Environmental problems - chemical approaches

Cover

Antimony (Sb) has dramatically increased in the environment since the Industrial Revolution. As Sb has no known biological function, there is concern as to its long-term effects on ecosystems and humans. The present Research Front provides readers with a clearer picture of what is currently known about the environmental chemistry of Sb and highlights important gaps in current knowledge.

The enrichment of potentially toxic antimony (Sb) in inhalable airborne particulate matter has become of great environmental concern. Iijima et al. (see pp. 122–132) clarify the predominant sources of particulate Sb in the atmosphere.

Photo: CSIRO Marine and Atmospheric Research

RESEARCH FRONT

Antimony in the Environment

FOREWORD Antimony in the environment – the new global puzzle <i>William A. Maher</i>	93
REVIEWS Antimony in the environment: knowns and unknowns <i>Montserrat Filella, Peter A. Williams and Nelson Belzile</i>	95
Antimony in the soil–plant system – a review Martin Tschan, Brett H. Robinson and Rainer Schulin	106
HIGHLIGHT Ecological threshold concentrations for antimony in water and soil <i>Koen Oorts and Erik Smolders</i>	116
RESEARCH PAPERS Clarification of the predominant emission sources of antimony in airborne particulate matter and estimation of their effects on the atmosphere in Japan <i>Akihiro Iijima, Keiichi Sato, Yuji Fujitani, Eiji Fujimori,</i> <i>Yoshinori Saito, Kiyoshi Tanabe, Toshimasa Ohara,</i> <i>Kunihisa Kozawa and Naoki Furuta</i>	122
Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia Kristy Telford, William Maher, Frank Krikowa, Simon Foster, Michael J. Ellwood, Paul M. Ashley, Peter V. Lockwood and Susan C. Wilson	133
Antimony uptake by different plant species from nutrient solution, agar and soil Martin Tschan, Brett H. Robinson, Matteo Nodari and Rainer Schulin	144
Problems with Sb analysis of environmentally relevant samples David S. T. Hjortenkrans, Nina S. Månsson, Bo G. Bergbäck and Agneta V. Häggerud	153
Sources of antimony in an urban area Nina S. Månsson, David S. T. Hjortenkrans, Bo G. Bergbäck, Louise Sörme and Agneta V. Häggerud	160
RESEARCH PAPERS Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes	170
The influence of aggregation on the redox chemistry of humic substances Noel E. Palmer and Ray von Wandruszka	170
Photodegradation of nonylphenol polyethoxylates in aqueous solution Lei Wang, Hongwen Sun, Yinghong Wu, Guolan Huang and Shugui Dai	185

EARLY ALERT Sign-up at www.publish.csiro.au/journals/env for our electronic early alert.