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Australian rainfall anomalies and Indo-Pacific driver indices: 
links and skill in 2-year-long forecasts 
I. G. WattersonA,* , T. J. O’KaneB, V. KitsiosA and M. A. ChamberlainB  

ABSTRACT 

Two-year-long simulations of the atmosphere and ocean by the Commonwealth Scientific and 
Industrial Research Organisation's (CSIRO) Climate Analysis Forecast Ensemble (CAFE) model-
ling system are analysed, with a focus on Indo-Pacific sea surface temperature (SST) climate 
drivers and their teleconnection to Australian rainfall. The simulations are 11-member ensemble 
forecasts (strictly, hindcasts) initiated each month from 2002 to 2015, supplemented by a 100- 
year-long control simulation. Using correlations r between seasonal and annual means, it is shown 
that the links between the interannual variations of All-Australia precipitation (AApr) and the 
standard driver indices, together with the Pacific-Indian Dipole (PID), are mostly similar to those 
derived from observational data. The vertically integrated meridional flux of moisture towards 
northern Australia is linked to both the SSTs and AApr. Correlations between ensemble averages 
and observations are used as a measure of forecast skill, calculated for each start month and for 
lead time after start. Positive correlations hold over the first year for much of the low-latitude 
Pacific and for the drivers. The forecasts become more skillful than persistence, with r for PID 
averaging 0.3 higher over lead times of 7–13 months. The forecast of seasonal AApr has 
moderate to good correlations (r 0.4–0.8) for seasons centred on September–February. This 
is largely consistent with skill in both the flux and in the SST drivers. Correlations are also good 
for 1-year and 2-year means. This apparent skill is currently being explored using a new larger 
suite of CAFE forecasts.  

Keywords: atmospheric moisture flux, Australian rainfall, ENSO, ERA5, Indo-Pacific climate 
drivers, Pacific‐Indian Dipole, seasonal and annual forecasts, teleconnection. 

1 Introduction 

Seasonal rainfall over Australia is notably variable from year to year, in part because of 
the influence of variations in the atmospheric circulation linked to sea surface tempera-
ture (SST) anomalies in the Indo-Pacific region. Typically, these ‘drivers’ of variability 
can be characterised using one or more indices or time series that quantify the amplitude 
and sign of their interannual anomalies. The El Niño Southern Oscillation (ENSO) is the 
most prominent driver for much of the Indo-Pacific region, and the indices Niño4 and 
Niño3.4 (denoted here NINO4 and NINO34) measure SSTs in the central equatorial 
Pacific. Anomalies in the Indian Ocean have been represented by the Indian Ocean 
Dipole (IOD), using regions depicted, along with others, in Fig. 1. The teleconnection 
between the SST anomalies and Australia has been the subject of many studies, more 
recently including those by Klingaman et al. (2013), Cai et al. (2019), Van Rensch et al. 
(2019), and Zhao et al. (2019). The links to Australian rainfall have been reviewed by  
Dey et al. (2019). The effects of the atmospheric transport of moisture on rainfall have 
been studied by Taminiau and Haarsma (2007), Gu and Adler (2019), Marshall (2019),  
Hauser et al. (2020), Holgate et al. (2020), Ye et al. (2020), and others. Watterson (2020) 
presented regression relationships with various driver indices, including the ‘Pacific-Indian 
Dipole’ (PID), which combines the west Pacific and the east Indian Ocean anomalies, as 
represented in the European Centre for Medium-Range Weather Forecasts (ECMWF) 
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reanalysis 5 (ERA5) data (Hersbach et al. 2020). The quan-
tities considered included the vertically integrated (from the 
surface to top of atmosphere) horizontal moisture transport 
or ‘flux’ vector. Anomalies in this flux extended from the 
tropics through to Australia. 

Although the standard SST drivers link more strongly to 
rainfall in certain seasons and parts of Australia, there is 
considerable spatial coherence in rainfall anomalies on 
annual and longer timescales (e.g. Smith 2004, Power 
et al. 2006). Watterson (2020) found that the spatial average 
rainfall over Australia (Fig. 1), All-Australia precipitation 
(AApr), related particularly well with the PID. The PID 
anomaly for 2018–2019, a record 2-year dry period for 
Australia, was linked (simply through regression of 2-year 
means) to some 46% of the AApr deficit, which is more than 
for other single indices. 

Predictions of the state of ENSO and other drivers have 
been a focus of numerous modelling centres worldwide, 
such as those contributing to the North American Multi- 
model Ensemble (NMME, Barnston et al. 2019). Typically, 
these are based on ensembles of simulations by coupled 
atmosphere–ocean modelling systems. Forecasts of temper-
ature and rainfall for many parts of the world are being 
made (e.g. by ECMWF) for a ‘lead’ time (the time prior to 
the start of the time period being forecast, or ‘target period’) 
of a month or longer. There has been some consideration of 
forecasting the associated moisture fluxes, for example by  
Zhang et al. (2019) and Mahlstein et al. (2019). Wittenberg 
et al. (2014) and others provide evidence that ENSO may be 
predictable several years ahead. Multi-year prediction is 
actively pursued by the groups contributing to the World 
Meteorological Organisation’s Lead Centre for Annual-to- 
Decadal Climate Prediction (WMOLC, hadleyserver.metoffice. 
gov.uk/wmolc). Prediction of monthly to seasonal rainfall 
over Australia is performed by the Bureau of Meteorology 
(Hudson et al. 2017, and www.bom.gov.au/climate/outlooks), 
supported by studies including Frederiksen et al. (2018),  

Marshall and Hendon (2019) and King et al. (2020). 
Recently, the Commonwealth Scientific and Industrial 
Research Organisation's (CSIRO) Decadal Climate Forecasting 
Project (DCFP) has developed the Climate Analysis Forecast 
Ensemble (CAFE) modelling system, described by O’Kane 
et al. (2019), with the aim of extending forecasts of SST 
drivers and of Australian climate to lead times of seasons 
to multiple years. 

An interesting feature of the forecasting of NINO indices 
by many modelling systems is the dependence of the skill at 
long lead times on the starting month of the model simula-
tions used to make the forecast. Some of this dependence 
has been denoted the ‘boreal spring predictability barrier’ 
(Lai et al. 2018). O’Kane et al. (2020) found that an ensem-
ble of CAFE simulations, starting within 2002–2015, pro-
vided an improved forecast of NINO4 over most models in 
the NMME at lead times approaching the end of the year- 
long NMME data set, in particular for target months corre-
sponding to the boreal spring (March–May). This is attrib-
uted to the CAFE system using both the assimilation of the 
sub-surface ocean data and the use of an ensemble of initial 
perturbations within the ocean thermocline that is designed 
to express at the surface after about 6 months. The ensemble 
average provides an improvement in skill over that of 
an alternative ensemble (O’Kane et al. 2019). The somewhat 
lower skill of CAFE before then was attributed to the 
limited initialisation of the atmosphere and global surface 
for these runs. In addition, there is an exaggerated strength 
in ENSO variability in June–August in the ‘control run’ 
or free-running simulation of the CAFE model, which 
appears to limit skill in that season for starts in December– 
February. 

The purpose of this study is to make a further assessment 
of the CAFE ensemble simulations, extending through their 
second year and addressing the teleconnection to Australian 
rainfall. With the CAFE model having relatively modest 
spatial resolution (~2°), some focus on AApr and on the 
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Fig. 1. Map of regions within the Indo-Pacific domain. ‘Aus’ is used for All-Australia means. The 
North Australia meridional flux, ‘NAF’, is the average over the region so labelled. Some regions are 
partly obscured by other regions they overlap with; for example, NINO34 is from 170°W. PID is 
defined using the boxes labelled PAC and IND, while IOD uses the West and East boxes (see 
Section 2.1).    
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PID index, defined with relatively large regions (Fig. 1), 
may be helpful. 

The following section presents the data used from three 
main sources: observational (Obs) data, the CAFE control 
run, and the CAFE forecast simulations. The relationships 
between AApr, flux, and other variables, as quantified by 
linear regression, in the control run are compared with those 
in ERA5. Section 3 examines the links between four SST 
driver indices, the teleconnection to Australia, moisture flux 
towards northern Australia, and AApr in the three data 
sources. Section 4 compares the CAFE forecasts with Obs 
data, with a basic assessment of skill using the (Pearson) 
correlation coefficient (r) between running monthly and 
seasonal averages. The links and forecast skill for annual 
means are considered in Section 5. It is acknowledged that 
with the limited number of years from which the ensembles 
start, there is considerable statistical uncertainty in the 
correlations. Further, the simulations are actually ‘hind-
casts’, so although the correlations found are encouraging, 
they should only be considered as indicative of potential 
skill of true forecasts. The conclusions follow. Some support-
ing figures (denoted S1–S4) are presented in the supplemen-
tary material. 

2 Data and methods 

2.1 Observational data 

The Obs SST for the NINO34 and NINO4 regions is the 
National Centers for Environmental Prediction (NCEP) 
weekly OISST.v2 data (Reynolds et al. 2002) obtained from 
www.cpc.ncep.noaa.gov/data/indices. For the analyses used 
here (as for Watterson 2020), there was no need to normalise 
the SST data. Except for certain longer-term series, as will be 
noted, data were not detrended. 

For a range of variables in gridded form, we used ERA5 
data, which are presented by the Copernicus Climate Change 
Service (C3S, 2017) and were comprehensively assessed by  
Hersbach et al. (2020). Watterson (2020) used the monthly 
mean data from 1979–2019 in an assessment of the regional 
atmospheric anomalies associated with the low Australian 
rainfall of 2018–2019. The links with the Indo-Pacific cli-
mate driver indices are further analysed here, and the SST 
data now available in the reanalysis was used to define the 
PID and IOD indices. Previously, Watterson (2020) used 
surface air temperature (tas). These indices are the simple 
differences between the regional averages shown in Fig. 1: 
PID = PAC–IND and IOD = IODW–IODE. There is a notice-
able difference between SST and tas from ERA5 in the 
Indonesian region, with larger variability in the indices 
using SST. The effect on regression results is limited, how-
ever. Some (minor) differences between the assessment of 
the CAFE forecasts and earlier results based on the previous 
ECMWF Re-Analysis Interim (ERA-Interim) reanalyses (see  

Hersbach et al. 2020) were noted (see Section 4.2). ERA5 
was also used for Obs data over the Indo-Pacific of precipi-
tation, mean sea level pressure (psl), wind vectors, and the 
vertically integrated horizontal moisture flux vector and its 
convergence. 

For rainfall, the focus was on the AApr series provided by 
the Bureau of Meteorology website. This is based on the 
current Australian Gridded Climate Data (AGCD) analysis of 
monthly means, as documented by Evans et al. (2020). The 
AApr series is very similar to the previous (Australian Water 
Availability Project, AWAP) series used by Watterson 
(2020), who showed that the latter was closely correlated 
with the Australia (Fig. 1) spatial average of ERA5 total 
precipitation for the annual and seasonal series as used 
here. In fact, the AGCD r values for the interannual variability 
of five cases, annual, and four standard seasons, were each 
slightly higher than for AWAP. The AGCD–ERA5 r values 
ranged from 0.97 (annual) to 0.99 (JJA, June–August). 
Time series of AGCD rainfall averaged over other Australian 
regions were also used in our assessments, but these are not 
presented here. 

Watterson (2020) showed regression coefficients for the 
relationship between ERA5 seasonal means of AApr and 
other variables at grid points. The fields of correlation r 
for grid point rainfall and each moisture flux component 
are plotted in Fig. 2a for ERA5 from 1980 to 2017. At nearly 
all locations, the rainfall correlation is positive, supporting 
coherence of anomalies in each season. The variability of 
AApr strongly correlated with fluxes across the Australian 
north coast, especially within the monsoon from the north-
west in December–February (DJF). Southward flux provided 
additional moisture to southeastern Australia in all four 
seasons. The maximal correlation, for flux components in 
any direction, is shown in Supplementary Fig. S1a. With 
the concentration of moisture in the lower troposphere it 
is suspected that much of the flux anomalies were from 
horizontal transport below 500 hPa. The focus here on the 
integrated flux is partly because of its availability from 
ERA5 but also because of its role in balancing precipitation 
in the (integrated) atmospheric moisture budget (e.g.  
Watterson et al. 2021). 

2.2 CAFE control simulation 

The CAFE system is based on the Geophysical Fluid 
Dynamics Laboratory (GFDL)-CM2.1 model of Delworth 
et al. (2006), and a long control simulation is analysed for 
an evaluation of its realism. The model is described in some 
detail by O’Kane et al. (2019), but a brief summary follows. 
The atmospheric model, GFDL-AM2, has a resolution of 
(approx.) 2° in latitude and 2.5° in longitude, and 24 hybrid 
(sigma-pressure or terrain-following pressure) vertical 
levels. The land model, GFDL-LM2, is on the same horizon-
tal grid. The ocean grid is in common with the Australian 
Community Climate and Earth System Simulator-CM2 model 
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described by Bi et al. (2020). The nominal resolution is 1°, 
with extra latitudinal resolution in the tropics and the 
Southern Ocean. There are 50 vertical levels, with a 10-m 

resolution in the upper ocean. The grid is tripolar to avoid 
the North Pole singularity. As described by O’Kane et al. 
(2020), the free-running coupled model has an equatorial 
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Fig. 2. Correlation coefficient between seasonal AApr and grid point rainfall (contours), and vertically 
integrated horizontal moisture flux components (vector) in (a) ERA5 (using AGCD AApr), (b) the CAFE 
control run. From top to bottom: December–February (DJF), March–May (MAM), June–August (JJA), 
September–November (SON). The eastward (northward) component of a vector is r for the eastward 
(northward) flux, using the scale of the reference vector.    
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Pacific cold bias, as is typical of such climate models. 
The major region of variability in the equatorial Pacific is 
displaced to the west of the observed maximum. This bias 
impacts the modelled ENSO phase locking. In the 500-year 
control simulation considered here, and used in the forecast 
system, bias in the mode water structure was reduced 
by restoring the temperature and salinity of water below 
2000 m to observations. The ENSO cycle is more vigorous 
than is observed. Nevertheless, the teleconnection patterns 
from regression with the ENSO indices have much in com-
mon with those obtained from ERA5, as will be shown. The 
final 100-year sequence of the control run is used here. 

The atmospheric model and its output feature in numer-
ous studies (including Wittenberg et al. 2014). The verti-
cally integrated moisture flux is not a standard product, but 
it has been calculated here using the daily means of winds 
and specific humidity output on the 24 model levels. This 
produced a very close approximation to the tropical mois-
ture fluxes that are the focus here. To provide an indication 
of the realism of the relationship between AApr and grid-
point rainfall and flux in CAFE, the seasonal fields of corre-
lation are shown in Fig. 2b. The patterns are similar to 
those from ERA5, although with some shifts in position 
and strength. The statistical uncertainty in such patterns 
associated with a record of limited length is acknowledged, 
along with the reduced applicability of linear regression for 
rainfall, which is often non-normally distributed, especially 
at gridpoints. 

2.3 CAFE forecast simulations 

The CAFE forecast data set contains 11-member ensembles of 
24-month-long simulations initialised at the beginning of 
each month from February 2002 to December 2015, making 
a total of 1837 simulations by the CAFE coupled model. The 
generation of the initial states is described by O’Kane et al. 
(2019, 2020). A brief overview is given here. For each start-
ing month, the forecasts were initialised as perturbations 
about a single analysed state that approximates the coupled 
climate system for that month. CAFE assimilates a compre-
hensive range of surface and sub-surface ocean observations 
using ensemble optimal interpolation. Balance between 
the atmosphere and the analysed ocean was achieved via 
additional increments to the atmosphere on the basis of 
cross-domain covariances between the ocean and atmo-
sphere, but otherwise, atmospheric conditions were gener-
ated by the model. Initial conditions for the ensemble 
forecasts were generated as bred vectors (BVs) on a monthly 
cycle. The BVs were rescaled relative to the standard devia-
tion (s.d.) for the ocean temperature in the upper 500 m 
calculated from anomalies relative to a seasonal climatology 
based on the control simulation. Only temperatures within an 
isosurface located around the tropical thermocline (not 
including the surface) were perturbed. The structure of the 
perturbations was designed to impact the surface after about 

6 months and rapidly modify tropical convection and, subse-
quently, the Hadley Circulation (O’Kane et al. 2019). 

O’Kane et al. (2019, 2020) presented analyses of monthly 
means of the NINO4 index. Here, all results were derived 
from the atmospheric model’s daily mean output. Driver 
indices were formed from the spatial mean of surface tem-
perature over the ocean grid points (which is used as SST) in 
the regions depicted in Fig. 1. Since day-to-day weather was 
not the focus, 5-day or pentad averages were then taken, 
followed by running averages of multiple pentads. Results 
were derived for each calendar starting month in turn. 

It is worthwhile illustrating the behaviour of an SST 
index across a multi-year ensemble, and Fig. 3 shows results 
for runs starting 1 October across 14 years (2002–2015). 
The NINO4 SST values from the model are plotted against 
those from NCEP. To allow for consistent processing, the 
NCEP weekly data were first converted to a daily series, 
simply by repeating values, and the same was done for the 
other monthly Obs series. For Fig. 3, seven-pentad running 
means were then taken, denoted as monthly (but actually 
35-day averages). The CAFE NINO4 values from all 154 runs 
are shown in Fig. 3a for the period centred on pentad 21, so 
approximating January. The Obs values depend only on the 
starting year. Also shown is the 11-run ensemble average 
(denoted ‘av’) for each year case. While the 11 model values 
within each ensemble are almost identical in the first pentad 
(1–5 October), there is considerable spread in each case for 
the period shown. There is a high correlation between the 
CAFE and Obs values, with a similar coefficient using the 
individual values (r) or the ensemble averages (denoted 
rav), as marked. We use ‘high’ to describe r over 0.8, 
‘good’ for 0.6–0.8 and ‘moderate’ for 0.4–0.6. The regression 
lines are also shown in Fig. 3a. Note that these raw model 
and Obs values only approximately match. Correlations are 
a measure of agreement that allows for a model bias (and 
Obs uncertainty) in both mean and s.d. or spread. Note that 
since the correlations were always for values for the same 
start and target times, they match the ‘anomaly correlation 
coefficients’ used by O’Kane et al. (2020). The correlations 
are shown as a function of time after start in Fig. 3b. For the 
first month, r and rav were both very high. They fell but 
remained positive through the 2-year forecast in this case. 
The correlation for the ensemble average was always a little 
higher. This is a typical result, as discussed by Christiansen 
(2019). For both CAFE and Obs, the s.d. across the values at 
each time is shown. The s.d. for CAFE ensemble averages 
(av) fell because variability, unrelated to the initial states, 
grew. Note the minimum for Obs s.d. occurred in June–July 
(after the boreal spring). After that, a small rise in r followed 
that in s.d. Note that the time in the x-axis is also the ‘lead 
time’, with respect to forecasting for a target date that is the 
centre of the averaging period used. Further comparison of 
the forecasts and Obs are deferred to Section 4. 

All such results are presented as representative of the period 
analysed, supported by some assessment of the mechanisms 
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involved. Inferring results for a hypothetical longer period 
was not attempted, so statistical significance was not 
addressed in detail. Naturally, with only 14 year cases avail-
able for each starting month, there was considerable statis-
tical sampling uncertainty. For example, a correlation of 
0.7 from a hypothetical much larger set of years would, 
under the usual assumptions, result in a sample r within a 
range of 0.45–0.85, with an 80% chance. Similarly, r needs 
to have magnitude 0.37 to reach statistical significance at 
this modest 0.2 level. In the tables, r values below this level 
are shown in italics. 

3 Links between Australian rainfall and 
drivers 

3.1 ERA5 and CAFE control 

The teleconnection between Australian rainfall and the Indo- 
Pacific climate driver indices was explored by Watterson 
(2020) using ERA5 data from 1980 to 2017. Maps of regres-
sion coefficients (the anomaly at 1 s.d. of the index) for a 
standard set of variables were presented to illustrate the 
relationship for seasonal means with either the AApr or a 
driver index in the same season. Similar maps have been 
developed for the longer (100-year) CAFE control run, pro-
viding a qualitative evaluation of the simulated teleconnec-
tion process. The results for the NINO4 index are shown in  
Fig. 4, and with the interest in longer periods, they are for an 
annual case, with all quantities being January–December 
means. The ERA5 maps are similar to the result for the PID 
index (which is well correlated with NINO4) shown by  
Watterson (2020, fig. 9a). Detrending NINO4 and using the 
SST version of the index made little difference. The control 
run results were broadly very similar. In both, the tempera-
ture (tas, here) was high over the NINO4 region and much of 
the equatorial Pacific. Rainfall was high at the western end, 
where there were eastward flux anomalies. Although the 
magnitudes of the fluxes across northern Australia are smaller 
than those near the equator, the fluxes were mostly north-
wards. This likely contributed to dryness over much of the 
continent, where temperature and pressure tended to be 
higher. Relative to ERA5, the westward shift and strength 
of the equatorial warmth reflected the modelled ENSO. 

Certainly, the CAFE model was able to simulate a strong 
link to Australian rainfall. Returning to the All-Australia 
mean, the correlations with drivers in the annual and sea-
sonal cases are given in Table 1. The ERA5 1979–2019 r 
values were very close to those given by Watterson (2020), 
although the series were updated to the SST-based drivers 
and to AGCD for AApr. CAFE’s (100-year) annual NINO4 r 
value of −0.56 matched ERA5’s −0.58 well. The annual 
result for the driver PID was larger again for ERA5 but 
not for CAFE. The correlations tend to be stronger in 
the September–November (SON) season. As discussed by  
Watterson (2020), and supported by Fig. 4, rainfall anoma-
lies over Australia related to the SST drivers tend to be of the 
same sign across the continent. Certainly, the location of the 
strongest influence varied with season and driver. However, 
in the analyses that follow, correlation for regions tended 
not to be larger than those for AApr. Using larger spatial 
averages can limit the variability unrelated to the drivers. 

Given that the CAFE forecasts cover the shorter period 
2002–2017, the Obs correlations for this period are also 
given in Table 1. Here the NCEP NINO34 and NINO4 series 
were used. The values for SON and DJF were all more nega-
tive, with r for PID reaching −0.94 in SON. Some of the 
differences between correlations for different years could be 
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considered an effect of statistical sampling. However, Power 
et al. (2006) linked such variations to longer-term patterns 
of the coupled climate system. The larger values for 
2002–2017 in some cases may indicate that the indices 
and AApr are potentially more predictable for that period 
than earlier. 

3.2 CAFE forecasts 

The time series of correlations between CAFE forecasts and 
the Obs NINO4 in Fig. 3 is an example of r values that vary 
not just between the times of the year (running month in 
that case) but also between the lead times or times after the 
start of the runs. Links between forecast quantities can be 
evaluated in a similar way. Running 19-pentad (95-day) 
means of the simulated driver and rainfall series were 
taken to produce our ‘running seasonal’ means. The correla-
tions for each set of starting times and lead times were 
calculated both for all runs and for the 11-member ensemble 
averages. Fig. 5a shows values for rav between −PID and 
AApr as a lead-time series, like Fig. 3, but with the y-axis 

used to allow all starting months. The negative sign allows 
the colour scheme to be consistent with that in other plots. 
From the resulting contour ‘start–lead’ plot, it is evident that 
good to high correlations held for most pairs of start and 
lead times. The value shown at 1.5 months lead time 
(centred on the first whole season) after the September 
start was −0.83 for rav (of +PID). It was a little stronger 
than the r = −0.69 for all runs, which compared better 
with previous values for SON in Table 1. Over the other 
starting months, the seasonal values were fairly similar to 
the CAFE control results, although with less variation than 
for Obs 2002–2017. Since the focus of the skill assessment 
was lead times of over 6 months, values were for the stan-
dard seasons, centred on a lead time of 7.5 months, with 
the corresponding starts given. For each of the four driver 
indices, the av values were all larger, except for the target 
season DJF, when values remained small. From Fig. 5a, for 
PID rav, such low values held only for June and February 
starts, and high correlations returned later in those runs. 
Some of this variation, both across the start months and over 
time, seems likely to be by chance, but some may result from 
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the coupled model’s natural variability emerging. Indeed, at 
leads of around 1–1.5 years, there were strong links for the 
target season SON, as for CAFE control. The target SON was 
at the centre of the diagonal band of high rav, from the 
September start at 1 year to the March start at 1.5 year. 

An interpretation of the results is that there is a link 
between a driver and AApr, relating to a ‘signal’ of telecon-
nection within a season. Variability in AApr unrelated to the 
driver diminishes the correlation. Indeed, some of this may 
result from an individual driver index not representing all of 

Table 1. Relationship (or link) between interannual variations in driver indices and AApr for time series of seasonal or annual means, 
quantified using r. Four data sets were used (see text for details): (1) ERA5 SSTs 1979–2019, (2) CAFE 100-year control run, (3) Obs (ERA5/ 
NCEP SSTs) for 2002–2017, and (4) CAFE Forecasts (first for all runs and then ensemble average – av). The Obs rainfall series were from 
AGCD. For CAFE, the simulated rainfall was used.         

DJF MAM JJA SON Annual  

ERA5 1979–2019  

NINO34* −0.39 −0.20 −0.42 −0.57 −0.45  

NINO4* −0.39 −0.38 −0.35 −0.67 −0.58  

PID −0.20 −0.46 −0.55 −0.74 −0.61  

IOD 0.09 −0.17 −0.55 −0.54 −0.19 

CAFE 100y  

NINO34* −0.56 −0.46 −0.11 −0.56 −0.39  

NINO4* −0.62 −0.52 −0.27 −0.63 −0.56  

PID −0.56 −0.26 −0.47 −0.75 −0.51  

IOD −0.19 0.19 −0.24 −0.58 −0.29 

Obs 2002–2017  

NCEP NINO34 −0.50 −0.19 −0.47 −0.74 −0.55  

NCEP NINO4 −0.57 −0.23 −0.29 −0.85 −0.57  

ERA5 PID −0.44 −0.13 −0.46 −0.94 −0.64  

ERA5 IOD 0.07 0.38 −0.37 −0.64 0.05 

CAFE-forecasts m6 m9 m12 m3 m1/m6  

NINO34 all −0.19 −0.52 −0.31 −0.38 −0.45/−0.38  

NINO4 all −0.19 −0.52 −0.43 −0.40 −0.55/−0.40  

PID all −0.09 −0.50 −0.57 −0.51 −0.60/−0.47  

IOD all −0.02 −0.47 −0.42 −0.46 −0.50/−0.41  

NINO34 av −0.17 −0.84 −0.65 −0.57 −0.57/−0.47  

NINO4 av −0.16 −0.86 −0.86 −0.61 −0.70/−0.52  

PID av −0.10 −0.86 −0.90 −0.74 −0.75/−0.68  

IOD av −0.07 −0.88 −0.58 −0.77 −0.79/−0.72 

Link: NAF-AApr  

All −0.68 −0.74 −0.65 −0.86 −0.83/−0.76  

Av −0.74 −0.93 −0.60 −0.90 −0.92/−0.93 

Link: PID-NAF  

All 0.21 0.64 0.32 0.41 0.68/0.55  

Av 0.40 0.85 0.62 0.51 0.76/0.63 

Note: the asterisk indicates driver series that were first detrended. Also given are the links in the CAFE forecasts between NAF (meridional flux over the North 
Australia band) and AApr, and between PID and NAF. For the forecasts, the values were at (centred) a lead time of 7.5 months (seasonal) or 6 months (annual, i.e. 
the subsequent year), with the starting month(s) given (m1, January; m3, March; m6, June; m9, September; or m12, December). The four seasons are (1) 
December–February (DJF), (2) March–May (MAM), (3) June–August (JJA), and (4) September–November (SON). Values below the significance level mentioned in 
the text are in italics.  
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the SST-driven signal. The All results in the forecasts would 
have a similar ratio of signal to unrelated variability to that 
of the control run and Obs. By taking 11-member averages, 
the ratio should be raised and the correlation strengthened, 
as was seen. 

3.3 Moisture transport 

To address the mechanism of moisture flux relating to AApr 
(Fig. 2, Supplementary Fig. S1), we use an index based on 
moisture flux. The region used is the band over and to the east 
of northern Australia, 125–155°E, 15–10°S, as shown in Fig. 1. 
The index is the average of meridional flux over the band, 
‘NAF’ for short. A negative NAF represents moisture transport 
into northeastern Australia. In the control run, NAF correlated 
with AApr, reaching r = −0.82 in DJF. Slightly higher values 
held for points a little to the west (Supplementary Fig. S1), but 
these seem less influenced by the drivers (Fig. 4). Consistent 
with the supply of low-latitude moisture, southward NAF is 
positively correlated with AApr. 

The link between the negative of NAF and rainfall in the 
ensemble average of forecast simulations is shown in Fig. 5b. 
The correlation was over 0.9 for many of the start-lead times, 

and it was rarely below 0.6. Values (Av) for the target seasons 
beginning 6 months after the start are given in Table 1. Values 
for All are also good to high. Evidently the link between flux 
and AApr anomalies held well in individual runs. There seems 
to be less unrelated variability that can be overcome by 
averaging runs. Also given in Table 1 are values for the link 
between forecast PID and NAF. These reached 0.85 for av in 
MAM, indicative of a role for PID in generating NAF anoma-
lies. Some variation in r across the seasons would follow from 
that in the atmospheric circulation and in humidity, such as 
illustrated for links with PID in ERA5 by Watterson (2020). 
Sampling and model bias would also contribute. 

4 Assessment of skill in CAFE forecasts of 
monthly and seasonal means 

4.1 SST 

As shown in Fig. 3, the correlation across the 14 years of 
1 October starts between the forecast running monthly 
SSTs in the NINO4 region and the Obs was initially 
very high and declined over the simulation (or lead) time. 
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High correlations can be interpreted as a measure of skill in 
the forecasts; O’Kane et al. (2020) show this measure and 
some others. Since other ocean regions may be important 
drivers, it is important to examine correlations for SSTs at 
other tropical points. For this, the SST fields from the ERA5 
data archive were used as Obs, using values remapped to the 
CAFE grid. The CDO conservative remapping software was 
used. As for all following results, the model values were the 
11-member ensemble averages, and ‘r’ iwas the correlation 
for these (the rav in Fig. 3). The map of correlations for the 
first month (here using the usual monthly mean data) and 
the following months 3–9 are shown in Fig. 6. The decline in 
r over the 9 months at points in NINO4 relates to that in  
Fig. 3. Correlations for SSTs elsewhere were also generally 
high initially and were often positive, even in month 9. 
Some negative values appear, even initially, a consequence 
of the influence of the coupled model on the climate state 
during the data assimilation process. As seen in Fig. 3, the 
correlation for NINO4 remained positive into the second 
year. From the maps, we can see that positive correlations 
should hold for the other indices, in particular NINO34 and 
PID. The corresponding maps for the starting month June 
are shown in Supplementary Fig. S2. In that case, positive r 
continues even more strongly in the equatorial Pacific. 

Note that some r values over the continents appear in  
Fig. 6 and Supplementary Fig. S2 as a result of the ERA5 
fields including the temperature of the surface of lakes and 
the CAFE variable covering all surfaces. 

Using ensemble average and monthly means of three 
driver indices, the correlations for all starting months and 
lead times are shown as contour plots in Fig. 7, with NINO4 
shown in the centre, as Fig. 7b. Note that O’Kane et al. 
(2020) plotted very similar NINO4 results in their fig. 3a 
but with the y-axis being the target month. Consistent with 
the maps in Fig. 6, for October starts, skill (by r) was a little 
smaller and less persistent for the SSTs to the east (NINO34) 
and west (PID). There was considerable dependence on the 
starting month for all. The initial skill was moderate for June 
starts but persisted for longer. For starts in February–April, 
the skill fell by the target months June–August, after the 
boreal spring. However, correlations for these SSTs then 
returned to moderate values, even into the second year. 
Note that results for a single target month lie along a back-
ward diagonal here. The set of Obs values will be the same 
along the diagonal, except if the first or last year changes. 
Some of the variation with the longer lead times occurred 
with a diagonal pattern that repeated after 12 months, such 
as is evident in Fig. 7a, suggesting a return of skill. Other 
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variations are within that which might be expected from 
statistical uncertainty (say ±0.3), given the limited number 
of cases. Again, these results are specific to this set of years. 

As is well known, some of the correlation patterns in 
forecast SST indices is seen also in the skill of persistence. 
This is demonstrated here by replacing the forecast SSTs by 
the values from the first month (at pentad 4), for each start. 
The resulting start-lead plots are essentially an Obs result 
and are shown in Supplementary Fig. S3. The correlations 
diminished with lead time but only slowly for the cases 
of starts after boreal spring. For each case, the correlation 
then dropped to near-zero and remained within the sam-
pling uncertainty, consistent with index anomalies having 
no relationship to the past. For NINO34, the decline from 
moderate correlation to zero for a persistence forecast 
occurred rapidly (within a couple of months) but as much 
as 12 months after the start. The difference in r for forecast 
minus persistence is shown in Fig. 7d–f. The difference in r 
was sometimes negative in the lead-time months 2–10, most 
strongly for NINO34. As discussed by O’Kane et al. (2020), 
this points to the limitations in the initialisation of the 
atmosphere and surface ocean and in the coupled variability 
of the model. However, beyond this period, and particularly 
after the boreal spring, the forecasts were more skillful than 
persistence. In the case of PID (Fig. 7d), this improved skill 
is evident from months 5–14 in all starting months. Skill 
continued even longer in NINO4, although the correlations 
of ~0.3 were weak. Still, they occurred for all 12 start 
months, with separate multi-year ensembles of simulations. 
Averaging over all starts and lead times from month 7 to 
month 13, the improvement in r from the forecast over 
persistence was 0.30 for PID, 0.20 for NINO4, and 0.19 for 
NINO34. Some negative values in Fig. 7d–f beyond this time 
may, again, be a result of sampling, although model bias late 
in the runs may contribute. 

With the focus of this study being forecasts on longer 
timescales, the correlations between running seasonal means 
of the SST driver indices and Obs were also evaluated for 
each start month. Aside from the first values being at 
pentad 10 after the start, the contour plots resembled a 
somewhat smoothed version of the monthly results, as can 
be seen in the NINO4 and NINO34 plots in Supplementary 
Fig. S4 and that for PID in the next section. Also shown in 
Supplementary Fig. S4 are the results for IOD, for which the 
correlations were initially moderate for starts in June– 
October, consistent with (monthly) values in Fig. 6 and 
Supplementary Fig. S2. However, they fell to near-zero 
over the following seasons. For starts earlier in the year, 
there was a little improvement on the weak skill of persistence 
following the boreal spring. 

Indicative r values for the skill of these forecasts for the 
seasonal means of the SST drivers, alongside those for other 
quantities, are given in Table 2. The values were limited to 
those for the usual seasons at a lead time of 6 months to the 
start of the season. The correlations for the Pacific drivers 

were good in three seasons, with r = 0.73 for PID in DJF, 
after the June start. 

4.2 Atmospheric variables 

Turning to other variables, it is informative to see the maps 
of correlations at grid points between the ensemble average 
forecast values and ERA5 reanalyses. As for SST in Fig. 6, 
monthly means were used, with results for tas and rainfall 
from June starts shown in Fig. 8. The correlations for tem-
perature over the low-latitude central Pacific were similar to 
those for SST (Supplementary Fig. S2) and positive for all 
10 months shown. Values elsewhere differred, and the air 
temperature was not as closely tied to SST in the PID and 
IOD regions. The correlations for rainfall in the tropics 
tended to be of the sign of the SST values, as too the r 
for air temperature. Over land, the correlations for both 
variables were moderate, particularly over Australia in 
October–February. As seen in Fig. 4, temperature anomalies 
over Australia tended to have the opposite sign to those of 
rainfall. Variability in local monthly mean rainfall unrelated 
to the drivers was evidently limiting the correlation, and 
investigation with a larger ensemble is warranted. Further 
results here are for seasonal and spatial means. 

The plots of correlations between ensemble averages and 
Obs data for four quantities are shown in Fig. 9. Starting 
with PID (Fig. 9a), for which selected values were given in  
Table 2, r was always positive for lead times to 16 months or 
more. The values were moderate to good initially and in the 
band for target seasons centred on October–February. 
Consistent with the link between NA meridional flux and 
the SST drivers, including PID (Table 1), there were moder-
ate correlations for NAF, between the simulations and ERA5 
in some seasons. The patterns of the skill of PID and that of 
NAF across the start–lead times were similar. Selected 
values are given in Table 2. The strong link between 
PID and NAF for MAM after the September start allowed 
for similar, although barely moderate, skill for both at 

Table 2. Skill, using r of CAFE forecasts, using ensemble and 
seasonal (95 days) averages.        

CAFE forecasts, 
skill for av 

Obs DJF MAM JJA SON 

m6 m9 m12 m3  

NINO34 NCEP 0.64 0.57 0.21 0.60 

NINO4 NCEP 0.72 0.72 0.11 0.64 

PID ERA5 0.73 0.33 0.30 0.61 

IOD ERA5 −0.12 −0.25 0.15 0.34 

NAF ERA5 0.70 0.47 0.28 0.19 

AApr AGCD 0.50 0.40 0.68 0.29 

Note: results are given for the four driver indices and for NAF and AApr. The 
Obs data are indicated. The values are at (centred) a lead time of 7.5 months, 
with the starting month given (as  Table 1). Values below the significance level 
mentioned in the text are in italics.  
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that time. The highest r for NAF at lead 7–9 months after 
starts in May–July was partly consistent with a PID influ-
ence. It is worthwhile noting that the correlations for NAF in  
Fig. 9b were mostly improved on those obtained from using 
the ERA-Interim reanalyses for the Obs data. The increase in 
r, averaged over all starts and to lead 1 year, was 0.04. This 
is likely because NAF in ERA5 is more accurate than that in 
ERA-Interim. 

Before addressing rainfall, it is interesting to consider the 
forecast of the convergence of the moisture flux vector field, 
which provides moisture for precipitation through the atmo-
spheric moisture budget equation. As for NAF, forecasts of 
convergence have not been typically assessed. The result for 
the All-Australia average convergence, compared to ERA5, 
is shown in Fig. 9c. The pattern largely resembled that for 
NAF, although with generally smaller values. Of course, 
fluxes into and out of Australia from other directions are 
important. These may result from NAF moisture passing 
through Australia, possibly after recycling of moisture in the 
land surface (e.g. Holgate et al. 2020). Further, the accuracy 
of the CAFE convergence series may be affected by the use of 
daily data in calculating flux. 

The correlations between the simulated running seasonal 
AApr and the corresponding AGCD series are shown in  
Fig. 9d. The pattern was like that of convergence but, 
encouragingly, with mostly higher r. Values were at least 
moderate in three of the seasons given in Table 2. Aside from 

the unexpectedly good JJA value for the December start, 
which coincides with one for convergence (Fig. 9c), the 
pattern was consistent with that in PID and other Pacific 
drivers (Table 2). The link between the drivers and AApr in 
DJF was only weak for the start in June and for the full 
period of ERA5 (Table 1). The skill in DJF for AApr and NAF 
in this case is possibly due to drivers not well represented by 
these indices. Based on the link between IOD and AApr in 
SON, the poor skill for SON with 6 months lead was partly 
consistent with that in IOD. 

In summary, there appears to be moderate to good skill in 
the forecasts of the SST drivers, rainfall, and NAF for seasons 
centred on September–February after starts from June 
onwards. There appears to be some skill from all starts 
through to about the season centred on April (MAM), so 
for beyond a year after February–March starts. 

5 Potential skill in multi-year forecasts 

While these CAFE forecast simulations are from only a limited 
number of years, the positive correlations for the comparison 
with observations for the Pacific SST driver indices, including 
PID, suggest that there is potentially skill in the forecasts 
well into the second year. There is a similar pattern to the 
correlations for AApr, with moderate correlations for run-
ning seasons centred on September–April. These months 
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tend to have heavier rainfall over much of Australia and 
larger interannual variability than the other 4 months, 
which increases the potential for forecasts of AApr averaged 
over a whole year. 

Consider again the links between drivers and rainfall for 
annual means. The regression fields shown in Fig. 4 illus-
trate the teleconnection from a NINO4 anomaly. The CAFE 
model produced similar patterns, with lower rainfall over 
most of the continent for a positive NINO4. The correlation 
for annual AApr was noted in Section 3.1. The annual results 
for other drivers, in Table 1, were also similar, with only 
limited difference for Obs in the years of the forecasts. 

To quantify the links in the forecasts, a running mean of 
73 pentads (365 days) of the 2-year time series from each 
simulation was taken and correlations calculated. The links 
between the drivers and AApr are given in Table 1 for the 
year after the start, for starting months January and June, 
and both all runs and the ensemble averages. The results for 
the all-run, January start (the usual January–December 
average) were quite similar to those from the control run 
and Obs, except that the IOD link was stronger (as it is in 
MAM). The correlations were stronger again for all the Av 
cases. The same holds for the June starts, with values a little 
lower than for January. The links between PID and NAF 
were similarly strong. Southward flux was highly correlated 
with AApr, with rav over 0.9 for both starts. 

For brevity, the start-lead plots of comparisons with 
observations are limited to PID and AApr. The plot of r for 
ensemble average PID is shown in Fig. 10a. The largest r was 
0.77 for the first value (centred mid-year) from the May 
start. The first value for June, given in Table 3, was nearly as 
large. Values over 0.6 held for leads of up to 6 months 
(before the start of the 365-day period) from most starts, 
especially May–June. In these cases, the correlations for 
AApr, Fig. 10b, were also initially good (at least 0.6), with 
a peak of 0.7. The patterns resemble a smoothed version of 
the seasonal results (Fig. 9a, d). There was a little skill for a 
second year, especially for PID. The initial values for the 
June start were given for NINO34 and NINO4 (Table 3), 
with similar r to PID. The r for NAF was lower, consistent 
with the small values in two seasons. Of course, this flux is 
only one component of the moisture budget for rainfall. 

Averaging over the whole of the 2-year runs allowed only 
a single r value for each variable, given in Table 3. They 
were quite similar to the 1-year results, even reaching 0.84 for 
NINO4. Much of the skill, especially for AApr, was evidently 
due to the first year. While the skill for annual mean AApr was 
broadly consistent with the links with the annual mean 
drivers, it may also have resulted from the model simulating 
influences that vary with the season. The smaller r for annual 
NAF and smaller link of that in DJF with the drivers hint 
at this. Nevertheless, the results encourage the search for 
influences of larger scale drivers, in time and space, and 
possibly including PID, which may be partly predictable. 
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Fig. 9. As  Fig. 7 but for running seasonal means of (a) PID, (b) NAF, 
(c) All-Australia moisture convergence, and (d) AApr.   
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6 Conclusions 

This study extends the analysis by O’Kane et al. (2020) of 
the ensemble forecasts of the NINO4 index in 2002–2017 
from the CAFE modelling system to four Indo-Pacific SST 
drivers and to Australian rainfall. It is first demonstrated, 
using simple regression that, on the broad scale, the tele-
connection pattern for interannual variability of NINO4 in a 
100-year simulation of the CAFE coupled model was similar 
to that in ERA5 reanalyses. The correlations between NINO4, 

NINO34, IOD and the PID SST indices and AApr, for both 
seasonal and annual means, were mostly similar also. The 
flux of moisture towards northern Australia, using the aver-
age over a box of the meridional component as the index 
NAF, was linked to both the SSTs and AApr. Further, using 
the 11-member ensemble averages of the forecast simula-
tions increased the correlations for various links. For exam-
ple, for annual means with lead time of 6 months after 
forecasts starting on 1 January, PID correlated at 0.76 with 
NAF and at −0.75 with AApr across the 14 year cases, up 
from 0.68 to −0.60 for the 154 individual runs. 

Correlations of forecast ensemble averages with observa-
tions across the 2002–2015 cases were used as a measure of 
skill, calculated for each start month and each time after 
start. Due to the assimulation of ocean data, initially the 
SSTs at grid points from forecasts were well correlated with 
those from ERA5, especially across the tropical Indo-Pacific. 
Positive correlations held over the coming year for much of 
the low-latitude Pacific and for the drivers NINO34, NINO4, 
and PID. The decline for these was more rapid during boreal 
spring after starts in December–April than it was for the 
persistence of first-month values. However, the forecasts 
were subsequently more skillful than persistence, with r 
averaging 0.3 higher for PID over months 7–13. 

The skill of forecast rainfall at Australian grid points was 
limited, but seasonal AApr had moderate to good correla-
tions (r 0.4–0.8) compared to AGCD for seasons centred on 
September–February with starts from June onwards. This 
was largely consistent with skill in the NAF and in the SST 
anomalies that contributed to driving anomalies in both flux 
and AApr. Correlations were also good for 1-year running 
averages after starts in May and June. There appeared to be 
some skill in AApr and the drivers for averages over the 
whole of the 2-year simulations. This seems compatible with 
the fraction of the 2018–2019 AApr deficit that Watterson 
(2020) related to the anomaly in the PID driver index. 
Forecasts with these later years, as well as a longer hindcast 
set, should be examined. A further and larger suite of CAFE 
forecasts, developed in conjunction with the new CAFE60 
reanalyses described by O’Kane et al. (2021) and now con-
tributing to the WMOLC, will allow this. 

Supplementary material 

Supplementary material is available online. 
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Data availability. Datasets for this research are available as follows. For ERA5, Copernicus Climate Change Service (C3S, 2017), is downloadable, after 
registration, from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means. For AGCD, the All-Australia monthly rain-
fall series is from http://www.bom.gov.au/climate/change (selecting Rainfall-Total, Australia, all months). For the NCEP NINO34 series, see https://www.cpc. 
ncep.noaa.gov/data/indices (Monthly ERSSTv5). Calculations and plotting were largely performed using the NCL software (NCAR Command Language, 
NCAR, Boulder, Colorado) and CDO (Climate Data Operators), (see https://code.mpimet.mpg.de/projects/cdo). 
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