
10.1071/EP23113 

Australian Energy Producers Journal 

 

Supplementary Material 

Deep bed filtration and formation damage by particles with distributed 

properties 

Nastaran Khazali
A,*

, Gabriel Malgaresi
B
, Yuri Osipov

C
, Ludmila Kuzmina

D
 and Pavel 

Bedrikovetsky
A 

A
School of Chemical Engineering, University of Adelaide, SA, Australia 

B
Predico Software, QLD, Australia 

C
Moscow State University of Civil Engineering, Moscow, Russia 

D
HSE University, Moscow, Russia 

 
*Correspondence to: Email: nastaran.khazali@adelaide.edu.au  

 

mailto:nastaran.khazali@adelaide.edu.au


Supplementary Material 

 

1. Supplementary Material A. Governing Equations for Deep Bed Filtration. 

Governing equations to describe deep bed filtration accounting for permeability decline is defined 

through equations (A.1) to (A.3) describing mass balance, particle capture and Darcy’s law 

respectively. 
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Here  stands for the porosity, U is the Darcy’s flow velocity, c and s are the suspended and retained 

particles concentrations respectively, sm is the maximum retained concentration,  is the filtration 

coefficient which is defined as the probability of particle capture per unit length of its trajectory, p is 

the pressure, k0 is the initial permeability, β is the formation damage coefficient, µ is the carrier fluid’s 

viscosity, t is time and x is the cartesian coordinate.  

The process of continuous injection with constant concentration into a clean medium defines the 

initial and boundary conditions to be as described in equation (A.4). 
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2. Supplementary Material B. Exact Analytical Solution for 1D Clean Bed 

Filtration 

Starting from dimensionless parameters and variables (B.1), the following conversion is implemented 

on governing equations ( .1) to ( .3) and initial and boundary conditions ( .4) to obtain equations (B.2) 

to (B.4). 
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( )h s  and  f c  are called filtration function and suspension function respectively. Here, ( )h s is 

defined as blocking (Langmuir’s) function (B.5).  f c  can be defined in various ways according to 

the physics of the problem. In classical deep bed filtration theory,  f c  is equal to c  as 

demonstrated in Supplementary Material A. 
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The dimensionless initial and boundary conditions are defined in equations (B.6) and (B.7): 
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To solve this system of equations with the mentioned initial and boundary conditions, first a new 

independent variable is introduced. 
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Equations (B.9) and (B.10) represent the new form of equations ( .6) and ( .7) in the new reference 

system and accounting for blocking (Langmuir’s) function ( .9). 
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Another way of representing equations ( .13) and ( .14) is by equation (B.11): 
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Also, the dimensionless initial and boundary conditions in the new reference system are defined with 

equations (B.12) and (B.13). 
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 Figure 1 shows different zones in initial and Lagrangian coordinates. 

 

Figure 1:Introducing different zones in initial and Lagrangian coordinates. 

Suspended and retained particles concentrations ahead of the front are zero. 

0c s                                                                                                                                            ( .18)    

Suspension concentration behind the font can be obtained substituting 0s   into equation ( .13). 
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Rearranging equation ( .19) yields: 
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Expressing retained concentration in equation ( .13) results in: 
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Also, from equation (B.19) we conclude that: 
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From equations ( .22) and ( .23), equation (B.20) is obtained. 

 
 

 1
, 1 1m m

cc
s x s s

f c x x




   
      

   
                                                                             ( .24) 

Substituting equation ( .24) into equation ( .15): 

 
0m

c c
s

x x





  
  

   
                                                                                                              ( .25) 

Changing the order of derivatives in equation ( .25) and integrating in x , accounting for boundary 

conditions yields: 
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Rearranging equation ( .26): 
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Taking integral of both sides of equation ( .27): 
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Taking derivative in x of both sides of equation ( .28) leads to: 
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From substituting equation ( .24) into equation ( .29) we can determine s(x,). 
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Pressure drop across the core can be determined using equation (B.28). 



   
1

0

0

1 ,p t c s u t du       ( .32) 

Here,   is the formation damage coefficient and 
0c is the initial concentration of the injected 

particles. The dimensionless pressure drop or impedance is defined with the following equation. 
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3. Supplementary Material C. Analytical Models for Different Suspension 

Functions 

Traditional (Classical) suspension function: 

The traditional suspension function is defined using equation (C.1). 
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By substituting equation ( .34) into equation ( .20) we obtain equation (C.2). 
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Suspended concentration just behind the front can be calculated using equation ( .35). 
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Substituting equation ( .34) into equation ( .28) yields equation (C.4). 
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Using the expression obtained for the suspended concentration just behind the front ( .36) and 

substituting it in equation ( .37) we can derive the exact solution for the suspended concentration 

behind the front. 
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Substituting equations ( .38) and ( .36) into equation ( .31) leads to finding the expression for the 

retained particles. 
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Quadratic suspension function: 

The quadratic suspension function is defined using equation (C.7). 
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By substituting equation ( .40) into equation ( .20) we obtain equation (C.8). 
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Suspended concentration just behind the front can be calculated using equation ( .41). 
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Substituting equation ( .40) into equation ( .28) yields equation (C.10). 
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The suspended concentration can be expressed implicitly using equation (C.11). 
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Equation ( .31) leads to finding the expression for the retained particles. 

Asymptotic suspension function: 

Supplementary Material D explains derivations of the asymptotic suspension functions. 

The asymptotic suspension function used for matching in this paper is defined using equation (C.12). 

Here, subscripts 1 and 2 stand for the first and the second population of colloids respectively.   

represents a small value. 
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By substituting equation ( .45) into equation ( .20) we obtain equation (C.13). 
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The suspended concentration just behind the front can be calculated from equation ( .46). Equation 

(C.14) is obtained by substituting equation ( .45) into equation ( .28); which gives us the suspended 

concentration behind the front. 
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Equation ( .31) leads to finding the expression for the retained particles. 

4. Supplementary Material D. Derivations of the Asymptotic Suspension Functions 

In this section we aim to explain how to derive asymptotic forms of suspension functions for a binary 

system. As explained in the paper, here, we have six different asymptotic suspension functions, 

corresponding to different assumptions and orders of magnitudes of expansions. Here, the derivation 

of the suspension function is explained for the first case. To obtain the rest of them the same 

mathematical procedure must be followed. Table 1 and  

 

Table 2 show the summary of calculations in all cases. 

For the first case of asymptotic formulations, we have the assumptions of 
0

1c  and first order 

expansion. For a binary system, we have the following system of equations (Supplementary Material, 

Section E) for the suspended particles concentration: 
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Using asymptotic expansions up to first order for each suspension concentration, we have: 
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Substitting equations ( .48) into equations ( .49) we obtain equations (D.3) and (D.4): 
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1c  equation ( .51) becomes: 
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Taylor expansion up to first order for the right-hand side of equation ( .52) gives us: 
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Substituting equation ( .57) into equation ( .52) we obtain equation (D.11): 
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Rearranging equation ( .58) yeilds: 
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The system of equations that needs to be solved is: 
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Finding the terms corresponding to the powers of 𝜀 and successively setting them to zero gives us: 
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Substituting equations ( .61) and ( .62) into equations ( .49) we obtain: 
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Since in a binary system, the suspension function is defined as: 
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Tables 1 and 2 show a summary of the calculations for each case. 



Table 1: Summary of the calculations of the suspended concentration for each population for all cases. 
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Table 2: Summary of the calculations of the suspension function for all cases. 

Case 𝒇(𝒄) 

1 1 1

2 2

1 2( ) ( )c c c

 

       

2 1 1 1 1 1 1

2 2 2 2 2 2

1 1
2 21 1

1 2

2 2

( (1 )) ( (1 ))c c c c c c c

     

      
     

 

 

       

3 2 2

1
1

1 2( ) ( )c c c







      

4 2 2 2 22 21 1
1 1 1 1

1 12 22 2
1 2

1 1

( (1 )) ( (1 ))c c c c c c c

   

   

 

  
     

 

 

       



5 

0 0 0 0 0

1 1 2 1 2
1 20 00

0 0 0 01 12
1 2 1 20 0 0 00 0

1 2 1 22 2

ln( ) ln( )

( ) ( )
1 1 1 1

( )( ) ( )( )1 1

c c
c c

c c c c cc c

c cc
c c c c

c c c cc c

   
 

  

    

 

6 
0 0 0

2 2 2

0 0 0 0 0 0 0 0 0

21 1 2 2 2 2 2 2 2

1 00

0 0
12

1 2 0 0 0 00

1 2 1 22

0 0 0 0

21 2 2 2

2 0

0 0
1

1 2 0 00

1 22

ln( ) 2 ln( ) ln( )
2

ln( ) (ln( )( ( )) )

( )
1 1 1 2

( )( ) ( )1

ln( ) (ln( )( (

(
1 1

( )( )1

A A A
A B

c c cc A B B
c A

c c c c c c c c cc

cc
c c

c c c cc

c A B
c A

c c c cc

c
c c

c cc

  

  

   


  

  




 

 

0 0 0

2 2 2

0 0 0 0

2 2 2 2

0 0

1 2

ln( ) 2 ln( ) ln( )
2

)) )

)
1 2

( )

A A A
A B

c c cB

c c c c

c c

  



 

*   
0

1

0

2

0 0

1 2

0 0

1 2 0 0

1 2

1

ln( )

1 1
( )( )

c
A

c

c

c
c

c c
B

c c
c c






 

 

 

5. Supplementary Material E. Averaging of Multicomponent Colloidal Flow with 

Size-Distributed Particles 

We start with governing equations for multiple populations: 

° 0kk kC S U C
t x
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    
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( .66) 
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( .67) 

In order to obtain the dimensionless form of equations, we use the following dimensionless 

parameters and variables: 
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( .68) 



Substituting parameters ( .68) into system ( .66) and ( .67) we obtain the dimensionless governing 

system: 
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( .70) 

Also, the initial conditions and boundary conditions are: 
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( .71) 

The next step is upscaling the system for total concentrations. In order for this purpose to achieve, we 

substitute equation ( .70) into equation ( .69) which yields: 
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( .72) 

Equations (E.8) show the characteristic form of first order partial differential equations. 
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Rewriting equation ( .73) in another form yields: 
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( .74) 

( ( , ))k kG C x t is independent of the colloid population since the right-hand side of equation ( .74) is the 

same for all k=1,2…N. In particular, we have: 

  1 1( )k kG C G C                                                                                                                                

( .75) 



The total concentrations for the suspended and retained particles and occupied area are defined as: 
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( .76) 

Now, we can express the individual concentrations from equation ( .75) 
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( .77) 

Substituting relationships ( .77) into equations ( .76) and expressing total concentration c via 
1C  

yields: 
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Substituting equations ( .78) into equations ( .77) allows for expressing each individual component 
1C  

as a function of total suspension concentration. 
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Substituting equations ( .76) into equation ( .69): 
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Then we first multiply equation ( .70) by 
kB , then considering equation ( .79) and summing the 

results we can find kinetics equation for site occupation: 
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Here, ( )d c  is called the occupation function. Adding equations ( .70) for k=1,2…N leads to the 

kinetics equation for retention rate. 
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Assuming a binary system with linear suspension functions: 



( ) , 1,2k k k kF C C k                                                                                                                         

( .83) 

Formulae ( .75), ( .77), and ( .78) for N=2 become: 
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Therefore, for suspension and occupation functions we have: 
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We can downscale the system by expressing individual concentrations from total concentration in 

equations ( .70). 
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For the case of Langmuir’s filtration blocking function, we have: 
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( .88)  

Changing coordinates to Lagrangian coordinate τ: 
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System ( .80)-( .82) in coordinates (x, τ) becomes: 
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From equation ( .90) and along the characteristic line 0b  , we obtain: 
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expressing occupied vacancy b  from equation ( .90) and substituting it into equation ( .92) and 

integrating the obtained equation in x  yields the expression for suspended concentration: 
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To obtain occupied concentration, first we take x-derivative of both sides of equation ( .95). Then we 

substitute gradient of suspended concentration into equation ( .90) which yields: 
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The retained concentration can also be expressed from suspended concentration: 
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