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ABSTRACT 

The Tasman Sea has been identified as a climate hotspot and has experienced several marine 
heatwaves (MHWs) in recent years. These events have impacted coastal regions of New Zealand 
(NZ), which has had a follow-on effect on local marine and aquaculture industries. Advance 
warning of extreme marine heat events would enable these industries to mitigate potential losses. 
Here we present an assessment of the forecast skill of the Australian Bureau of Meteorology’s 
seasonal prediction system, Australian Community Climate and Earth-System Simulator-Seasonal 
v1.0 (ACCESS-S1), for three key aquaculture regions around NZ: Hauraki Gulf, Western Cook 
Strait and Foveaux Strait. We investigate the skill of monthly sea surface temperature anomaly 
(SSTA) forecasts, and forecasts for SSTA exceeding the 90th percentile, which is an accepted 
MHW threshold. We find that the model has skill for predicting extreme heat events in all three 
regions at 0–2 month lead times. We then demonstrate that ACCESS-S1 was able to capture 
observed monthly SSTA exceeding the 90th percentile around coastal NZ during the 2019 
Tasman Sea MHW at a lead time of 1 month. Finally, we discuss the relationship between SSTA in 
the Tasman Sea and SSTA in coastal regions of NZ, and thus the Tasman Sea as a source of model 
SSTA skill in the three key coastal regions. Results from this study show that skilful forecasts of 
ocean heat extremes in regional areas have the potential to enable marine operators in the 
aquaclture industry to mitigate losses due to MHWs, especially in a warming climate.  

Keywords: ACCESS-S, aquaculture, climate change, marine heatwave, model skill, ocean 
warming, seasonal forecasting, Tasman Sea. 

1. Introduction 

The Western Pacific and Tasman Sea regions have been identified as climate hotspots 
(Law et al. 2018; Oliver et al. 2017). The rate of warming around New Zealand (NZ) and 
in the Tasman Sea is as much as 0.4°C per decade (Sutton and Bowen 2019), with 
subsurface waters warming at nearly four times the global average rate (Oliver et al. 
2017). With a warming climate, extreme marine heat events are predicted to increase in 
both frequency and severity (Oliver et al. 2014; Rickard et al. 2016). This will have 
increasingly serious implications for regional marine ecosystems and the industries that 
rely on them (Chiswell and Sutton 2020). 

Due to the latitudinal extent of Aotearoa (NZ) and its mostly narrow continental shelf 
regions (Stevens et al. 2019), marine temperatures in coastal waters are strongly influ
enced by a combination of major large scale oceanic fronts and their dynamics (table 1 of  
Chiswell et al. 2015), and processes such as wind stress and fluctuations in the Tasman 
Front in the Tasman Sea and the wider Western Pacific (e.g. Behrens et al. 2020). 
Although the western seaboards of both the North Island and South Island face the 
complex and weakly dynamic Tasman Sea, the rest of the coast is heavily influenced by 
strongly dynamic waters. The Tasman Front and East Auckland Current strongly influ
ence the east coast North Island waters (Fig. 1). To the south, the Subtropical Front 
controls the east coast South Island conditions. The central zone around Cook Strait acts 
as a confluence of all of these systems and is highly variable (Stevens et al. 2019). 
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Several well-documented marine heatwaves (MHWs) 
have occurred in recent summers in the Tasman Sea and 
NZ coastal waters (Salinger et al. 2019; Salinger et al. 2020). 
Coastal MHWs can compound other stressors, leading to 
detrimental impacts for local ecosystems and industries. 
One example of this in the NZ context is the combined 
effects of MHWs and poor water clarity on giant kelp in 
coastal regions (Tait et al. 2021). Hobday et al. (2016a) 
define a MHW as five consecutive days above the daily 
90th percentile, meaning events can occur year round. 
Based on this definition, three MHWs have occurred in the 
Tasman Sea in recent years in the summers of 2015/2016, 
2017/2018 and 2018/2019 (Oliver et al. 2017; Perkins- 
Kirkpatrick et al. 2019; Holbrook et al. 2020). In particular, 
the 2015/2016 MHW in the Western Tasman lasted 250 
days, with sea surface temperatures (SSTs) reaching nearly 
3°C above climatology (Oliver et al. 2017). These events 
were associated with low cloud cover and low wind condi
tions, so that the heat remained confined to the upper ocean, 
which then gave rise to a MHW signal in the SSTs (Salinger 
et al. 2019). 

Behrens et al. (2019) examined heat content in the upper 
2000 m of the Tasman and identified different behaviours 
for the upper 250, 250–750 and >750 m. In particular, they 
found that the upper 250 m exhibited a cool phase during 

the 1990s but then entered a warm phase from 1990 to 2002 
and from 2012 to the present. Elzahaby et al. 2021 found 
that MHWs in the Western Boundary Current (WBC) jet of 
the East Australia Current are predominantly driven by 
air–sea heatflux, whereas in the WBC extension, they are 
advection-driven. They also note that the deepest and lon
gest MHWs are advection-driven and are more prevalent in 
autumn and winter, whereas air–sea heatflux-driven MHWs 
are shallower and occur predominantly in summer. This 
highlights the variety of ‘flavours’ of MHWs that can occur 
in the Tasman Sea: both shallow, atmospherically driven 
events, and deeper events driven by ocean currents, the 
nature of which then impact MHW predictability. Both 
flavours of MHWs have impacted both marine and terres
trial ecosystems and related human activity, such as fishing 
and aquaculture. 

The 2015/2016 Tasman MHW event had significant 
ecological impacts on giant kelp (Macrocystis pyrifera; 
Tait et al. 2021) and a range of wild and cultured species, 
including oysters, paua (abalone), salmon and kingfish 
(Oliver et al. 2017) within the Tasman Sea and along the 
Australian and NZ coasts. The 2017/2018 event on the 
southeastern seaboard saw substantial mortality of kelp 
(e.g. Duvillaea spp., Thomsen et al. 2019; Macrocystis pyr
ifera, Salinger et al. 2019) and salmon (Salinger et al. 2019).  
Chiswell and O’Callaghan (2021) also examined the impacts 
of MHWs on upwelling and primary production along the 
South Island west coast, which can in turn affect producti
vity. These types of extreme ocean heat events have signifi
cant implications for aquaculture and fisheries, which are 
major industries in NZ, contributing ~NZ$1.1 billion to the 
economy (Stats 2017). King salmon (Oncorhynchus tscha
wytscha, also known as Chinook salmon) are the largest type 
of Pacific salmon and the only salmon species farmed in NZ. 
Optimal water temperatures for Pacific salmon range from 
10 to 17°C, with elevated temperatures being related to 
enhanced mortality due to disease (Brosnahan et al. 2019). 
Shellfish are also vulnerable to thermal stress, including 
green-lipped mussels (Perna canaliculus) and oysters 
(Ostrea chilensis) (Sorte et al. 2019) species, which are 
farmed in NZ. As with elsewhere around the globe, these 
industries have been impacted by MHWs in recent years, 
leading to increased disease, fish kills, losses in productivity 
and, ultimately, reduced profit. The impacts are not solely 
caused by direct exposure to elevated temperatures; 
increased temperatures can drive enhanced stratification, 
which, in turn, leads to reduced oxygen or nutrient availa
bility (e.g. Chiswell and Sutton 2020). 

Given sufficient warning, these industries can mitigate 
some of the effects of marine heat events. Forecasts on 
multi-week to seasonal timescales have been shown to ben
efit the proactive management of marine industries (Hobday 
et al. 2016b; Tommasi et al. 2017). These have included 
commercial fisheries (e.g. southern bluefin tuna; Hobday 
et al. 2011; Eveson et al. 2015), recreational fisheries 
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Fig. 1. (a) Map of the NZ region showing the main oceanographic 
features (Subantarctic Water (SAW), Subtropical Water (STW), 
Tasman Front (TF), East Auckland Current (EAuC), Southland 
Current (SC), Fiordland Current (FC), Westland Current (WC)) 
and the selected three regions of (b) Hauraki Gulf (Cape Reinga 
(CR)), (c) Western Cook Strait (where the strait itself is identified 
as CS and the d’Urville Current (dC)) and (d) Foveaux Strait (FS) 
(between the South Island and Stewart Island Rakiura (SIR)). Shading 
in subplots (b)–(d) indicate the mean correlations across each month 
in the year between the regionally averaged sea surface temperature 
anomaly (SSTA) index for each region and SSTA values within the 
region.   
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(Brodie et al. 2017), aquaculture (salmon, prawns; Spillman 
and Hobday 2014; Spillman et al. 2015) and coral reef 
management (Spillman 2011; Smith and Spillman 2019). 
These forecasts are important for providing advance warn
ing of suboptimal and extreme ocean temperature condi
tions, and thus, they allow time for industries to implement 
proactive response plans to minimise and mitigate the 
impacts of such events. 

The Australian Bureau of Meteorology produces opera
tional global seasonal forecasts out to 6 months from the 
coupled ocean–atmosphere ensemble prediction system, the 
Australian Community Climate and Earth-System Simulator- 
Seasonal v1.0 (ACCESS-S1; Hudson et al. 2017). Seasonal 
forecast skill for SST and heat content to 300 m around NZ 
has been assessed and was found to be higher for inshore 
regions (depth < 300 m) than offshore for 2 weeks to 6 
months into the future (de Burgh-Day et al. 2019). Model 
SST skill is higher to the west of NZ where currents are 
relatively slow moving and well separated, and to the north 
where skill is derived from well-simulated teleconnections 
with the Eastern Pacific and the El Niño Southern 
Oscillation (ENSO) (de Burgh-Day et al. 2019). Conversely, 
to the east of NZ, SST skill is lower due to complex dynam
ics, including the convergence of a number of currents and 
the meeting of the Subtropical and Subantarctic fronts (see  
Fig. 1 for major currents in the region). Skill is also reduced 
in the south where ACCESS-S1 is overly reactive to La Niña 
conditions and is impacted by a warm bias in the Southern 
Ocean (de Burgh-Day et al. 2019). 

In this study, we assessed model forecast skill in three key 
coastal regions which either contain, or directly influence, 
regions of significant aquaculture activity (NZGAS 2019): 
Hauraki Gulf, Western Cook Strait and Foveaux Strait 
(Fig. 1). The regions defined for this study were intended 
to give an indication of the skill of ACCESS-S1 for aquacul
ture industries around NZ. The regions span a diversity of 
ocean structures and dynamics, but it was not possible to 
investigate the impact on skill on a smaller scale due to the 
resolution limitations of the ~25 km grid of the ocean 
component of the model. The extent of each region was 
therefore intended to be as targeted as possible without 
being affected by the limitations of model resolution. The 
Hauraki Gulf sits on the northern edge of the North Island 
and supports mussel and oyster farming industries as well as 
proposed king fish farming. Here the Western Cook Strait 
region was assumed to directly influence conditions in the 
Marlborough Sounds, a network of ancient sunken river 
valleys, where extensive salmon and mussel farming occurs 
due to nutrient rich and quiescent waters (Zeldis et al. 2013;  
Chiswell et al. 2017). Foveaux Strait hosts a dredge oyster 
fishery industry and is the primary upstream supply of clean 
water for nearby embayments that support aquaculture 
industries (e.g. salmon aquaculture in Big Glory Bay, 
Stewart Island Rakiura). It is also a potential site for further 
development of aquaculture industries in the future 

(Camara and Symonds 2014) as warming trends continue 
to shift habitat suitability for various species. First, we 
determined the ensemble mean forecast skill in these three 
key regions as well as the skill for extreme heat events 
(greater than the 90th percentile). Secondly, we considered 
the utility of real-time ACCESS-S1 forecasts in providing 
advance warning of extreme marine heat events around 
NZ in the context of the Tasman Sea marine heatwave 
event in the 2018/2019 summer. 

2. Methods 

2.1. Observational data 

Daily observed satellite SST values for 1990–2012 and 
2017–2018 from the Reynolds Optimum Interpolation Sea 
Surface Temperature V2 (OISST-V2; for 1990–2012) and 
V2.1 (OISST-V2.1; for 2017–2018) daily Advanced Very 
High-Resolution Radiometer (AVHRR) 0.25° analysis were 
used for forecast skill assessment (Reynolds and Smith 1994;  
Reynolds et al. 2002). Observed daily SST values were first 
averaged to create monthly means and then interpolated 
onto the ACCESS-S1 ocean model grid. SST anomalies 
(SSTAs) were calculated by removing the appropriate 
monthly climatology, which is the long term monthly 
mean over the period 1990–2012. Persistence forecasts 
were also generated by persisting observed SSTA from the 
month prior to the model forecast start date out to 6 months 
into the future (see Spillman and Alves 2009). 

SSTA indices were calculated by regionally averaging 
observed SSTA values within each of the three regions of 
interest: Hauraki Gulf, Western Cook Strait and Foveaux 
Strait (Fig. 1). The vertices of these regions, as defined for 
this study, are given in Table 1. Observed Pearson correla
tion coefficient values were computed between each SSTA 
index and the individual grid cells within the region using 
all months in the period 1990–2012. The SSTA indices had 
high Pearson correlation coefficient values for all grid cells 
in the corresponding region (r > 0.7 for all grid cells in all 
regions; Fig. 1b–d) and so were deemed representative of 
local SSTA conditions. A fourth SSTA index was also created 
for an area of the Tasman Sea (see Fig. 1, Table 1), chosen as 
that most severely impacted during the 2018/2019 MHW, to 
assess the relationship between the wider region and the 
three aquaculture subregions. 

2.2. Model description 

ACCESS-S1 was the Australian Bureau of Meteorology’s 
operational seasonal ensemble prediction system until 
October 2021 (Hudson et al. 2017), when it was upgraded 
to ACCESS-S2. ACCESS-S1 was developed in collaboration 
with the UK Met Office (UKMO). It utilises the UKMO Global 
Coupled model 2.0, which consists of the UKMO Global 
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Atmosphere 6.0 model (Williams et al. 2015); the European 
ocean model, Nucleus for European Modelling of the Ocean 
(Madec 2008) and the Los Alamos sea-ice model (Hunke and 
Lipscomb 2004); together with the Joint UK Land 
Environment Simulator land surface model (Walters et al. 
2017). The ocean model has a grid resolution of approximately 
25 × 25 km in the horizontal and 75 vertical layers to a total 
depth of 6000 m, starting at 1-m thickness at the surface. 

The ACCESS-S1 system included a set of retrospective 
forecasts (hindcasts) over a 23-year period (1990–2012), 
comprising of an 11-member ensemble on the 1st, 9th, 
17th and 26th of every month. In this study, the hindcasts 
generated on the 1st of each month were used. This hindcast 
set was used to bias correct forecasts and remove any model 
drift with lead time as well as to assess model skill in 
predicting past events. The model was run 11 times for 
each start date in the hindcast period to give an ensemble 
of 11 forecasts, using a set of perturbed initial conditions 
(Hudson et al. 2017). Ensemble forecasts seek to account for 
uncertainty in initial conditions and model error by produc
ing a distribution of possible forecast outcomes that encap
sulate these sources of error (Hudson et al. 2017). A small 
ensemble spread suggests a confident forecast, whereas a 
large spread indicates a greater uncertainty in the forecast, 
and it should be interpreted with more caution. The ensem
ble mean was computed by averaging the 11 ensemble 
members for each start date and lead time. Monthly SST 
values and climatologies were then created by averaging 
over the 1990–2012 hindcast period for each start month. 
For each start date the appropriate monthly climatology was 
subtracted from the corresponding hindcast data to produce 
SSTAs. Area-averaged SSTA indices were calculated for 
Hauraki Gulf, Western Cook Strait and Foveaux Strait 
regions (see Fig. 1). 

The real-time ACCESS-S1 prediction system was made 
operational in late 2018 (Smith and Spillman 2020) and 
ran in real-time until late 2021. For seasonal timescale 
forecasts, ACCESS-S1 generated 11 ensemble members out 
to 6 months every day, which were then combined with 
forecasts from the previous 8 days to produce a larger, time- 
lagged 99-member ensemble (see Hudson et al. 2017). An 
ensemble mean was produced by averaging the 99 ensemble 
members, and data were averaged along lead times to give 
monthly means. The time-lagged 99-member ensembles 
starting on 1 January, 1 February and 1 March 2019 were 
used in this study. 

2.3. Skill assessment 

SSTA indices for the Hauraki Gulf, Western Cook Strait and 
Foveaux Strait regions were created by area averaging the 
values in all grid cells within each region. Pearson correla
tion coefficients were then computed between the model 
hindcast ensemble mean monthly SSTA index and the 
observed monthly SSTA index for each region for T
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1990–2012. Correlations were calculated between persist
ence SSTA forecasts and observed regional SSTA in the same 
manner, providing a minimum skill benchmark (Spillman 
and Alves 2009). For these correlations, values below −0.42 
and above 0.42 are statistically significant (two-tailed t-test, 
n = 23). Additionally, the standard deviation of the area- 
averaged SSTA in each region was calculated for all model 
ensemble members. The standard deviation across the 
ensemble was then obtained by averaging the variances 
and taking the square root of the result. Corresponding 
observed SSTA standard deviations were also calculated. 

In order to achieve a large enough sample size, it was 
necessary to include all months and ocean grid cells in each 
region for the probabilistic skill assessment. This is because 
when categorising extreme events in a distribution, if the 
sample taken from the distribution is small, it is possible 
that few or no instances of some extreme event categories 
will occur in the sample. In all three regions, the correla
tions between the grid cells and the regional SSTA index is 
high (>0.84) (Fig. 1b–d). The model SSTA 90th percentile 
(top decile) threshold was calculated for each year/start 
date/lead time combination in the hindcast using a cross- 
validation method: for a given start date and lead time 
(0–5 months), SSTA values from all hindcast ensemble 
members and years were pooled, omitting the year/start 
date combination for which the 90th percentile was being 
computed. The 90th percentile was then computed for this 
data by ranking all samples and determining the SSTA 
value for which 90% of the samples were below this 
value and 10% were above it. This was repeated for 
every year/start date/lead time combination, always leav
ing out the start date and year the percentile was being 
computed for comparison with. The 90th percentile thresh
old for observed SSTA values was calculated for each 
month and year in the hindcast period using the same 
cross-validation method. 

A multi-category contingency table was then calculated 
to assess the skill in predicting above the 90th percentile in 
Hauraki Gulf, Western Cook Strait and Foveaux Strait using 
the following method: If X percent or more forecast ensem
ble members correctly predicted SSTA values above (below) 
the 90th percentile, then this was counted as a hit (correct 
negative). If X percent or more forecast ensemble members 
incorrectly predicted SSTA values above (below) the 90th 
percentile, then this was counted as a false alarm (miss). 
Here X is a probability threshold, and this process was 
repeated for values of X ranging between 0 and 100%. 
The multi-category contingency table was then used to cal
culate Receiver Operating Characteristic (ROC) curves and 
ROC areas (A). Reliability Diagrams and Brier Skill Scores 
(BSS) were also computed. 

The ROC curve determines the ability of the forecast to 
discriminate between events and non-events and gives an 
indication of how often an event occurs, given it has been 
forecast, for a specific forecast probability (Mason and 

Graham 1999). In other words, these curves answer the 
question, ‘for a given forecast probability threshold at 
which I say an event will occur, how often will I be correct 
and how often will it be a false alarm?’. ROC curves are 
calculated by comparing the hit rate (i.e. the fraction of 
observed events that were correctly forecast) against the 
false alarm rate (i.e. the fraction of observed non-events 
that were incorrectly forecast as events) for a range of 
probabilistic thresholds (Mason and Graham 1999). The 
area under the ROC curve (A) is used as a summary statistic, 
with a larger area indicating more skilful probabilistic 
forecasts (see Table 2). A perfect forecast (100% hit rate, 
0% false alarm rate, A = 1) sits in the upper left corner of 
the axes. A forecast that sits along the 1:1 line is as good as a 
random guess of whether the event will occur or not 
(A = 0.5), and any line to the left of the 1:1 line indicates 
skill relative to a guess. 

Reliability diagrams for events where SSTA >90th per
centile were generated by binning forecast probabilities and 
plotting against the observed rate of occurrence of the event 
in each bin (Wilks 2006). This indicates how reliably a given 
forecast probability will reflect the true probability of the 
occurrence of an event (Wilks 2006). In other words, reli
ability diagrams answer the question ‘when an event is 
forecast to occur with probability X, what is the observed 
frequency with which that event actually occurs?’. The 
model has skill over climatology, for a given forecast prob
ability and lead time, when the corresponding point sits 
within the grey shaded area of the reliability diagrams 
shown. The vertical boundary of the grey area represents a 
fixed climatological forecast, and the sloped boundary rep
resents the division between a positive or negative BSS 
relative to climatology. The BSS is a measure of the model’s 
skill to predict the probability of an event occurring com
pared to a reference forecast (Mason and Stephenson 2008). 
Here, both the climatological frequency of the event (e.g. 
climatologically, there is a 10% chance of exceeding the 
90th percentile) and a persistence forecast are used. The 
BSS values of one and zero indicate a perfect score and no 
skill relative to the reference respectively, and a negative 
value indicates a forecast worse than the reference 
(Wilks 2006). 

3. Results 

Correlations between observed and model ensemble mean 
monthly SSTA indices for Hauraki Gulf, Western Cook Strait 
and Foveaux Strait for each start date and lead time are 
shown in Fig. 2. Correlations are generally higher at shorter 
lead times for all model start dates and all locations. The 
model has higher skill than persistence forecasts for the 
majority of start and target month combinations, with 
the notable exceptions of lead 0 forecasts starting in April– 
June and October for Hauraki Gulf and May, July and 

C. O. de Burgh-Day et al.                                                                               Journal of Southern Hemisphere Earth Systems Science 

62 



October for Western Cook Strait. Model skill is often 
higher for Hauraki Gulf at longer leads than the other 
two locations, but it is also lower than persistence skill 
on more occasions (31% of skill values, Fig. 2a). The lowest 
correlations are for forecasts of summer months January, 
February and March at all three locations, with correla
tions generally not statistically significant beyond a 
1-month lead. Conversely, the highest skill for all three 
locations is for forecasts of winter months (June–August), 
with the exception of July forecast from 1 July for Western 
Cook Strait (Fig. 2b) and June and July forecasts from 
1 May for Foveaux Strait (Fig. 2c). When forecasting winter 
months from summer (e.g. December and January start 
dates), correlations drop below the significance threshold 
initially for some months before increasing again for winter 
months at longer lead times. 

The model is able discriminate between heat events 
(greater than the 90th percentile) and non-events and has 
skill over random chance for all regions and lead times 
(Fig. 3). Skill reduces with increasing lead time for all 
three locations. The areas under the ROC curves (A) range 
from 0.77 to 0.88, 0.75 to 0.89 and 0.7 to 0.83 for lead times 
of 2, 1 and 0 months for Hauraki Gulf, Western Cook Strait 
and Foveaux Strait, respectively (Table 2). 

The model has skill over climatology for high and 
low probability forecasts for SSTA >90th percentile at 
all lead times shown for the Hauraki Gulf and Western 
Cook Strait regions (Fig. 4a, b). This is indicated for a 
given forecast probability and lead time when the corre
sponding point sits within the grey shaded area of the 
reliability diagram. The exception is the uppermost fore
cast probability for lead 2 forecasts for both locations, most 

likely due to an insufficient sample size (see inset bar 
plots). For Foveaux Strait, the model is skilful only at 
shorter lead times for high and low probability forecasts 
(Fig. 4c). The forecast is overconfident for all regions and 
lead times, as indicated by the curves for each lead time 
being above the 1:1 line for low probabilities and below 
the line for high probabilities (Fig. 4a–c). An over- 
forecasting bias is also present for all lead times and 
regions, as indicated by the downward shift of the curves 
relative to the 1:1 line. BSS values referenced to persist
ence for lead times of 2 months to 0 months range from 
0.17 to 0.37 for Hauraki Gulf, from −0.08 to 0.22 for 
Western Cook Strait and from 0.22 to 0.4 for Foveaux 
(Table 2). BSS values referenced against climatology are 
generally lower (though positive) for all locations, due to 
strong variability, at all lead times. 

Model SSTA indices over time for the three regions, for 
the period 1990–2012 and for lead times 0–2 months are 
shown with observations in Fig. 5. Observed standard devi
ations are similar across the three regions (0.56–0.62,  
Table 2). In the model, mean ensemble standard deviations 
for the three indexes are all higher than those of the 
observed values, with the highest values occurring at a 
2-month lead (0.71–0.86, Table 2). Correlations between 
observed and model indexes are high for a lead of 0 months 
for all three locations (0.80–0.83, Table 2), and they 
decrease with lead while maintaining correlations exceed
ing 0.5 at a lead of 2 months. The majority of observed data 
points are captured by the ensemble spread (grey shading) 
at all locations and leads (Fig. 5). 

Fig. 6 shows the forecast probabilities from the real-time 
system for SSTA >90th percentile for the period from 

Table 2. Summary scores for SSTA forecasts for Hauraki Gulf, Western Cook Strait and Foveaux Strait regions for all months in 1990–2012.            

Score Region 

Hauraki Gulf Western Cook Strait Foveaux Strait   

Number of grid cells 98 56 68 

Mean observed SSTA 90th percentileA (°C) 0.74 0.81 0.80 

SSTA Index observed standard deviationB (°C) 0.61 0.62 0.56 

Lead time L0 L1 L2 L0 L1 L2 L0 L1 L2 

SSTA Index ensemble mean standard deviationC (°C)  0.65  0.69  0.71  0.74  0.82  0.86  0.64  0.74  0.80 

SSTA Index ensemble mean Pearson correlationD  0.83  0.63  0.55  0.80  0.61  0.57  0.80  0.57  0.51 

Area under ROC (A)  0.88  0.78  0.77  0.89  0.78  0.75  0.83  0.78  0.70 

BSS ref. persistence  0.37  0.24  0.17  0.22  0.03  −0.08  0.40  0.30  0.22 

BSS ref. climatology  0.33  0.19  0.12  0.32  0.15  0.06  0.24  0.12  0.02 

Note that L0, L1 and L2 indicate lead time 0, 1 and 2 months, respectively. ROC and Brier Skill Score (BSS) values are for SSTA >90th percentile and calculated 
using all grid cells in each region. 
AThe mean of the 90th percentile value for each grid cell in the region. 
BThe observed standard deviation of all months in the 1990–2012 period for the regional SSTA indices. 
CThe mean of the standard deviation of each model ensemble member for all months in the 1990–2012 period for the regional SSTA indices. 
DThe Pearson correlation between the model ensemble mean and observations for all months in the 1990–2012 period for the regional SSTA indices.  
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Fig. 2. Correlations for regional SSTA indices for (a) Hauraki Gulf (b) Western Cook Strait and (c) Foveaux Strait 
between model hindcasts and observations for 1990–2012. The x-axes show the start date for the hindcasts runs (i.e. 
hindcast runs beginning on the 1st of each month were assessed), and the y-axes show the lead times of the hindcast 
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indicates which month is being forecast and the colour is the correlation value.    
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January to March 2019 in the Tasman Sea and around NZ. 
At lead time of 0 months (first plot in Fig. 6a, second in  
Fig. 6b, third in Fig. 6c), the model captured the spatial 
extent of the extreme SSTs reasonably well and with high 
probabilities. The exception to this was around the South 
Island for February at a lead time of 0 months, where 
the model incorrectly forecast to have a high chance of 

SSTA >90th percentile. Forecasts issued on 1 January 
underestimated the extent of the event in February 
(1-month lead) and March (2-month lead), with a marked 
reduction in areas with high forecast probabilities of SSTA 
>90th percentile compared to that forecast for January at a 
lead time of 0 months. Similarly, the area of SSTA >90th 
percentile forecast from 1 February for March (1-month 
lead) is reduced compared to that forecast for February 
(0-month lead) and is less than was observed in March. 

The timescales of the teleconnections between the 
Tasman Sea and coastal regions of NZ provide insight into 
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drivers of heat transport between these locations and, thus, 
the link between Tasman Sea MHWs and extreme marine 
heat events around NZ. This has implications for the ability 
to successfully forecast the impacts of these events, since 
atmospherically driven phenomena tend to have limited 
predictability at longer lead times compared to ocean- 
driven phenomena (Cowan et al. 2019). To understand 
these timescales, Pearson correlation coefficients were com
puted between a lagged observed Tasman Sea regionally 
averaged SSTA index (Tasman index) and the observed 
SSTA in each grid cell around NZ for January, February 
and March 1990–2012. The instantaneous correlation 
(Fig. 7, first column) between the Tasman index and the 
grid cells contributing to that index is high (mostly >0.6 for 
all months shown), indicating that this index is representa
tive of conditions in this part of the Tasman. Overall, corre
lations between the Tasman index and the whole domain 
decrease with increasing lag. However, February Tasman 
index correlations remain over 0.6 for the majority of the 
Tasman index region and a section following the path of the 
Tasman Front around the northern tip of NZ in March. This 
is not unexpected, as the Tasman Sea supplies the water 
flowing around the North Cape of NZ and into the East 
Auckland Current (Chiswell et al. 2015). The low correla
tions to the southeast of NZ can be attributed to the incur
sion of Subantarctic Water into this region (Chiswell et al. 
2015; de Burgh-Day et al. 2019). The most notable overall 
decreases in correlation for the three subregions are from 
the Tasman index in December and SSTA in January 
(Fig. 7b) to the index in December and the SSTA in 
February (Fig. 7f). A similar decrease in correlation is appar
ent from the Tasman index in January with SSTA in January 

(Fig. 7a) to the index in January and the SSTA in February 
(Fig. 7e). This suggests there is a change in SST conditions 
around NZ between December and February, which is not 
driven by the Tasman Sea. 

4. Discussion 

4.1. Regional skill in predicting ocean heat events 

Of the three key aquaculture regions assessed here, forecasts 
were most skilful for Hauraki Gulf in the north, and the least 
skilful for Foveaux Strait in the south. Model ensemble mean 
forecasts are more skilful than persistence forecasts for most 
start dates and lead times. ACCESS-S1 also shows promising 
performance for probabilistic predictions. Historically 
February is the warmest month in terms of SSTs around 
NZ (see, for example, fig. 3B of Chiswell and O’Callaghan 
2021), and this is therefore when a MWH is most likely to 
raise SSTs above critical thresholds for aquaculture indus
tries. Skill in summer is lower than winter for all three 
regions, which is consistent with the findings of de Burgh- 
Day et al. (2019). They attributed this to increased SST 
variability in summer compared to winter, which in turn 
may be related to the shallower mixed layer depth associ
ated with warmer summer SSTs facilitating greater respon
siveness to atmospheric variability. Despite this, model skill 
still exceeds that of persistence (Fig. 2) for the majority of 
summer month forecasts. 

The Hauraki Gulf has statistically significant correlations 
for 75% of the start date-target date combinations shown in  
Fig. 2a. Considering only the summer months (December– 
March), 79% of the start date-target date combinations have 
skill over a persistence forecast (Fig. 2a). The ability of the 
model to discriminate between events and non-events is 
better than climatology for SSTA >90th percentile at all 
lead times considered. The area under the ROC for Hauraki 
Gulf is comparable to that of Western Cook Strait, suggesting 
that the ability of the model to discriminate between events 
and non-events is similar in the two regions. Despite this, the 
Hauraki Gulf region has the best reliability of the three 
regions considered with only the forecast probability of 
100% at a lead time of 2 months falling outside the skilful 
region. The Hauraki Gulf region is fed primarily by sub
tropical waters from the Tasman Front, which forms the 
East Auckland Current as it passes around Cape Reinga of 
the North Island (Chiswell et al. 2015). This makes the higher 
relative correlation in Hauraki Gulf unsurprising, since 
ACCESS-S1 has higher skill with these subtropical waters to 
the west of NZ than any other nearby body of water (de 
Burgh-Day et al. 2019). 

Of the three regions considered, Western Cook Strait 
has the highest overall ensemble mean correlation, 
with 82% of the start date/lead time combinations being 
statistically significant (Fig. 2b). Of the summer months 
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(December–March), 88% start date/target date combina
tions have skill over persistence. All points fall within the 
skilful region of the reliability diagram for Cook Strait, 
except for forecast probabilities of 40 and 100% at a lead 
time of 2 months (Fig. 4b). Cook Strait is usually fed by the 
Tasman Sea via the d’Urville and Westland Currents (Fig. 1). 
ACCESS-S1 is relatively skilful in predicting SST in the 
Tasman Sea (de Burgh-Day et al. 2019), which in turn likely 
drives some model skill in the western end of the Western 
Cook Strait via the d’Urville Current. The lowest ensemble 
mean correlation is for February forecasts issued on 1 
November. Stevens (2014) found that the January–March 
period is when there is the most north–south variability in 
flow through Cook Strait, which makes prediction more 
challenging. ACCESS-S1 has lower skill for the southeastern 
end of Cook Strait (de Burgh-Day et al. 2019), so change in 
the strength of flow through Cook Strait could reduce the 
skill for the western end. Chiswell et al. (2017) have shown 
that changes in SST in the Western Cook Strait are related to 

upwelling around Farewell Spit, upstream of the strait, 
which in turn provides nutrients to mussel farms in 
Pelorus Sound (Zeldis et al. 2013). Skilful weekly and sea
sonal forecasts of SST, as well as extreme heat events, in the 
western half of the Cook Strait could therefore be a benefi
cial source of guidance for mussel farms and other aqua
culture industries in Pelorus Sound and nearby regions. 

Foveaux Strait has the lowest overall skill of the three 
regions. Of the start date/target date combinations, 77% 
were above the statistical significance threshold (Fig. 2c), 
and the area under the ROC curve was the lowest of the 
three regions (Table 2). However, all summer 
(December–March) start date/target date combinations 
have skill over persistence forecasts for this region. The 
model is able to discriminate between events and non- 
events better than climatology for all lead times considered 
(Fig. 3), and all forecast probabilities at a lead time of 
0 months fall within the skilful region of the reliability 
diagram (Fig. 4). Foveaux Strait had the highest 0-month 
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lead time BSS referenced to persistence and the lowest 
referenced to climatology, which is reflective of the season
ally variable nature of SSTA in this region. Foveaux Strait is 
fed from the west by the Subtropical Water of the Fiordland 
Current (Chandler et al. 2021), which introduces some influ
ence on skill from Tasman Sea processes (Forcén-Vázquez 
et al. 2021). ACCESS-S1 has relatively low SST skill to the 
south of NZ due to a number of influences, including the 
increased complexity of the currents and the impact of 
the Southern Ocean warm bias (de Burgh-Day et al. 2019). 
While water from the Southern Ocean largely follows the 
boundary of the Snares Shelf where Stewart Island Rakiura 
and Foveaux Strait are situated, there are variations in 
supply from the west (Chandler et al. 2021), which poten
tially explains the poor skill of a persistence forecast. 

Regional indices for each of the three regions showed 
good skill, with forecast SSTA indices matching observed 
SSTA indices well at 0-month lead times (Fig. 5, Table 2), 
despite some clear forecast ‘misses’ that emerge at longer 
lead times (e.g. the forecast failing to capture the two cold 
anomalies in 2004/2005; Fig. 5). Model skill values for these 
regional SSTA indices (Table 2), combined with the high 
correlation between the grid cells in each region and their 
SSTA index (Fig. 1b–d), indicate that the regional SSTA 
indices are both representative of the region and have utility 
for predicting extreme marine heat events. 

4.2. Limitations of this analysis 

The data used in this analysis are monthly means, and 
therefore, any shorter duration extreme heat events will be 
smoothed out. We apply the general premise of SST values 
exceeding the 90th percentile to define an extreme heat 
event, but we do not strictly adhere to the current definition 
of a MHW as described by Hobday et al. (2016a). This work 
represents a preliminary analysis of extreme heat event 
prediction skill in ACCESS-S1 and provides an indication 
of potential prediction skill for MHWs on the sub-monthly 
timescale, using the definition of Hobday et al. (2016a). 
A more detailed assessment of MHW prediction using daily 
forecasts is planned for the future. 

As noted in the Introduction, the regions defined for this 
analysis are intended to strike a compromise between the 
limitations of the resolution of the ocean component of 
ACCESS-S1 (~25 km) and being small enough in extent to 
provide useful indicators of the SSTA forecast skill of 
ACCESS-S1 for local aquaculture industries. The skill of 
ACCESS-S1 forecasts may be sensitive to the extent of the 
regions chosen, however; so an analysis of the sensitivity of 
forecast skill to region size and location would be recom
mended for future work. 

4.3. 2018/2019 Tasman Sea MHW 

While wintertime marine heat events can still affect marine 
industries, e.g. winter spawning and stocking periods, 

summertime MHWs are more likely to have more detrimen
tal impacts. Our assessment of probabilistic skill for monthly 
SSTA >90th percentile skill here used all seasons, due a 
limited hindcast set, and this overall skill is likely to be 
higher than that for summer months only, due to the contri
bution of more skilfully predicted winter months (Fig. 2). To 
better understand the ability of the model to make useful 
predictions of summertime extreme heat events in an oper
ational setting, we assessed real-time model forecasts of the 
2018/2019 Tasman Sea MHW. The spatial extent of the 
areas observed to have SSTA >90th percentile was well 
reproduced at a lead time of 0 months throughout the 
2018/2019 event (Fig. 6). However, at longer lead times, 
there was a marked decline in spatial extent where SSTA 
>90th percentile. This is particularly true for forecasts from 
1 January for February and March. This raises the question 
of what was driving the 2018/2019 MHW and heat trans
port from the Tasman Sea to coastal regions around NZ, and 
whether this can go some way to explaining the decline in 
model accuracy beyond a 0-month lead time . 

Instantaneous correlations between SSTAs in the eastern 
Tasman Sea and the three key aquaculture regions around 
NZ are high, but generally drop off rapidly at lags of 1 and 
2 months (Fig. 7, middle and right-hand columns). The 
exception to this at longer leads is Hauraki Gulf, which 
may be due to the influence of the East Auckland Current, 
which facilitates the transport of water from the Tasman 
sea into the Hauraki Gulf region. Holbrook et al. (2020) 
discuss the physical mechanisms that can drive MHWs, and 
note that coupled air–sea interactions and atmospheric 
preconditioning have been the cause of many extratropical 
MHWs, including the 2017/2018 Tasman Sea MHW. This is 
consistent with the findings of Elzahaby et al. (2021) that 
air–sea heatflux-driven MHWs are shallower, and occur 
predominantly in summer. Bowen et al. (2017) investigated 
the causes of interannual variability of SST in the 
Southwest Pacific, and found no evidence for a single 
mechanism dominating the heat balance. Furthermore, 
they found that the horizontal advection of heat by bound
ary currents was unlikely to explain the interannual varia
bility of temperature around NZ. They did however note 
that air–sea heatflux plays a role in the interannual SST 
variability in the region. The large drop off in observed 
SSTA correlations between the Tasman Sea index and the 
three key regions after the first month suggest that at least 
some part of the teleconnection between these regions is 
also atmospherically driven (and thus operating on shorter 
timescales). This is consistent with the rapid decrease in 
the spatial extent of areas with a high predicted probability 
of SSTA >90th percentile at lead times of 1 and 2 months 
(Fig. 6), as atmospherically driven phenomena tend to have 
little predictability beyond 1 month (Cowan et al. 2019). 
In cases where MHWs are ocean-driven, the eastward drift 
of Tasman waters is likely to have a stronger influence 
on SSTAs around NZ and is likely to have greater 
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predictability on timescales greater than 1 month (Behrens 
et al. 2020). 

De Burgh-Day et al. (2019) showed that ACCESS-S1 is 
relatively skilful in predicting SSTAs in the Tasman to the 
west of NZ, most likely due to the relatively dynamically 
simple and slow-moving nature of this body of water. This, 
coupled with skilful forecasts of the Tasman Sea monthly 
mean index (0.86, 0.67, 0.59 at lead times of 0, 1 and 2 
months, respectively), indicates that ocean-driven extreme 
SSTAs around NZ can be expected to have better predict
ability than atmospherically driven extreme SSTAs. 

Despite the short lead time with which ACCESS-S1 was 
able to predict the full extent and severity of the 2018/2019 
Tasman Sea MHW and its impacts on NZ waters, it did 
provide indications of increased SSTAs at longer lead 
times, with higher than climatological odds (i.e. >10% 
chance) of SSTA >90th percentile in most inshore regions 
at lead times of 1 and 2 months (Fig. 6). Additionally, the 
reasonable probabilistic skill of ACCESS-S1 for Hauraki 
Gulf, Western Cook Strait and Foveaux Strait (see Table 2) 
gives confidence that future instances of extreme monthly 
mean SSTAs (>90th percentile) are predictable in those 
locations at greater than 1-month lead time. 

4.4. Implications for marine industries 

The aquaculture industry in NZ has plans to expand, cogni
sant that, as it does so, it will be in a changing climate 
(NZGAS 2019). Based on the current definition by Hobday 
et al. (2016a), MHWs can occur any time of year, and so 
impacts will be dependent on industry activities and vulner
abilities to increased ocean temperatures at a given time of 
year. February is the hottest month for the waters around NZ, 
and as summertime MHWs generally result in the most 
extreme absolute temperatures, it is very useful to have 
skilful forecasts for this time of year. Advanced warning of 
large marine heat events has significant practical application 
for aquaculture (e.g. Spillman and Hobday 2014; Hobday 
et al. 2016b). A high probability of SST in the coming months 
falling in the warmest 10% of hindcast years suggests 
increased likelihood of a MHW. Similarly, a high chance of 
extreme temperatures indicates an upcoming period in which 
aquaculture industries could experience stock losses. The 
improved information provided by probabilistic forecasts 
over a deterministic forecast highlights the strengths of an 
ensemble prediction system, which aims to sample the distri
bution of possible outcomes. The benefits to industry of such 
a system lie in being able to predict shifts in this distribution 
to higher or lower odds of a given outcome. Importantly, this 
requires industry managers to develop mitigation strategies 
that account for uncertainty (Tommasi et al. 2017). 

While ACCESS-S1 monthly SST forecasts have been 
shown to be skilful around NZ and in the Tasman Sea, 
there is room for future improvement. ACCESS-S1 has a 
Southern Ocean warm bias, which reduces the mixed layer 

depth and increases the model SST variability around NZ 
(de Burgh-Day et al. 2019), which then degrades forecast 
skill. Another limitation of the ACCESS-S1 system is the 
relatively short hindcast period of 23 years. This allows 
fewer samples of more slowly varying modes of climate 
variability, such as ENSO, which could influence SSTs 
around NZ, and limits possible skill analyses that can be 
done due to sample sizes. These shortcomings will be 
addressed at least in part by the Bureau’s recently-upgraded 
seasonal prediction system, ACCESS-S2, which has a longer 
hindcast period (1981–2018) and a weakly coupled ocean– 
atmosphere initialisation scheme. An extension of this analysis 
to ACCESS-S2 is left for future work. 

This study represents an initial investigation into the 
potential to produce useful and skilful advance warning of 
extreme monthly SSTs in the Tasman and around NZ. Our 
ability to skilfully forecast MHWs that impact NZ coastal 
regions will depend on our ability to accurately represent 
processes at several spatial and temporal scales. This initial 
work has highlighted the complex nature of the teleconnec
tions between the Tasman Sea and NZ. More work is 
required to further investigate the drivers of prediction 
skill for MHWs in these regions, including understanding 
the processes which drive deep and shallow water heat 
extremes in the region, and how these extremes are trans
ported from the Tasman to NZ coastal waters. An extension 
of this work in future will be to develop MHW forecast 
products using daily ACCESS-S forecasts and a formal 
MHW definition (e.g. Hobday et al. 2016a). 

Extreme marine heat events are projected to increase in 
frequency and severity under climate change, and the 
Tasman Sea has been identified as a climate hotspot 
(Hobday and Pecl 2014). Oliver et al. (2017) analysed the 
2015/2016 Tasman Sea MHW and found that events of this 
severity were 6.5 times more likely due to the influence of 
anthropogenic climate change. The Tasman Sea is projected 
to continue warming due to an increasing anthropogenic 
influence (Oliver et al. 2014), further increasing the likeli
hood of MHWs. Skilful forecasts of ocean heat extremes in 
regional areas of importance to aquaculture will be a valu
able tool for marine operators in this region to mitigate 
losses due to MHWs, especially in a warming climate. 
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