 
the RMSEs were comparable (0.91 for the solubility model 
and 1.24 for POSSMs), although the performance of both 
models was relatively poor. For both Cd and Pb, the perform
ance of POSSMs (RMSEs of 0.28 and 0.48 respectively) was 
superior to that of the solubility model (RMSEs of 0.93 and 
1.42) despite the latter using an additional soil property 

variable compared with POSSMs. For dataset KD3, predictions 
were possible for Zn, Cd and Pb (Supplementary Fig. S7). The 
performance of POSSMs was inferior to the solubility model 
for Zn and Pb (POSSMs RMSEs 0.59 and 0.72, solubility 
model RMSE 0.36 and 0.59) but was somewhat better for 
Cd (POSSMs RMSE 0.61, solubility model RMSE 0.79). 

Discussion 

The POSSMs approach builds closely upon previous empiri
cal models of soil metal chemistry (Tipping et al. 2003;  
Groenenberg et al. 2010a). The distinctive feature of the 
model is its ability to predict both the free metal concentra
tion and the solid–solution partitioning of the geochemically 
active metal, using a minimal data set. Application to litera
ture data suggests that POSSMs is capable of providing 
estimates of solid–solution partitioning and free ion concen
tration comparable to those obtained from models that 
predict these variables singly. 

The model provides similar goodness-of-prediction to 
existing empirical models of metal solubility and speciation, 
where comparative calculations can be made. The ability to 
predict the free ion concentrations in the training dataset as 
a function of the solution metal is a useful test of the 
robustness and realism of the parameterisation. Because 
the parameterisation is based largely on predictions of free 
ion using WHAM/Model VII, this part of the model is largely 
an emulator of WHAM. Predictions of free ion concentrations 
in literature datasets were variable across dataset and metal, 
which likely reflects the technical complexity of the mea
surement techniques. The large discrepancies observed in 
some datasets between observed and predicted Cu and Pb, 
for example, warrant further investigation. More rigorous, 
systematic investigation of the comparative performance of 
speciation approaches is needed, particularly under condi
tions where the free ion is expected to form a small propor
tion (e.g. <1%) of the solution phase metal. Variability in 
predictions of Kds may reflect the range of approaches to 
separating a solution phase from the soil, although, at least 
in the case of Cu, there are clear issues with extending the 
model beyond its calibration range. Further, systematic 
investigation of how Kds may change with separation 
approach, and of partitioning under extreme conditions of 
pH, SOM/DOM and geochemically active metal, are needed 
to better establish a useful working range for POSSMs. 

The model requires a concentration of soil solids for 
computing metal mass balance, a requirement not found 
in models for predicting the free ion or solubility alone. 
Within the likely range of soil concentrations relevant for 
field application, the model predictions are not greatly sen
sitive to soil concentration (Supplementary Fig. S8). It is 
notable that although a range of soil concentrations are 
present in the fitting and testing datasets (Supplementary 
material, summaries of literature datasets), there is no 
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indication that this influences the model goodness-of-fit nor 
the predictive capabilities. In the absence of information on 
the moisture content of a field soil, a reasonable prediction 
of soil concentration can be made using a plausible moisture 
content as a percent pore saturation, for example by apply
ing the approach set out in the Supplementary material 
(computation of soil concentration). 

The POSSMs model is not intended to be a replacement for 
mechanistic geochemical speciation modelling, which can be 
a powerful tool in aiding understanding of the mechanisms 
driving speciation, such as the importance of different solid 
phases in sorption. Because it is designed for application to 
field situations, it has been parameterised using data from 

soils not spiked with metal salts. As such spiking induces 
chemical changes, such as increased ionic strength in the 
solution phase, applying POSSMs to such soils should be 
done with caution. Neither does the model allow for the 
control of metal speciation by solid phase dissolution– 
precipitation equilibria, so its application to soils where 
such controls occur is not recommended at present. 

POSSMs is intended, as far as possible, to be a general 
model of soil metal chemistry applicable to a wide range of 
soils. The calibration datasets used do emphasise acidic and 
organic matter-rich soils (Supplementary Fig. S9). Acidic 
low organic matter soils and circumneutral high organic 
matter soils are also represented, but there are relatively 
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few soils with both pH > 6 and {SOM} > 0.05 g (g soil)−1. 
It is therefore to be expected that using the parameterisation 
derived here, the model is most suitable for acidic, organic- 
rich soils and least suitable for circumneutral, organic-poor 
soils. It is in this range of soil compositions that other phases 
such as mineral oxides may become important for binding 
metals. The potential importance of other phases as model 
variables is clear from both mechanistic and empirical 
modelling, particularly at higher pH values. For example,  
Duffner et al. (2014) modelled Zn soil binding mechanisti
cally and suggested that although organic matter was the 
main sorbent, iron oxides (goethite and hydrous ferric oxide) 
and clay were non-negligible contributors. Groenenberg 
et al. (2012) empirically modelled soil–solution partitioning 
of metals including clay and the sum of oxalate-extractable 
Al and Fe as explanatory variables (the latter acting as a 
surrogate for amorphous Al and FeIII oxides). They found 
that clay content was a significant variable for Ni and Zn 
partitioning, and the oxalate-extractable Al and Fe to be 
significant for Cu, Zn, Cd and Pb. 

Application of POSSMs to circumneutral, organic-poor 
soils with the current parameterisation needs to be done 
with care and to acknowledge the lack of calibration for 
the model to such soils. Some soils of this type are present 
within the datasets to which the model has been applied, 
namely datasets DMT6, KD1 and KD3 (Supplementary 
Fig. S9). Comparison of modelled Kds in these soils with 
the Kds for the remaining soils does not show any systematic 
deviation in predictions across the metals. A small number 
of outliers can be seen for Ni, Zn and Pb. For the latter two 
metals, these outliers include a small number of soils having 
particularly high observed Kd values. This suggests, albeit 
weakly, that the model may be underestimating metal sorp
tion in particularly strongly sorbing soils. This is suggestive 
of a failure to consider additional soil binding phases for a 
relatively small number of soils. Systematic evaluation of 
the model parameterisation against greater numbers of soils 
of this type is needed to justify the reparameterisation of the 
model, or the inclusion of additional binding phases. 

POSSMs could also be adapted readily to account for the 
effects of variability in SOM and DOM composition on 
speciation. This is a key area of research (e.g. Ren et al. 
2015b). Ideally, a training dataset covering as wide a range 
of soil types as possible, and including measurement of DOM 
and SOM composition, would be needed to explore the 
possibility of improving model prediction by consideration 
of organic matter composition. 

Conclusions   

• The POSSMs model is an empirical model for soil metal 
speciation that predicts both the free ion and partitioning 
in a single calculation using minimal driving data.  

• Following calibration using literature datasets, the model 
was applied to a number of datasets of metal speciation in 
soil–solution and solution phase only systems. The model 
produced predictions broadly comparable with empirical 
models designed for prediction of the free ionic or solution 
metal alone.  

• Predictions of the free ion in the solution phase alone were 
reasonable but some datasets produced large differences 
between observation and prediction, particularly at 
circumneutral and alkaline pH. More research is needed 
into the performance of free ion measurement approaches 
under conditions where extensive metal complexation is 
expected to occur.  

• The POSSMs parameterisation is oriented towards acidic 
and organic-rich soils. Predictions in circumneutral, 
organic-poor soils do not suggest any systematic bias, 
but application to such soils should be done with caution.  

• POSSMs complements mechanistic speciation models by 
providing a means to predict key metal species in soils 
using a minimal driving dataset. It is most likely to find 
use in applications requiring large-scale chemistry data
sets, such as large-scale modelling. 

Supplementary material 

Details of the datasets used for testing, their parameter 
ranges and prediction errors, the default approach to 
computation of the soil concentration and a range of addi
tional figures are available in supplementary material 
online. 
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