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Voltammetry has been a key tool in the development of the
field of analytical chemistry and subsequently environmental

chemistry. Voltammetry’s genesis was from the fundamental
electrochemical works of Humphry Davy, Michael Faraday,
Hermann Helmholtz and Walther Nernst among others, but it’s

real application to chemistry was with the invention of polaro-
graphy in 1922 by Jaroslav Heyrovský, for which he received
theNobel Prize inChemistry in 1959[1] (For a complete historical
and future perspective on polarography see the recent articles

by Michael Heyrovský.[2,3]) As polarography progressed under
Heyrovský’s tutelage it also saw the first application of the
method of standard additions byHansHohn,[4] a technique that is

now common place in a wide range of analytical techniques.[5]

A further critical development in polarography came with the
invention of the hanging mercury drop electrode (HMDE) by

Wiktor Kemula.[6] The significance of polarography as an ana-
lytical toolwas seized upon by the outstanding analytical chemist
Izaak Kolthoff[7] who along with his students, most notably

James Lingane[8] and Herbert Laitinen,[9] developed the back-
ground theory and first methods for use in environmental trace
metal analysis and biological sensors.[10–12]

Advances in solid state electronics during the 1950s and

60s saw the development of cheaper and more robust voltam-
metric systems, and alongside this was the development of
new pulse polarography techniques[13] leading to more sensitive

analysis for many analytes. The high ionic strength of seawater
lends itself to voltammetric methods and the first applications
of voltammetry to seawater chemistry began with the work of

Marko Branica and colleagues at the Rudjer Bošković Insitutute
in the late 60s and 70s, to assess metal speciation in sea-
water.[14–16] At the same time, in Australia, Mark Florence and
Graham Batley began to link their speciation work in seawater

with tracemetal bioavailability[17–20] helping to develop the free
ion association model.[21] From the early 80s, further new
developments in electronics improved significantly the electro-

chemical systems and they were applied to sediment porewaters
and in coastal and open ocean waters for speciation for the first
time; efforts spearheaded most notably by Ken Bruland,[22–25]

Stan Van Den Berg[26–31] and George Luther.[32–35] Freshwater
studies also benefited from the application of electrochemical
approaches during the same period particularly through

the works of the groups of Jacques Buffle[36–40] and Bill
Davison.[41–44] The application of voltammetry to oceano-
graphic and freshwater studies has led to a better understanding
of the distribution, speciation and biogeochemical cycling of

trace elements in the global environment and has played a large
part in the subsequent development of environmental chemistry.

However, the routine application of thesemethods to seawater
analysis came too late to play a role in the firstmajor geochemical
and biogeochemical investigations of the oceans (e.g. GEOSECS

1973–76[45]). Subsequently though the use of voltammetric
techniques in international oceanographic programs has steadily
increased since the 80swith involvement in JGOFS (www.who1.
edu), SOLAS (www.solas-int.org), IMBER (www.imber.info)

and GEOTRACES (www.geotraces.org, all websites last
accessed 14 April 2014). Although other techniques (e.g. flow
injection, mass spectrometry) are increasingly becoming more

predominant for trace metal analysis in seawater, voltammetric
methods are still playing a significant role, most importantly
in speciation studies.

This Research Front grew out of a COST Action (www.cost.
eu) ES801 workshop on ‘Voltammetry and GEOTRACES’
held at the Rudjer Bošković Insitutute in Šibenik, Croatia,

during 6–9 October 2012. The aim of the meeting was to
critically discuss the role of voltammetric techniques for
today’s chemical oceanography and especially in the current
international GEOTRACES program.[46] Special attention

was paid to new advances in voltammetry (e.g. new types of
sensors, green chemistry, improvements in analytical and
modelling trace metal speciation by voltammetry) valuable

for the scientific community working under the GEOTRACES
program, but not solely limited to seawater applications.

This Research Front features 11 contributions examining a

wide range of modern topics in environmental chemistry illus-
trating the applicability and adaptability of electrochemical
methods.

Three papers deal with the determination of complexation

parameters in natural waters, a research theme that voltammetry
has traditionally held all on its own among analytical techni-
ques. Murray et al.[47] present data for Cu, Zn, Pb and Cd

complexation for a near-pristine estuarine system in Ireland
and in a complementary study provide evidence that macroalgae
are also sources of Cu and Zn complexing ligands.[48] The

third paper on this theme, by Gerringa et al.,[49] provides a
valuable assessment of the steps involved in the calculation of
Fe binding ligands in seawater and provides a framework for

improving this type of analysis. A related work on Pb speciation
in seawater by Diaz-De-Alba et al.[50] applies two newer
voltammetric techniques: (i) absence of gradients and
Nernstian equilibrium stripping (AGNES) and (ii) stripping
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chronopotentiometry at scanned deposition potential (SSCP). A

new aspect of voltammetric work is the use of non-Hg based
electrode systems for speciation analysis and the work in this
issue using a rotating Bismuth film electrode with scanned

stripping potentiometry by Pinheiro et al.[51] is an important
link in the development and application of new ‘green’ chemis-
try approaches to electrochemistry. Chronopotentiometry is also
employed in the work of Strmečki et al.,[52] who used a constant

current chronopotentiometry stripping approach to characteri-
sation organic matter in seawater from the Adriatic. The
complex story behind the deposition of metal sulfides at the

Hg electrode in seawater is investigated by Milanović et al.[53]

and they provide new insights into the experimental design of
such work in order to avoid artefacts in interpreting the bulk

solution composition related to the surface formation of metal
sulfides. A novel new application for voltammetry is reported by
Penenzič et al.,[54] who developed a wafer based device with
flow through chip-based mercury (Hg) microelectrode coated

with a phospholipid–triglyceride mixed layer that allowed
determination of PAHs (anthracene, phenanthrene, pyrene and
fluoranthene) using rapid cyclic voltammetry.

Another key theme in this issue is the application of voltam-
metric methods to the determination of nanoparticles in the
environment. Two papers present work on the development of

electrochemical techniques to determine nanoparticles in the
environment. In the first of theseworks,Marguš et al.,[55] present
results from a combined voltammetry and in situ electrochemi-

cal scanning tunnelling microscopy (EC-STM) study of FeS in
NaCl and find that a Gold electrode shows promise for this
approach. In the 2nd part of their investigation of FeS in NaCl,
Bura-Nakić et al.,[56] use a chronoamperometric approach show

that the observed reduction current transients appear to be
related to the size of the FeS nanoparticles and is consistent
with parallel dynamic light scattering (DLS) measurements,

opening up the potential use of electrodes for particle sizing. The
third paper under the nanoparticles umbrella by Town and van
Leeuwen,[57] is an important contribution providing a theoreti-

cal framework for interpretation of the labilities of nanoparticle
metal complexes as they pertain to electrochemical techniques.
This work helps fill an important conceptual gap in linking
theory to observations and show the importance of kinetics in

the analysis of nanoparticles.
This collection of papers highlights the role voltammetry, and

electrochemical methods in general, have in driving new avenues

of research in environmental chemistry in the modern era and the
future. The traditional strengths of voltammetry are still there,
most notably in the pursuit of speciation and kinetic information

from natural and polluted waters. However new technology and
methods are being continually developed, as shown here, and are
opening up new avenues into non-traditional and emerging fields

of research such as nanoparticles and organic pollutants. It looks
as if voltammetry will remain a vital piece of the environmental
chemist’s toolbox for some time to come.

I would very much like to thank all the authors contributing

to this special issue – their dedication to expanding the frontiers
of electrochemical methods to new applications in environmen-
tal chemistry has led to this collection of high quality papers

which it has been my pleasure to edit. Last, but by no means
least, the timely and constructive help of the electrochemical
and environmental chemistry communities for reviewing these

papers is warmly acknowledged.

Peter Croot, Editor
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