Environmental problems · chemical approaches

139

CONTENTS

Cover

We do not yet fully understand all the biogeochemical cycles of arsenic and the specific toxic effects, if any, different compounds have on our health. Arsenic metabolism by seaweed-eating sheep, the benefits of arsenic for corn roots, speciation of arsenic in a marine ecosystem and reports of newly discovered arsenic compounds produced by living organisms are all topics in the Research Front (pp. 139–197).

FOREWORD

Foreword: Research Front—Arsenic Biogeochemistry *B. Maher*

Arsenic is a known carcinogen in humans. As well as contaminating the drinking water of tens of millions of people worldwide, arsenic can exist in many chemical forms. It is critical that we develop methods to measure arsenic speciation accurately and reliably, as reviewed by Ng (p. 146).

RESEARCH FRONT

Arsenic	Biogeoc	hemistry
---------	---------	----------

HIGHLIGHT

Current Perspectives in Arsenic Environmental and Biological Research <i>K. A. Francesconi</i>	141
REVIEWS Environmental Contamination of Arsenic and its Toxicological Impact on Humans <i>J. C. Ng</i>	146
Commonalities in Metabolism of Arsenicals B. M. Adair, S. B. Waters, V. Devesa, Z. Drobna, M. Styblo, D. J. Thomas	161
RAPID COMMUNICATION Unexpected Beneficial Effects of Arsenic on Corn Roots Grown in Culture <i>G. Evans, J. Evans, A. Redman, N. Johnson, R. D. Foust, Jr.</i>	167
RESEARCH PAPERS Two Novel Thio-Arsenosugars in Scallops Identified with HPLC–ICPMS and HPLC–ESMS <i>M. Kahn, R. Raml, E. Schmeisser, B. Vallant, K. A. Francesconi, W. Goessler</i>	171
Distribution and Speciation of Arsenic in Temperate Marine Saltmarsh Ecosystems S. Foster, W. Maher, A. Taylor, F. Krikowa, K. Telford	177
Arsenosugar Metabolism Not Unique to the Sheep of North Ronaldsay S. J. Martin, C. Newcombe, A. Raab, J. Feldmann	190
RESEARCH PAPERS Surfactants in South East Asian Aerosols <i>M. T. Latif, P. Brimblecomb, N. A. Ramli, J. Sentian, J. Sukhapan, N. Sulaiman</i>	198
A Two-Phase Box Model to Study Mercury Atmospheric Mechanisms L. Pan, G. R. Carmichael	205
Thermal Metamorphism of Primitive Meteorites—XII. The Enstatite Chondrites Revisited <i>MS. Wang, M. E. Lipschutz</i>	215
High Throughput Determination of BTEX by a One-Step Fluorescence Polarization Immunoassay S. A. Eremin, D. Knopp, R. Niessner, J. Y. Hong, SJ. Park, M. J. Choi	227
Investigating the Mechanism of Uranium Removal by Zerovalent Iron C. Noubactep, G. Meinrath, B. J. Merkel	235

EARLY ALERT Sign-up at **www.publish.csiro.au/journals/env** for our electronic early alert and receive the next table of contents **weeks in advance** of the print version.