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Natural CO, in Australian basins
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Figure 9-3: Estimated annual CO, emissions over the Project’s 40-year operational life




Underground storage
capacity in ‘conventional’

Geological Storage Options for CO, — Droduced oil or gas

1 Depl::edollandgasrwewoks ................. Injected CO, i , 4
2 Use of CO, in enhanced oil recovery saline aquifers an

3 Deep unu;ed saline water-saturated reservoir rocks RN Stored OO, 9

4 Deep unmineable coal seams depleted hydrocarbon

reservoirs
~5,000-25,000 Gt CO,

Underground storage
capacity in
‘unconventional’ mafic
and ultramafic igneous
rocks (including volcanic
basalts)
<60,000,000 Gt CO,

(Kelemen et al., 2019)

Basalt: dark-coloured, fine-
grained extrusive igneous
rock formed from cooling of
mafic (Si-poor, Mg and Fe-
rich) lava

https://co2crc.com.au/about-ccus/what-is-ccus/
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In situ mineral carbon mineralization in basalt reservoirs

Mg,Si0, +{2CO,

FORSTERITE

= 2MgCO; + Si0O,

MAGNESITE QUARTZ

and

CaAl,Si,04 4 CO,|+ 2H,0 = CaCO, + AlLSi,O(OH),.
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Carbonation: Twin Sisters olivine, from ref. 32.
1-4.5 M NaHCO5 or 3-8 M KHCO4;
185 °C; pC0O, 150 bar.

"o

[ ] Twin Sisters olivine, from ref. 46.

Carbonation: dissolution plus crystallization of magnesite
0 plus quartz for Twin Sisters olivine, from ref. 31. Data fitted by
ref. 18.1 M NaCl; 0.64 M NaHCO; pC0, 150 bar.

B San Carlos olivine (forsterite 91), from ref. 47.

®  Labradorite (anorthite 50 to 70), from ref. 46.

® Crystalline basalt, from ref. 48.

10°F A Basaltic glass, from ref. 45. 40 -120 pm powders; NH,Cl buffer.
] 8° A Basaltic glass, from ref. 45. Experimental range of
10 ® temperature 7-50 °C.
[ ]
$
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Porosity and permeability
of volcanic rocks
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Feasibility of CO, storage in basalts

Most of the ocean’s floor (~70% of Earth’s surface) and
>5% of the continents are covered by basalts

Cost of onshore storage of CO, in basalts estimated at
USS$20-30/tCO, (National Academies of Sciences, 2019)

In the past decade two pilot projects have demonstrated

the potential for CO, storage; CarbFix in Iceland and

Wallula in Washington,

USA

* CarbFix, Iceland

Dissolved C02|

Water

—

Basaltic rock

Y Wallula, USA

Supercritical
or liquid CO,

Carbonate
minerals

Basaltic rock

Snoebjornsdattir et al. (2020)



A Generalized basalt
flow morphology
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B Generalized wallula
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Wallula Pilot Borehole

* 1000 tons of supercritical CO, injected into Miocene basalts over three

weeks in 2013

* Injection zone targeted three brecciated flow tops (k=70-150 mD)
separated by low-permeability (<0.1 mD) seals

* Sidewall cores acquired in 2015 revealed ankerite nodules with the
same isotopic signature as the injected CO,

* Post-injection flow tests indicate that 60% of CO, had mineralized
within 2 years, occupying 4% of available pore space (White et al. 2020)
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Sidewall core from injection zone
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Matter et al. (2016)

/ The Hellisheidi
=% Power Plant:
Releases
~40,000 tons of CO,
::g.OOO tons of H,8
per year.
These gases
originate from
the heat source;
cooling magma.
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CarbFix Phases | and Il

Phase | injected geothermally-derived ~200 tCO, (plus H,S)
dissolved in water into basaltic lavas at 400-800 m depth
Mass balance calculations indicate that >95% of CO, was

mineralized within 2 years

Phase Il is injecting 10-20 ktCO,/year (and comparable H,S)
at 1500 m depth (temperature ~250°C) across a 2000 m long
flow path with fracture-controlled permeability

Volume of precipitated calcite and pyrite estimated to
comprise <0.01% of the reservoir (estimated porosity 8-10%)

CarbFix2 injection site

Sncebjornsdottir et al. (2018;
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Cooper-Eromanga Basin === %?{ i

* CO, contents of >10-20%
observed in many fields

* Highest concentrations in the
Nappamerri Trough, which also
hosts a >7,500 km? province of
Jurassic basaltic volcanoes
(Hardman et al., 2019)

* In some cases (e.g. Kappa-1)
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Volcanics & CO,: Cause & solution? Geo-engineering challenges

« Many producing and undeveloped gas * Basalt-CO,-fluid interactions e.g.

fields in Australia contain high CO, content passivation of mineral surfaces, clogging

* In many cases CO, is related to volcanic of pore spaces; site-specific data needed

activity; buried basaltic sequences are in * Defining precise mineral assemblages,
close proximity to CO,-rich fields in the including alteration phases, beyond the
Bass, Browse, Gippsland and Cooper- wellbore
Eromanga basins * Defining first-order stratigraphic and
| Foe e B E = permeability architecture of buried
W - PRI E_%%A ~ basalts
e = 5EW L » . . .
oo | P e Ll Basaltic reservoirs are highly
Rid=parr: "*&  heterogenous, and at depth, porosity and
- . 3E T permeability is likely to be highly fracture
3B gé dependent
/ S { ~ ¢ Multiphase fluid flow in fractured basalts
o o

is poorly understood
East Pilchard-1  CO,~17% (10-52%)





