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Abstract. Spatio-temporal variations in fire weather conditions are presented based on various data sets, with consistent
approaches applied to help enable seamless services over different time scales. Recent research on this is shown here,

covering climate change projections for future years throughout this century, predictions at multi-week to seasonal lead
times and historical climate records based on observations. Climate projections are presented based on extreme metrics
with results shown for individual seasons. A seasonal prediction system for fire weather conditions is demonstrated here as

a new capability development for Australia. To produce a more seamless set of predictions, the data sets are calibrated
based on quantile-quantile matching for consistency with observations-based data sets, including to help provide details
around extreme values for the model predictions (demonstrating the quantile matching for extremes method). Factors

influencing the predictability of conditions are discussed, including pre-existing fuel moisture, large-scale modes of
variability, sudden stratospheric warmings and climate trends. The extreme 2019–2020 summer fire season is discussed,
with examples provided on how this suite of calibrated fire weather data sets was used, including long-range predictions

several months ahead provided to fire agencies. These fire weather data sets are now available in a consistent form
covering historical records back to 1950, long-range predictions out to several months ahead and future climate change
projections throughout this century. A seamless service across different time scales is intended to enhance long-range
planning capabilities and climate adaptation efforts, leading to enhanced resilience and disaster risk reduction in relation to

natural hazards.
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1 Introduction

Fire weather prediction data are needed for a range of purposes
in Australia, including for short-range bushfire management

decisions, as well as long-term planning. Data and derived
guidance products that have consistency over different time
scales can have practical benefits for decision-makers, such as

for integrated system planning (e.g. as used in the energy sector
in Australia) covering a range of time periods into the future,
given that values from different data sets can be more directly

used in combination with each other. Consequently, this type of
seamless information for predictions over different time scales
can help enable effective preparedness for natural hazards such

as bushfires.
This paper describes recent research on seamless predictions

over different time scales, including covering climate change
projections for bushfire weather indices as well as seasonal

predictions of fire weather conditions, all made to be consistent
with a historical data set of daily gridded values back to 1950.
Development of seamless fire weather guidance products for

Australia has been underway for several years now (Dowdy
et al. 2017; Dowdy 2019). This current study is based on results
presented in a research and development workshop held at the

Bureau of Meteorology (BoM) in November 2019 titled ‘Fore-
casting for the future: New science for improvedweather, water,
ocean and climate services’ as detailed in Bureau of Meteorol-

ogy (2019), with this paper forming part of a special edition of
this journal intended for publishing the research presented at that
workshop. The results presented here are part of long-term

efforts that have been underway to produce seamless informa-
tion for various natural hazards over all time scales including
from historical data based on observations, long-range multi-

week to seasonal predictions, as well as future projections of
climate change in coming years and decades. A range of fire
weather products covering these time scales are described here.

Climate change projections for fire weather conditions in a
warmer world have been produced based on global climate
model (GCM) data and calibration methods as presented in
several previous studies for Australia (CSIRO and BoM 2015;

Dowdy et al. 2019). Dynamical downscaling approaches have
also been used to produce finer-scale information from theGCM
data, including for examining projections of future fire weather

conditions (Clarke et al. 2016; Di Virgilio et al. 2019).
Methods have been developed for various regions of the

world for seasonal prediction of wildfire risk factors (Chen et al.
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2016; Garfin et al. 2016; Chikamoto et al. 2017; Bedia et al.

2018; Turco et al. 2018). Research has demonstrated that

Australia is a lucky country in relation to having a relatively
high level of predictive skill for fire weather conditions several
months in advance in some regions/seasons when compared to

most other regions of the world for which the predictive skill is
generally not as high (e.g..80% accuracy for predicting above
or below median seasonal values in eastern Australia during

spring; Dowdy et al. 2016). Some of this skill for predicting risk
factors for bushfires in Australia relates to the influence of
large-scale atmospheric and oceanic modes of variability such
as the El Niño-Southern Oscillation (ENSO), Indian Ocean

Dipole (IOD) and Southern Annular Mode (SAM) which help
provide predictability for weather factors, including over spring
and the warmer months of the year in Australia when dangerous

fires more frequently occur (Williams et al. 2001; Nicholls and
Lucas 2007; Dowdy et al. 2016; Harris and Lucas 2019; Harris
et al. 2019). Additionally, recent research has demonstrated

that sudden stratospheric warming events over Antarctica
during winter and early spring provide a source of predictability
for fire weather conditions in Australia in subsequent months
(Lim et al. 2019).

Although studies such as these have demonstrated that fire
weather conditions are predictable in Australia at multi-week to
seasonal lead times, long-range predictions of fire weather indices

have not previously been developed for providing guidance to
fire agencies in Australia, as existing capabilities developed in
BoM have been around providing individual temperature and

rainfall products for those time scales as guidance for fire
agencies. A new system for providing long-range fire weather
guidance up to several months ahead is demonstrated here, based

on fire weather indices that combine wind speed, humidity,
temperature, rainfall and pre-existing fuel moisture information.

This study presents results based on model data over a range
of different time scales, including based on GCM data for future

climate change projections as well as from the ACCESS-S1
model currently used in BoM for seasonal prediction capabili-
ties (Hudson et al. 2017). In particular, theMcArthur Forest Fire

Danger Index (FFDI) is used here for indicating weather
conditions associated with the potential for hazardous bushfire
events (McArthur 1967). The GCM data and ACCESS-S1 data

are all calibrated to be consistent with the same historical FFDI
data set. Details on data and methods are provided in Section 2,
with results presented in Section 3 and conclusions in Section 4.

2 Data and methods

2.1 Data sets

Eqn 1 shows the calculation for the McArthur Mark V FFDI
(McArthur 1967; Noble et al. 1980) using daily maximum
temperature at a height of 2m (T), mid-afternoon values of

relative humidity at a height of 2m (RH), mid-afternoon values
of wind speed at a height of 10m (W) as well as a drought factor
(DF) representing fuel availability based on a soil moisture

deficit. The Keetch Byran Drought Index (KBDI; Keetch and
Byram 1968) is used here for the soil moisture deficit, calculated
from daily rainfall and daily maximum temperature at a height
of 2m. For the climate model data (including ACCESS-S1 and

GCM data), relative humidity and wind speed values at 0600
UTC are used to represent mid-afternoon values for Australia. A

data set of FFDI values primarily based on a gridded analysis of
observations is also used here, with a grid of 0.058 in latitude and
longitude throughout Australia, as detailed in Dowdy (2018).

The FFDI is used here as a broad-scale general indicator of fire
weather conditions, with results interpreted based on the FFDI
being a useful way of combining these weather factors that can

influence bushfire danger in Australia.

FFDI ¼ 2e 0:0338Tþ0:0234W�0:0345RHþ0:987ln DFð Þ�0:45ð Þ ð1Þ

GCM data are available in conjunction with the Intergovern-
mental Panel on Climate Change (IPCC), based on a set of GCM

experiments: the CoupledModel Intercomparison Project phase
5 (CMIP5) (Taylor et al. 2012). The output from 15 of those
GCMs was recently used to produce projections of the FFDI for

each day out to 2100 throughout Australia, as detailed in Dowdy
et al. (2019). Quantile matching was used to calibrate those
GCM-based FFDI data so that they were consistent with the
historical observations-based FFDI data set (Dowdy 2018), as

described in Section 2.2. The 15 GCMs are ACCESS1-0,
ACCESS1–3, BCC-CSM1-1, BCC-CSM1-1-M, BNU-ESM,
CCSM4, CNRM-CM5, CSIRO-Mk3–6-0, FGOALS-G2,

GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, MIROC5,
MRI-CGCM3 and NorESM1-M. For further details on these
models see Appendix Table A1 and Moise et al. (2015). A high

emission pathway was used for those projections (RCP8.5, with
no stabilisation this century leading to about 1370 ppm CO2

equivalent by 2100) so as to examine the influence of increased

greenhouse gas concentrations.
Long-rangemodel predictions (at multi-week to seasonal lead

times) are produced in Australia for weather conditions such as
temperature and rainfall based on output from ACCESS-S1, the

BoM’s seasonal forecasting model (Hudson et al. 2017). This
includes an ensemble of hindcastmodel runs from 1990–2012, as
well as an ensemble of real-time model runs also available for

predictions out to several months ahead. Post-processed data are
available for various weather variables such as temperature,
rainfall and atmospheric moisture content (vapour pressure)

calibrated using quantile matching for consistency with
observations-based gridded data sets such as those described in
Jones et al. (2009), including for the input variables of the FFDI
(from Eqn 1) consistent with the historical gridded FFDI data set

described by Dowdy (2018). Quantile matching based on
ACCESS-S1 uses the hindcast data for the training period, based
on the combined probability density function of all 11 members

for the years 1990–2012 that comprise the hindcast data.
Previous examinations used calibrated ACCESS-S1 hindcast

data for FFDI and demonstrated a useful level of predictive skill

(including for indicating the likelihood of FFDI values being
above the historical mean values) (Dowdy et al. 2017; Dowdy
2019). Building on those previous results using calibrated

hindcast data from ACCESS-S1, this study presents long-
range FFDI predictions based on the calibrated real-time data
from ACCESS-S1.

The results presented in this study are for the real-time

ACCESS-S1 model run that was initialised at the start of
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November 2019, using ensemble members from 1 to 50 (i.e. a
50-member ensemble), with the full set of 100 members

intended to be used in the future for this system. Calibrated
values of daily maximum temperature, daily rainfall, daily
wind speed and vapour pressure for 1500 UTC are used, with

the vapour pressure data used together with daily maximum
temperature for indicating mid-afternoon relative humidity
values and wind speed calibrated to match that of the historical

gridded FFDI data set (Dowdy 2018) using the quantile
matching approach described in Section 2.2. Predictions of
FFDI were calculated for each day out to the end of February
2020 for each individual ensemble member. Details on the

suite design are provided in Section 3.2, as well as examples of
the fire output products produced using this objective long-
range prediction system for Australia. This includes guidance

products provided to fire agencies around Australia prior to the
2019–2020 summer fire season, noting the devasting effects of
the extreme fire weather conditions that eventuated (Bureau of

Meteorology 2020) and the disastrous impacts that the fires
ended up having on Australian society and environment (Boer
et al. 2020; Johnston et al. 2020; Ward et al. 2020).

Seasonal averages of data through the study are used for

December, January and February (DJF), March, April and May
(MAM), June, July and August (JJA) and September, October
and November (SON). Large-scale modes of variability are

considered, including the ENSO (as represented by theNINO3.4
index) and the IOD (as represented by the Dipole Mode Index,
DMI). Data for these indices are based on sea-surface tempera-

ture (SST) data obtained from the National Oceanic and
Atmospheric Administration (NOAA) (http://www.cpc.ncep.
noaa.gov/, accessed August 2017).

2.2 Quantile matching method

Details on the quantile matching method were provided in
Dowdy (2019), including the steps that comprise the method.

Those steps are also presented here for reference, as shown
below. The method was previously applied to GCM data to
produce future projections of FFDI values as presented inDowdy

et al. (2019), noting that thismethodwas designed for attention to
detail around extremes. The steps that comprise this quantile
matching for extremes (QME) method are based on matching

model data to observations (or reanalysis data) using individual
quantile values (i.e. quantile matching is a ranking-based
approach). This QME approach was applied for each of the four
input variables of the FFDI: daily maximum temperature, daily

rainfall, afternoon relative humidity and afternoon wind speed.
Prior to training the QME method, the data from each

individual model are bilinearly interpolated for regridding to

match that of the observations data. The QME is then applied to
the input variables of the FFDI, but not to the resultant FFDI
values as they are found to already provide a good match to

observations-based data including for high percentile values of
FFDI (as detailed in Section 3.1 with results presented for the
95th and 99th percentile values). This was similarly shown in

Dowdy et al. (2019), their Fig. 4, which also shows comparisons
with results based on dynamical downscaling from regional
climate model experiments. While acknowledging that a loss of
internal physical consistency can be one of the limitations of

statistical methods for bias correction, examples such as these
help indicate that theQMEmethod is suitable for the purposes of

this study, with no sign of substantial issues relating to a loss
of internal physical consistency (noting that the higher values of
FFDI require simultaneously high values of various input

variables to the FFDI).
The following steps are used for training the QME method:

(a) Create probability density functions (PDFs) of weather
variable data for a historical training period, including a
PDF for the model data and also a PDF for the

observations data. This is done individually for each
location of interest (e.g. grid cell region). This was done
for daily values through the period 1975–2017 for each
individual GCM.

(b) Using the rankings of values in these PDFs, a given value
of aweather variable for themodel data ismatched to the
corresponding value for the observations-based data,

with the matched values having equal rankings in their
respective distributions.

(c) The five most extreme values are used to calculate

the mean difference between the model and the
observations-based data, with this mean difference
used for the bias correction applied to values outside

of the historical range of occurrence. This is calculated
individually for the five extreme high values, as well as
for the five extreme low values. This approach allows
extreme values of this order to be represented in the

model data after this calibration has been applied, while
also helping avoid a potentially strong influence in
some rare cases from outliers (e.g. if a 1 in 500 year

event occurred during the historical training period).

The above steps were applied individually for different
seasons (DJF, MAM, JJA and SON), noting that benefits can
be obtained from seasonal application of statistical bias correc-

tion methods (e.g. Hertig et al. 2019). Although quantile
matching approaches are typically thought to retain the magni-
tude ordering of data, applying this method for each individual

season allows the magnitude ordering of the data over all seasons
to be changed, which can be beneficial for extreme events.
For example, different weather systems can preferentially occur

around a particular time of year and models can vary in their
ability to represent some types of weather phenomena, such that
the seasonal application of this method may help account for
different biases specific to different weather phenomena to some

degree. Additionally, it was found when applying this quantile
matching method to temperature projections towards the end of
this century (using a high emissions scenario) that the large-scale

shift in the overall PDF is important to consider. Consequently, a
40-year running mean anomaly (as compared to the mean value
for the historical training period used in Step 1) is subtracted from

the future projections of temperature prior to applying the
quantile matching method described in the above steps. After
the quantile matching has been applied, the 40-year mean

anomaly is added back into the data. These steps as described
above result in an improved representation of the model data as
compared to the observations-based data. Some results of
applying the QME method to GCM data were presented in
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Dowdy (2019) and Dowdy et al. (2019). Some examples of
results are also included here in the Appendix Figs A3 and A4.

As noted by Casanueva et al. (2020), high-quality observa-

tional data sets are essential for comprehensive analyses in
larger (continental) domains when trying to account for model
biases. A gridded analysis of observations is used in this study

obtained from the Australian Water Availability Project
(AWAP) data product described by Jones et al. (2009), provid-
ing data on a grid of 0.058 in latitude and longitude throughout

Australia. Assessment of this gridded data set has concluded that
it is suitable for broad-scale climate analysis purposes, such as
detailed in King et al. (2013) who reported that the AWAP

product is suitable for use in studies on trends and variability in
rainfall (including extremes) across much of Australia, while
also noting that a limitation of gridded analyses of observations-
based data is the level of spatial detail available in regions where

there is a low density of station observations. This is particularly
the case in western inland regions of Australia, such that results
should be interpreted accordingly (e.g. only broad-scale features

are consideredwhen describing and interpreting results for those
regions in this study).

3 Results

3.1 Climate change projections

The ensemble of model data from the 15 GCMs with calibration

applied (using the QME method described in Section 2.2)
produces FFDI values during a historical period that are very
similar to those of the historical observations-based data. This is

shown in Fig. 1 based on data for the period 1990–2009. The
similarities include spatial features of the FFDI magnitude for
mean values of the FFDI, as well as for extreme values (e.g.

corresponding to the 95th percentile). This is as expected based
on the application of this calibration approach, intended to help
provide climate change projections information and data that are

consistent with the historical FFDI data set.
Projected future changes in the number of days with FFDI

exceeding a threshold are shown in Fig. 2, for the period 2060–

2079 as compared to the period 1990–2009 under a high
emissions pathway (RCP8.5 as described in Section 2.1).
Projected changes are presented for the number of days per year

with FFDI. 50 corresponding to days classed as Severe
(or above) for operational fire weather forecasting purposes,
as well as for the number of days exceeding the historical 99th
percentile of FFDI, presented for individual seasons of the year.

The projected changes for FFDI. 50 are generally larger in
the more inland regions. However, that is generally related to
those inland regions having a relatively high number of dayswith

FFDI. 50 during the historical climate when compared to the
more coastal regions. In contrast, the projected future change in
the number of days exceeding the historical 99th percentile of

FFDI is generally more spatially consistent, with an increase of
about 2–5 days indicated for many regions of Australia. The
largest increases tend to occur during spring (SON) in many
northern and northeastern regions and during summer (DJF) in

many central and southern regions, noting some similarities to
observed trends in recent decades that show larger changes during
spring than autumn (Dowdy 2018; Harris and Lucas 2019).
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Fig. 1. Historical near-surface fire weather conditions based on daily values of FFDI for the period 1990–2009.

The 95th percentile (a, b) and 99th percentile (c, d) of the daily FFDI values are shown for the observations-based

data (a, c) as well as for the calibrated GCM data (b, d).
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Fig. 2. Future projections in FFDI values from the calibratedGCMdata. Changes are shown for the number of

days per year that the FFDI exceeds a threshold value, based on changes from the period 1990–2009 to the

period 2060–2079. Results are presented for the number of days per year that FFDI is above 50 (left panels, a–d)

and the number of days per year that FFDI is above its historical period 99th percentile (right panels, e–h). This is

shown for individual seasons DJF (a, e), MAM (b, f), JJA (c, g) and SON (d, h). White regions are where less

than two thirds of the ensemble have a consistent direction of projected change.
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These projections are examples of the type of information
that can now be produced for fire weather measures using

calibrated data from these GCMs, based on daily data from 1970
to 2100 on the same 0.058 grids as used for the historical FFDI data
set as well as for the ACCESS-S1 FFDI data set. Consequently,

there is considerable potential for examining a range of guidance
measures, including for changes in mean values or more extreme
values (such as using fixed thresholds or percentile/return period

type of thresholds as presented in the examples shown in Fig. 2)
based on these large multi-member calibrated data sets.

The time periods for the projections presented in this study are
somewhat arbitrary, noting that any other time periods from

1970–2099 are also available based on these data. As an example
of this, a version of Fig. 2 but for 2020–2039 projections is shown
in Appendix A (Fig. A1), generally indicating similar spatial

features to Fig. 2 but lowermagnitude changes. The various input
components to the FFDI also provide scope for improved
understanding of projected future changes in various aspects of

weather and climate based on calibrated data consistent with
observations-based data sets. For example, projected changes in
return period values of extreme rainfall can readily be produced
based on this long period of available data (i.e. 130 years), such

as similar figures to Fig. 2 but for the changes in the frequency
of days exceeding the historical 10-year return period or in
the frequency of days exceeding FFDI of 100 (classed as

‘Catastrophic’ or ‘Code Red’ in some states). Compound hazards
could also potentially be examined based on combined wind,
humidity and temperature extremes. Projected changes could be

examined in vegetation–weather relationships relevant for fire
management or agricultural applications, such as things like
Goyder’s Line as indicated by 220mm growing season April–

October rainfall (Tozer et al. 2014) or other measures (Meinig
1961; Nidumolu et al. 2012), as well as other biogeographic
mapping applications and quantities relevant for other sectors.

Projected changes can also be considered per degree of

global warming and scaled accordingly, noting a recent focus
on projected changes for 1.58C and 28C global warming (IPCC
2018). Lists of global warming values are available for different

time periods and emissions pathways, such as table SPM.2 of
IPCC (2013) from the IPCC Fifth Assessment Report. Based on
global warming values such as those, the projections shown in

Fig. 2 (for RCP8.5 from the period 1990–2009 to 2060–2079 for
RCP8.5) correspond to about 2.58C global warming, such that
dividing those projections by 2.5 could provide an estimate of
the change per degree of warming). The FFDI projections (and

seasonal outlooks) presented in this study could be used together
with relationships between historical FFDI data (Dowdy 2018)
and bushfire impacts (Bradstock et al. 2009; Blanchi et al. 2010,

2014) to help understand future changes in bushfires and their
impacts. Ignition and fuel conditions could also be considered,
noting considerable uncertainties around various combinations

of factors that cause extremely dangerous fires (i.e. as a form of
compound event).

3.2 A system for multi-week to seasonal predictions of fire
weather

The predictability of fire weather conditions at multi-week to
seasonal time scales is dependent on various factors, including

the regular seasonal progression of fire weather conditions over
Australia (e.g. Luke and McArthur 1978), pre-existing fuel

conditions and large-scale modes of atmospheric and oceanic
variability (Nicholls and Lucas 2007; Dowdy 2018; Harris and
Lucas 2019) as well as sudden stratospheric warming events

over Antarctica (which can influence cloud cover, temperature
and rainfall over eastern Australia, thereby influencing fire
weather conditions; Lim et al. 2019). For the progression of

the peak conditions for dangerous fire weather through the year,
Fig. 3 shows that for different seasons based on the historical
data set from 1950–2016 (Dowdy 2018). This indicates similar
features in general to earlier results such as those of Luke and

McArthur (1978), acknowledging that they didn’t have access to
long time periods of daily gridded data based on observations
throughout Australia as is now available as well as noting

relatively sparse observations network in some parts of Aus-
tralia (e.g. around the Nullarbor Plain and desert regions to the
north of that area through central-west regions of Australia;

Jones et al. 2009).
In relation to large-scale modes of variability (e.g. ENSO,

IOD and SAM), Fig. 4 presents correlation values (Pearson’s r)
for the individual input ingredients of the FFDI with the

NINO3.4 index (representing ENSO conditions), with strong
relationships indicated in many regions of Australia particularly
during spring (SON) and summer (DJF). It is apparent from

Fig. 4 that temperature, humidity and rainfall tend to act in
concert with each other (i.e. all corresponding to more danger-
ous conditions for bushfires when NINO3.4 is high, noting that

high positive values of NINO3.4 are characteristic of El Niño
events and large negative values characteristic of La Niña
events). Wind speed has considerably different spatial features

for its ENSO relationship when compared to the other individual
weather variables and FFDI in general. It is also noted that the
relationship between ENSO and FFDI is clearer in some ways
than for its individual input ingredients’ relationship with

ENSO, which could be expected to some degree given the
integrated effect of temperature, humidity and rainfall in the
FFDI formulation (Eqn 1). For example, the region of significant

correlation during spring covers the majority of the country, for
a larger area than is the case for any single weather variable,
which appears to be similar to the relationships for rainfall and

humidity in northern regions and for temperature in central and
southern regions.

The pre-existing fuel moisture is another weather-related
factor that can provide some long-range (i.e. .1 week) skill at

predicting fire weather conditions. This is because of the rate at
which fuel moisture can change (noting slower rates for larger
fuel than finer fuel) provides a form of memory with persistence

based on past conditions that can influence future conditions.
As examined later in this section (as well as in Section 3.3), the
2019–2020 summer had several of these factors occurring in

combination with each other that all can exacerbate the severity
of fire weather conditions, including leading into the event in
spring with a strong IOD event and a stratospheric warming

event (that was one of the strongest ever observed in the southern
hemisphere) as well as very dry fuel conditions associatedwith a
multi-year drought (Bureau of Meteorology 2020). Conse-
quently, it could be expected that the ACCESS-S1 FFDI values
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would be indicating more dangerous conditions for bushfires for
the period going into summer in many parts of eastern and
southern Australia, given that antecedent fuel moisture mea-

sures are used based on observations (i.e. KBDI as described
above) and that the ACCESS-S1 model can simulate aspects of
these large-scale circulation features (Hudson et al. 2017).

The Australian Seasonal Bushfire Outlook is routinely
released through the Bushfire and Natural Hazards CRC
(BNHCRC), with input on some regional risk factors such as

fuel conditions provided by fire agencies around Australia, and
input from long-range weather and climate predictions provided
by BoM. Prior to the development of objective fire weather

outlooks for Australia as described in this section, the outlooks
were based on considering long-range predictions of tempera-
ture and rainfall individually. This new development is a
considerable step up from that previous capability, with the

new method combining long-range predictions of humidity,
wind, temperature and rainfall, together with observations-
based estimates used to indicate fuel moisture content.

The design of the objective seasonal prediction system for
fire weather is shown in Fig. 5. This is currently based on
ACCESS-S1, noting that a similar arrangement is also intended

for the ACCESS-S2 model when that becomes available for

BoM operational seasonal prediction purposes. It can be used to
calculate fire weather indices such as the FFDI as presented

here, also noting that this system has been designed to be

adaptable for application to other indices in the future, including

GFDI (which as discussed by Yeo et al. (2015) has similar

inputs to the FFDI but rather than DF it includes fuel load

estimates that can often be set to 4.5 t ha�1, as well as degree of

curing than can set to user-defined values). This model suite

design is also being used as the foundation for the long-range

fire weather products intended to be produced in coming years

from the Australian Fire Danger Rating System (AFDRS)

currently in development, noting some similar needs for

AFDRS as for FFDI, KBDI and GFDI (such as initialisation

based on recent observations relating to fuel moisture condi-

tions, calibrated input variables, design of the real-time forecast

products based on user feedback/co-design, etc.). Some of the

key aspects of this suite design for producing fire weather

outlook products are as follows:

� It is initialised using recent observations-based data relating
to fuel moisture conditions as well as for rainfall.

� The input variables for the fire weather indices are each
calibrated individually using quantile matching for

Fire danger
seasons

Winter

Winter and spring

Spring

Spring and summer

Summer

Fig. 3. The season with the most dangerous weather conditions for bushfires, mapped for different regions of

Australia. At each location, the season shown is the onewith the highest average value of the Forest Fire Danger

Index (FFDI, based on daily data from 1950 to 2016 (Dowdy 2018)) with a 100 km smoothing applied to

highlight broad-scale regional features. This is shown for winter (averaged for June, July and August), winter

and spring (averaged for half of July, August, September and half of October), spring (averaged for September,

October and November), spring and summer (averaged for half of October, November, December and half of

January) as well as summer (averaged for December, January and February), without notable regions occurring

for other season types through the year (summer and autumn; autumn; autumn and winter).
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consistency with historical data sets (noting that the training
period for quantile matching is that of the hindcast data from

1990 to 2012 for ACCESS-S1). Fire weather indices are then

calculated based on the calibrated data (noting that subse-
quent calibration of the resultant index values does not appear

to be important, but this would be feasible to do if need be).

r

1.0

Fire weatherWind speedRelative humidityRainfallTemperature

Summer

(a)

(b)

(c)

(d )

Autumn

Winter

Spring

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

Fig. 4. Correlations between seasonal values of NINO3.4 and weather condition, including the FFDI for fire weather, for the time

period from 1951 to 2016 (based on Pearson’s correlation coefficient, r). The correlations are calculated individually for DJF

(a), MAM (b), JJA (c) and SON (d). The coloured regions represent locations where the magnitude of the correlation is significant

at the 95% confidence level (two-tailed).

Long-range objective fire outlooks for Australia

Suite design for hindcast and real-time ensemble predictions

Calibrated ACCESS-S data
(based on quantile matching) Moisture content products

Rainfall

KBDI* DF*

Relative humidity

FFDI and GFDI**

Fire weather
index products

Seamless services
for hazards over
all time scales

*KBDI and DF also based on rainfall and temperature
observations for dates prior to start of ACCESS-S run

**GFDI also based on fuel load and curing rather than DF

Maximum temperature

Vapour pressure

Wind speed

Fig. 5. Design of the suite for producing objective long-range fire weather outlooks. An overview of the key

components is presented here based on the details provided in Section 3.2.
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For further details on data and methods including quantile
matching see Section 2.

� Fire weather conditions are calculated sequentially for each
day over the forecast period, using individual ensemble
members (rather than using ensemble average values) for

internal consistency of different weather variables which
provides a better representation of dangerous combinations
of variables. A range of products can be produced from this

ensemble-based system, including probabilistic predictions
in relation to different measures (such as the historical mean,
median, terciles, etc.), depending on what the user groups
may find most suitable for their applications.

� Real-time forecast products are produced for fire weather
measures as well as for some variables that have previously
not been available (including various measures of drought,

humidity and wind speed).

The calculation of the KBDI and DF for a given day

(as needed for input to the FFDI calculation in Eqn 1) is based
on the previous day’s values of the KBDI and the current day’s
temperature as well as consideration of the previous 20 days of

rainfall. The design of the approach for calculating FFDI from
ACCESS-S1 is based on initialising the KBDI using the most
recent value of KBDI from the observations-based FFDI data set

(Dowdy 2018), noting that the observations-based data set is
updated automatically each day. The observations-based rain-
fall data are also used for input to the ACCESS-S1 calculation of
KBDI and DF, but the number of days that use observed rainfall

drops off with each successive day of the ACCESS-S1 forecast.
For example, after 20 or more days into the forecast period from
the initialisation date of ACCESS-S1 model run, no more

observations-based rainfall data are used for calculating the
KBDI and DF on a given day, with the previous 20 days of
rainfall data being entirely based on the model output.

Building on previous results for calculating FFDI using
calibrated hindcast data fromACCESS-S1 (Dowdy 2019;Dowdy
et al. 2019), this study presents long-range FFDI predictions
based on the real-time data from ACCESS-S1. Long-range

predictions of FFDI are shown in Fig. 6 based on the ACCESS-
S1 model output. The data were calculated for the real-time
model run (50-member ensemble) initialised on 1 November

2019,with predictions shown here for eachmonth out to February
2020. It is intended that this process will be automated in future
work, so that these calculations over all ensemble members will

not be needed to be produced manually each time a long-range
forecast is needed. For example, guidance products based on this
system are intended to be automatically updated each week or

month, which could be used to provide information routinely to
fire agencies. To date, these long-range fire weather prediction
products have been produced quarterly for presentation to fire
agencies.

These results for mean monthly FFDI show that the

ACCESS-S1 values resemble the observations-based values

for each of the four months of the outlook period, with the

model data (Fig. 6, left panels) able to reproduce the general

spatio-temporal features of mean FFDI, while noting some

differences as detailed in the right-hand panels. The differences

show higher FFDI values than normal values of FFDI predicted

for November and December 2019, as well as into January 2020
for large areas of eastern Australia, with conditions in February

being closer to normal (or lower than normal for some western
and northern regions). This early summer period was charac-

terised by very damaging fire events associated with dangerous
fire weather conditions, including as indicated by observations-
based FFDI values being notably higher than normal, as detailed

in a Special Climate Statement published by BoM on those
conditions (Bureau of Meteorology 2020).

Complementary to the mean FFDI values, probabilistic

predictions were also produced, based on the probability of
exceeding the mean value in a given month. This was based on
the fraction of the ensemble members that produced mean FFDI

values exceeding the mean values from the historical
observations-based FFDI data set for that month. It is noted that
in some cases this may provide complementary information to

just examining the mean, including around the likelihood of the
predicted outcome as compared to the magnitude. This is shown
in Fig. 7, presented individually for each of the input ingredients

used for calculating the FFDI, as well as for the FFDI. The
predictions of a higher than normal probability of dangerous fire
weather conditions (i.e. high values of FFDI) for early summer
are related to the combined influence of low values of relative

humidity and rainfall, as well as higher than normal tempera-
tures, while wind speed was predicted to be slightly weaker than
normal in general for Australia.

These figures were presented to all State and Territory fire
agencies around Australia in mid-November 2019 as part of
experimental research guidance (i.e. not an official operational

BoM product), during research project meetings for a project
funded by the Victorian Government Department of Environ-
ment, Land, Water and Planning (DELWP), Country Fire

Authority (CFA) and BNHCRC. This project is still currently
underway, with these results intended as interim results along
the way to finalising the methods by the end of the project in
June 2021. Given that the FFDI combines humidity and wind

speed together with temperature and rainfall information into a
single integrated measure that includes antecedent information
for fuel moisture, it provided complementary guidance to the

official operational seasonal outlooks of temperature and of
rainfall that were also provided to fire agencies, for helping their
planning leading into the 2019–2020 summer. The fire weather

conditions that ended up occurring were a lot more severe than
normal for this period leading into the summer, including FFDI
value considerably higher than normal throughout large areas of
Australia during December and into early January (BoM 2020).

The ACCESS-S1 hindcast consists of an 11-member ensem-
ble in each year from 1990 to 2012 and can be useful for model

validation as detailed in Hudson et al. (2017). The long-range
predictions of FFDI shown in Fig. 6 for the 2019–2020 summer
use the model run from 1 November 2019. To examine the skill

of the model in making predictions such as this for the summer
fire season in southern Australia, Fig. 8 shows hindcast predic-

tions for model runs from 1 November in each of the years from
1990 to 2012. The predictions shown are for ensemble average
FFDI values through southern Australia (average for all land

locations south of 278S). Predictions of above or below median
are correct for about three quarters of those years (74%),
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assessed in relation to the observations-based FFDI data

described in Dowdy (2018).

3.3 The 2019–2020 summer fires and use of seamless
products

A large number of extremely dangerous fires occurred during
the 2019–2020 summer, burning huge areas of eastern and
southern Australia, as well as tragically resulting inmany deaths

and the destruction of built and natural environments. This suite
of seamless fire weather products was used extensively in
relation to this fire season prior to, during and after the summer.

Some examples of this are provided here, highlighting a range of
tangible benefits resulting from these calibrated data sets,
including around improved preparedness, communication and

understanding of the extremely dangerous fire weather condi-
tions that occurred.

As detailed in Section 3.2, long-range fire weather guidance

based on real-time ACCESS-S1 ensemble predictions was
provided to state fire management authorities in mid-

November 2019 (including Figs 6 and 7), clearly indicating

the higher than normal chance of dangerous weather conditions

in the coming months into January 2020. This research product

was the first time that these long-range fire weather predictions

were available prior to the summer period for Australia, as

previously the information based on ACCESS-S model output

was focused on temperature and rainfall individually (rather

than combined together with humidity and wind speed into an

integrated fire weather measure). This helped provide additional

lines of evidence for climate research-based guidance on

upcoming conditions, in addition to the official operational

products based on temperature and rainfall for their planning

around the upcoming period (from multiple weeks to months
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ahead, noting that some decisions can benefit from long-range
guidance such as ordering of aircraft and arranging for addi-

tional fire fighters from other regions).
Information on the observed climate change trends as well as

future climate projections based on these calibrated data was
provided to state agencies, the BNHCRC and the Australasian

Fire and Emergency Service Authorities Council (AFAC) and
their partner agencies in the spring of 2019. This information
highlighted an increased likelihood in recent years of conditions

that are more severe than ever experienced previously, particu-
larly during spring and summer in parts of southern and eastern
Australia. Consequently, this suggests that changes in planning

and preparedness may be beneficial to consider, including
leading into the fire season in these regions, to help enable
enhanced resilience to conditions potentially more severe than
those in the historical records and the previous experience of fire

fighters and fire management groups.
During the summer period, the historical data set of FFDI

(updated automatically each day) was used numerous times for

guidance on understanding the severity of conditions associated
with the fire events that occurred. This included being able to
provide insight on the severity of the conditions based on a long

historical context (back to 1950, including enabling compar-
isons with daily maps of FFDI for other notable historical events
such as Black Saturday, Ash Wednesday and others) as well as

being able to indicate regional features given that it is based on a

gridded analysis of observations data (e.g. complementary to
station-based data). Many examples of conditions were found to

be unprecedented in the 70-year historical record, such as
detailed in the Special Climate Statements produced by BoM
during the summer as events unfolded, including record high
individual daily values as well as record high monthly average

values of FFDI in many parts of the country (Bureau of
Meteorology 2019a, 2019b, 2020). Being able to document
and analyse conditions in this way helped enhance communica-

tion around the severity and anomalous nature of the conditions
that were occurring.

The suite of calibrated fire weather data sets was also used

extensively in post-summer analysis and inquiries, including for
four individual state inquiries as well as for the Royal Commis-
sion into National Natural Disaster Arrangements (Australian
Government 2020). For example, the BoM presentation on the

first day of the Royal Commission (https://naturaldisaster.royal-
commission.gov.au/system/files/exhibit/BOM.502.001.0001_0.
pdf) showed many figures based on the historical FFDI data set,

as well as some based on the future projections data set calibrated
to match the historical data set. Slide 76 of that presentation (also
included as Fig. A2 in the Appendix) shows maps of FFDI using

the observations-based data for three days from January 2020 on
which extremely dangerous fire events occurred, as well as using
the calibrated projections data fromone individualmodel to show

three days from January 2050 for the future simulated climate
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Fig. 7. Long-range prediction of weather variables used for calculating the FFDI, as well as the FFDI. Results are presented as the probability of exceeding

themean value, based on the fraction of the model ensemblemembers that havemeans values higher than that of the historical observations-based FFDI data

set. Red colours correspond to conditions associated with higher FFDI values and blue colours correspond to conditions associated with lower FFDI values,

corresponding to higher temperature and wind speed values as well as lower relative humidity and rainfall values (shown in each respective column). This is

based on ACCESS-S1 model initialised on 1 November 2019. Results are shown for individual months from November 2019 to February 2020 in each row,

respectively.
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(as an example of one future simulated extreme event for

comparison with the extreme conditions experience during the
2019–2020 summer). As the first presentation of the Royal
Commission, the gridded fire weather data sets over different

time scales helped set the scene and provide the scientific context
around the extremely dangerous conditions and destructive fire
events that occurred, noting that the outcomes of the Royal

Commission are intended to enhance future planning and pre-
paredness efforts to reduce the impacts of future extreme fire
events on Australian society and environment.

There are various other examples of how this broader set of

consistent fire weather products was used in the inquiries
following the 2019–2020 summer. Examples for future projected
changes include Fig. 6 of the Royal Commission final report

(Australian Government 2020). The GCM data in that figure
have the QME method applied for consistency with the gridded
observations-based FFDI data set (Dowdy 2018) and are the

same projections data used here in Fig. 2 showing projections for
FFDI. 50 (whereas the version in the Royal Commission report
provides projections for FFDI. 25 as presented in Dowdy et al.
(2019)). That gridded observations-based FFDI data set was also

presented in various inquiries, such as for examining historical
changes in figures 2–23 and 2–24 of the NSW inquiry report

(NSW Government 2020) and Fig. 7 of the inquiry report for
South Australia (Government of South Australia 2020), with an
updated map of historical changes shown in Fig. 9 using that

data set.

4 Summary

Fire weather data sets are now available in a consistent form
covering historical records back to 1950, long-range predic-
tions out to several months ahead and future climate projec-

tions through to the end of this century. All of these datasets
use a 0.058 grid spacing in both latitude and longitude, with
daily values of various fire weather indices (e.g. FFDI, DF,

KBDI as well as individual input ingredients for weather
conditions), with the model-based data calibrated to match
the historical observations-based gridded data sets using
quantile matching.

The results presented here highlight the benefits of seamless
fire weather guidance products for fire management applica-
tions in Australia. This includes based on calibrated output from

GCMs for future climate change projections (Section 3.1) and
the ACCESS-S1 model currently used by the BoM for long-
range prediction activities (Section 3.2). Calibration based on

quantile matching with care around extremes was applied here
to help with the provision of seamless predictions across scales
that are also consistent with the historical records. The produc-

tion of FFDI values based on ACCESS-S1 real-time values is
currently in the process of being automated to run each day using
this system design as described above (Section 3.2), noting a
similar automation of the historical FFDI data set which is

currently producing daily updates. Future work is planned to
shift this long-range prediction suite to ACCESS-S2 (the
planned successor toACCESS-S1)when data become available,
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as well as building on this suite design for other fire weather
measures such as those planned for the upcoming Australia Fire

Danger Rating System (AFDRS). Climate projections of FFDI
do not need updating as frequently as the seasonal prediction and
historical data sets, but it is intended that an update will occur

when the CMIP6 data become more readily available in the
future as well as based on available regional downscaling from
GCM data (e.g. Di Virgilio et al. 2019; Dowdy et al. 2019).

Projections of FFDI in future simulated climates under
different greenhouse gas emission pathways provide one indica-
tion of how dangerous fire conditions could change in the future,
while noting that future fire occurrence can be influenced by

many different factors including a broad range of weather-related
as well as other factors (such as land-use changes, climate
adaptation activities, etc.). The FFDI is useful for providing a

general indication of near-surface weather conditions and fuel
moisture that can influence fire behaviour (broadly similar to a
range of other indices used around the world for fire management

applications). Complementary to near-surface indices, the
C-Haines index provides an indicationof conditions at higher levels
of the atmosphere that can also be associatedwith dangerous fire
events such as those that can generate thunderstorms in their fire

plumes (i.e. pyrocumulonimbus clouds, pyroCb) with recent
studies showing a potential increase in such risk factors in parts
of southern and southeasternAustralia (Dowdy and Pepler 2018;

Di Virgilio et al. 2019; Dowdy et al. 2019). Another weather-
related factor is ignition risk from dry-lightning (i.e. lightning
that occurs with little rainfall, less than about 2.5mm), with

analysis over recent decades indicating decreases in dry-
lightning frequency for many parts of Australia as well as
increases in parts of southeast Australia (Dowdy 2020). Conse-

quently, in addition to the extreme measures presented in Fig. 2
of this study, there are various other lines of evidence that
highlight southern Australia as having a concentration of
increased risk factors for bushfires in a warming world.

This suite of calibrated fire weather products described here
is being used extensively, including some examples provided
here, in relation to the extreme fire conditions during the 2019–

2020 summer. Calibrated model data provide scope for a wide
range of improved guidance products based on these weather
factors. The ACCESS-S FFDI values enable relative humidity,

wind speed and soil moisture (KBDI) predictions at long range,
given that these are input ingredients of the FFDI, noting
relatively limited products to date in relation to such variables.
Similarly, for the future climate projections, the various input

ingredients to the FFDI provide scope for improved understand-
ing of projected future changes in various aspects of weather and
climate based on calibrated data consistent with observations-

based data sets.
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Appendix A – Supplementary information

Table A1. Details on the global climate models used here, including horizonal grid spacing and number of vertical levels (further details in Moise

et al. 2015)

Model name Horizontal grid spacing (degrees latitude� longitude) Vertical resolution (number of levels)

ACCESS1-0 1.9� 1.2 38

ACCESS1-3 1.9� 1.2 38

BCC-CSM1-1 2.8� 2.8 26

BCC-CSM1-1-M 1.12� 1.12 26

BNU-ESM 2.8� 2.8 26

CCSM4 1.25� 0.94 26

CNRM-CM5 1.4� 1.4 31

CSIRO-Mk3-6-0 1.8� 1.8 18

FGOALS-G2 2.8� 2.8 26

GFDL-CM3 2.5� 2.0 48

GFDM-ESM2G 2.5� 2.0 24

GFDM-ESM2M 2.5� 2.0 24

MIROC5 1.4� 1.4 40

MRI-CGCM3 1.1� 1.1 48

NorESM1-M 2.5� 1.9 26
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Fig. A1. As for Fig. 2, but for near-term climate projections. Future projections in FFDI values from the

calibrated GCM data. Changes are shown for the number of days per year that the FFDI exceeds a threshold

value, based on changes from the period 1990–2009 to the period 2020–2039. Results are presented for the

number of days per year that FFDI is above 50 (left panels, a–d) and the number of days per year that FFDI is

above its historical period 99th percentile (right panels, e–h). This is shown for individual seasons DJF (a, e),

MAM (b, f), JJA (c, g) and SON (d, h).
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Fig. A2. Example fromBoM presentation on Day 1 of the Royal Commission, as slide 67 of the full presentation

available here https://naturaldisaster.royalcommission.gov.au/system/files/exhibit/BOM.502.001.0001_0.pdf.

Maps of daily FFDI are shown using the observations-based data set (Dowdy 2018) for three individual days

from January 2020 on which extremely dangerous fire events occurred, as well as using the QME calibrated FFDI

projections data set (Dowdy et al. 2019) for theACCESS1-0GCM to show three individual days from January 2050

for the future simulated climate. These days were selected to highlight a future simulated extreme event for

comparison with some of the extreme conditions experienced during the 2019–2020 summer.
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Fig. A3. Example of applying the QME calibration method to the global climate model ACCESS1-0

historical andRCP8.5 simulations. Results are presented for daily values ofmaximum temperature at a height of

2m in Melbourne (using a grid cell of 0.058 in latitude and longitude corresponding to 145.008E and 37.858S).

The direct output data from the model is shown (green) and the bias-corrected version of these data (black),

togetherwith theAWAPgridded analysis of observations data used to train themethod (orange). Time series are

shown (upper panel), as well as PDFs for the training period from 1975 to 2017 (middle panel) and projections

for 2018 to 2100 (lower panel).
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Fig. A4. As for Fig. A3 but for rainfall in Bankstown, Sydney (using a grid cell of 0.058 in latitude and longitude

corresponding to 151.058E, 33.908S).
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