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Evaluation of ACCESS-S1 seasonal forecasts of growing season 
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ABSTRACT 

Seasonal forecasts are increasingly important tools in agricultural crop management. Regions with 
Mediterranean-type climates typically adopt rain-fed agriculture with minimal irrigation, hence 
accurate seasonal forecasts of rainfall during the growing season are potentially useful in decision 
making. In this paper we examined the bias and skill of a seasonal forecast system (ACCESS-S1) in 
simulating growing season precipitation (GSP) for south-west Western Australian (SWWA), a 
region with a Mediterranean-type climate and significant cereal crop production. Focusing on 
July–September (3-month) and May–October (6-month) forecasts, with 0- and 1-month lead 
times, we showed that overall ACCESS-S1 had a dry bias for SWWA rainfall and a tendency to 
simulate close to average rainfall during both wetter and drier than average rainfall years. 
ACCESS-S1 showed particularly poor skill at these timeframes for very wet and very dry 
years. The limitations in ACCESS-S1 for SWWA GSP were associated with inaccuracies in the 
timing of heavy rainfall events. In addition, limitations of the ACCESS-S1 model in accurately 
capturing SST and wind anomaly patterns over the tropical Indian Ocean during extreme rainfall 
years also contributed to errors in SWWA GSP forecasts. Model improvements in these regions 
have the potential to improve seasonal rainfall forecasts for SWWA.  

Keywords: ACCESS-S1, agriculture, Bureau of Meteorology, model evaluation, rainfall, 
seasonal climate forecasting, south-west Western Australia, wheatbelt. 

1. Introduction 

Advances in our modelling and understanding of the earth–atmosphere system over 
recent decades have resulted in significant improvements in the skill and usefulness of 
intra-seasonal and seasonal climate forecasts (Meza et al. 2008). This provides opportu
nities for the cereal crop industry to use these forecasts to improve decision making and 
potentially minimise risks and increase profits. In rain-fed cereal crop regions, rainfall 
variability has a significant effect on crop yield and episodes of extreme conditions such 
as droughts can have dire consequences for crop productivity (e.g. Giunta et al. 1993;  
Wittwer et al. 2002). If agricultural producers are well informed about the likelihood of 
the next season being dryer (or wetter) than average, there is the opportunity to adjust 
management practices so that losses can be minimised, and gains maximised. As such, the 
availability of accurate and relevant intra-seasonal to seasonal forecasts can be highly 
valuable to agricultural producers when making management decisions such as which 
crop types and varieties to select, and when to sow, harvest and fertilise. 

The wheatbelt of south-west Western Australia (SWWA) (Fig. 1) is home to a world- 
class agricultural industry and is the nation’s largest grain producing region (Department 
of Agriculture 2019). Grain production, which is the largest agricultural sector in the 
state, delivers ~A$4.6 billion to the economy of Western Australia (WA) each year, the 
majority of which is from cereal crops (Department of Primary Industries and Regional 
Development 2018). The SWWA experiences a Mediterranean-type climate that is char
acterised by hot, dry summers and cool, wet winters (Gentilli 1972) with over 80% of the 
annual rainfall falling during the cooler months (May–October) (Wright 1974). Cereal 
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crops are grown from winter to spring and are rain-fed. 
Consequently, crop yields are heavily affected by inter- 
annual variations in precipitation (Stephens and Lyons 
1998). Given the significant contribution that the agricul
tural industry makes to WA’s economy, accurate and mean
ingful forecasts of precipitation during the growing season 
can play an important role in supporting the future of the 
state’s agricultural industry. 

The Australian Bureau of Meteorology has been using 
dynamical models to provide seasonal outlooks since 2002, 
beginning with the Predictive Ocean Atmosphere Model for 
Australia (POAMA; Alves et al. 2003; Charles et al. 2015) 
and continuing with the ACCESS-S1 (Australian Community 
Climate and Earth-System Simulator – Seasonal; Hudson 
et al. 2017a) system, which became operational in 2018. 
The Bureau provides operational seasonal forecasts of the 
phase of the El Niño–Southern Oscillation (ENSO) and the 
Indian Ocean Dipole (IOD), as well as intra-seasonal and 
seasonal forecasts of Australian climate (http://www.bom. 
gov.au/climate/ahead/). ACCESS-S1 was developed as a 
collaboration between the Bureau of Meteorology and the 
UK Meteorological Office (UKMO) specifically for seasonal 
forecasts and offers several improvements over its predeces
sor, POAMA. These include an increased horizontal resolu
tion of the atmospheric model of 60 km (compared to 
250 km for POAMA) with 85 vertical levels in the atmo
sphere (compared to 17 levels in POAMA), and updated 
physics parameterisation schemes (Hudson et al. 2017a). A 
new version of the system, ACCESS-S2, became operational 
in October 2021, which incorporates a new data assimilation 

scheme for the ocean and land surface (Wedd et al. 2022). 
The focus of this study, however, is on ACCESS-S1. 

ACCESS-S1 has been evaluated for a variety of applications 
and purposes. Several studies have compared the performance 
of ACCESS-S1 with that of POAMA and these have generally 
shown an overall improvement (Hudson et al. 2017b; Camp 
et al. 2018; Marshall and Hendon 2018; Gregory et al. 2019).  
Lim et al. (2016) assessed ACCESS-S1 skill in comparison to 
POAMA in forecasting seasonal rainfall and temperature for 
the state of Victoria in south-eastern Australia, including 
analysing the large-scale drivers of climate variability: 
ENSO, IOD and Southern Annular Mode (SAM). Several 
improvements were identified with ACCESS-S1, including 
better forecast reliability for Victorian seasonal rainfall, 
improved prediction of the early stages of the development 
of ENSO and the IOD, and greater skill in predicting Victorian 
rainfall in late autumn, winter and spring with up to 3 months 
of lead time (lead time refers to the time from when the 
forecast is available to when the forecast period starts).  
Lim et al. (2016) also showed that ACCESS-S1 tends to over
estimate the magnitude of ENSO and IOD and underestimate 
the teleconnection of ENSO, IOD and SAM to Victorian rain
fall. Although these findings are informative for seasonal rain
fall prediction in Victoria where large-scale modes of 
variability are strongly correlated with rainfall, phenomena 
such as ENSO have a much weaker influence on rainfall in 
SWWA (Smith et al. 2000) and as such these findings have 
less relevance for SWWA rainfall forecast skill. 

Previous studies also evaluated the ability of ACCESS-S1 
to forecast rainfall extremes. For example, Marshall et al. 
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Fig. 1. Map showing Western Australia’s wheat
belt indicated by the potentially arable area 
( Geographic Information Services 2016).    
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(2021a) evaluated the predictability of extreme rainfall for 
each season across Australia using ACCESS-S1, with a partic
ular focus on the influence of the Madden–Julian Oscillation 
(MJO). They identified that the MJO has a strong influence 
on the variation of rainfall extremes across Australia. 
However, although ACCESS-S1 did well in predicting the 
MJO with a lead time of up to 28 days, its ability to simulate 
the MJO’s relationship with extreme rainfall across Australia 
was limited thus inhibiting the model’s skill in forecasting 
extreme rainfall. The MJO is more strongly linked to rainfall 
patterns in northern Australia, and so again, these findings 
are less informative for SWWA forecasts. 

King et al. (2020) evaluated ACCESS-S1’s ability to fore
cast various indices of rainfall extremes and how well 
ACCESS-S1 simulates the relationships between modes of 
variability and the extreme rainfall indices across Australia. 
They used hindcasts that were calibrated to daily rainfall 
observations and carried out their analysis for 0–2-month 
lead times. Most relevant to this study are forecasts of total 
rainfall for WA. King et al. (2020) demonstrated a significant 
correlation between ACCESS-S1 forecasts and observations 
of total rainfall in WA for January, May, July, August and 
September at a 0-month lead time. There was no significant 
correlation found for 1-month lead time. The results were 
averaged over the entire state of WA (fig. 3 of King et al. 
2020). However, SWWA and northern WA experience almost 
opposite rainfall climatology; SWWA experiences the major
ity of rainfall in winter, whereas northern WA experiences a 
tropical climate with the majority of rainfall in summer 
(Gentilli 1972). Further work is therefore required which 
focuses only on SWWA. 

Other studies that explored ACCESS-S1 and rainfall pre
diction include Cowan et al. (2020) who assessed ACCESS- 
S1 skill in predicting the northern rainfall onset (NRO) by 
evaluating the raw forecasts as well as the mean bias cor
rected forecasts and the forecasts calibrated against obser
vations. The raw forecasts performed well in simulating the 
observed median NRO over the given timeframe, whereas 
the calibrated forecasts were most skilful in capturing the 
interannual variability of the NRO. Cowan et al. (2022) also 
explored ACCESS-S1 hindcasts to evaluate the model’s skill 
in predicting tropical burst activity in northern Australia 
during summer, with results demonstrating reasonable pre
dictive skill with up to 2-weeks lead time. Although these 
studies identified skill in ACCESS-S1 in simulating rainfall 
indices in northern Australia, they have little relevance for 
rainfall forecasts for WA’s wheatbelt region. 

Marshall et al. (2021b) evaluated ACCESS-S1 skill in 
simulating and predicting extreme fire weather across 
Australia during spring and summer, focusing on the roles 
of various modes of variability. ACCESS-S1 scored highly for 
forecast skill of extreme fire weather in SWWA during 
September, October and November (SON). In terms of the 
roles of the various climate drivers on extreme fire weather 
prediction in SWWA, improvements in predictive skill were 

identified during La Niña in SON, the positive SAM phase in 
SON and in phases six and seven of the MJO when it is 
strong also in SON. Although this study shows some prom
ising results for extreme fire weather prediction in SWWA 
using ACCESS-S1, the focus is on spring and summer and 
therefore provides limited information about the wheat 
growing season (May–October) in SWWA. 

Some studies have assessed ACCESS-S1 seasonal forecasts 
for agricultural applications in Australia. Zhao et al. (2019a,  
2019b) used ACCESS-S1 forecasts at daily, monthly and 
seasonal time-scales to investigate the skill of predicting 
reference crop evapotranspiration in north-east, south and 
south-east Australia with various lead times. Raw forecasts 
as well as forecasts that were post-processed using a 
Bayesian joint probability modelling approach were evalu
ated. Results demonstrated that, although raw forecasts per
formed poorly, the post-processed forecasts demonstrated 
significant skill. 

Seasonal rainfall forecasts from climate models are gen
erally shown to be more skilful when the relationship 
between the large-scale climate drivers and mean and 
extreme rainfall is robust (e.g. King et al. 2020). For exam
ple, the Southern Oscillation Index (SOI) correlates signifi
cantly with rainfall in many regions of the world, including 
eastern Australia, and is therefore often used as a predictive 
tool for seasonal forecasts (e.g. Stone et al. 1996). However, 
the relationship between the SOI (and other indicators of 
ENSO) and rainfall in SWWA is very weak in comparison 
and therefore limited in its usefulness for SWWA rainfall 
prediction (Smith et al. 2000). Rainfall during the wheat- 
growing season (May–October) in SWWA can largely be attrib
uted to frontal systems and cut-off lows (Pook et al. 2012). 
Some studies have shown a link between Indian Ocean sea 
surface temperature (SST) and SWWA rainfall (e.g. Smith et al. 
2000; England et al. 2006; Ummenhofer et al. 2008; Evans 
et al. 2020). For example, England et al. (2006) showed that 
there was a distinctive dipole pattern in Indian Ocean SST 
evident during extreme rainfall years that switched sign 
between wet and dry years and differed from previously 
identified dipoles in the region. The dipole was characterised 
by anomalously cool waters in the tropical–subtropical eastern 
Indian Ocean, alongside an area of anomalously warm water 
in the subtropics off SWWA during dry years, with the 
opposite occurring during wet years. The alternating dipole 
is shown to coincide with anomalous winds in the region that 
drive the SST changes and alter the large-scale advection of 
moisture onto the SWWA coast. The change in winds is also 
shown to correlate with stronger anticyclonic motion in the 
Indian Ocean during dry years and the opposite in wet years. 
It was also demonstrated that during some extreme rainfall 
years, the IOD acted to reinforce anomalous conditions when 
in either a positive or negative phase. 

To our knowledge, no studies have evaluated ACCESS-S1 
with a specific focus on the wheatbelt of SWWA during the 
wheat growing season (May–October). This presents an area 
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where further research could potentially bring significant 
value, especially considering the importance of the cereal 
crop industry to WA’s economy. The aim of this study is to 
evaluate ACCESS-S1 precipitation forecasts during the grow
ing season for SWWA, with particular focus on their use for 
agricultural decision-making, and to explore the dynamical 
processes which lead to model biases. 

2. Methods 

2.1. Data 

2.1.1. ACCESS-S1 hindcasts 
The ACCESS-S1 forecast system includes a coupled 

atmosphere–ocean–land surface model based on UKMO’s 
global coupled model seasonal forecast system GloSea5-GC2 
(Global Seasonal forecast system version 5 using the Global 
Coupled model configuration 2; MacLachlan et al. 2015). It 
comprises the Unified Model (UM; Williams et al. 2015;  
Walters et al. 2017) for the atmosphere, the Joint UK Land 
Environment Simulator (JULES; Best et al. 2011; Walters et al. 
2017), the Nucleus for European Modelling of the Ocean 
(NEMO; Madec and The NEMO team 2008; Megann et al. 
2014) and the Los Alamos sea ice model (CICE; Hunke and 
Lipscomb 2008). ACCESS-S1 has a horizontal resolution of 
~60 km (N216) with 85 vertical levels in the atmosphere, 
four soil levels in the land surface model and an ocean model 
resolution of 0.25° with 75 vertical levels. For more details on 
ACCESS-S1, see Hudson et al. (2017a). 

The ACCESS-S1 forecasts are evaluated based on a set of 
retrospective forecasts known as hindcasts. Initial condi
tions for the hindcasts come from ERA-Interim (Dee et al. 
2011) for the atmosphere and from the FOAM (Forecast 
Ocean Assimilation Model) analyses (Blockley et al. 2014) 
for the ocean. The ACCESS-S1 hindcasts are available for the 
period 1990–2012 and start on the 1st, 9th, 17th and 25th of 
each month. The hindcasts include an 11-member ensemble 
forecast 7 months into the future. We created a time-lagged 
22-member ensemble for each of the lead times by combin
ing the forecasts initialised on the 1st of the month with 
those from the 25th of the previous month. For example, the 
May–October forecast with 1-month lead time, used fore
casts from 1 April together with those from 25 March (i.e. 11 
members from 1 April combined with 11 members from 25 
March). For the July–September forecast with 0-month lead 
time, forecasts from 1 July were combined with those from 
25 June. For the 6-month forecasts for May–October, the last 
4 days of October were removed from the forecasts initialised 
on 1 April because the forecasts initialised on 25 March only 
went out to 27 October. Creation of a time-lagged ensemble 
is common practice in seasonal prediction to increase the 
ensemble size and better capture uncertainties. The Bureau’s 
real-time forecast products utilise a time-lagged ensemble by 
combining 9 successive days of forecasts for the seasonal 

timescale (11 members are run every day, thus this approach 
builds a 99-member ensemble; Hudson et al. 2017a; Wedd 
et al. 2022). We did, however, repeat our analysis of the 
mean biases (Section 3.1) to compare the results of an 
11-member ensemble from the 1st of the month with an 
11-member ensemble on the 25th of the month – the results 
were very similar to each other and to those from the 
22-member ensemble (not shown). 

2.1.2. AWAP gridded rainfall observations 
To assess ACCESS-S1 rainfall, we compared the forecasts 

to daily 5-km gridded observations from the Australian 
Water Availability Project (AWAP) dataset (Jones et al. 
2009). This dataset is an interpolation of direct surface 
measurements recorded from a network of weather stations 
across Australia. The number of stations recording data varies 
in time and by variable, and precipitation is interpolated from 
5000 to 7000 stations across Australia. A map of the rainfall 
stations used across Australia showing the density within the 
SWWA region can be found in fig. 2a of Jones et al. (2009). 
The AWAP dataset has been used for model evaluation pur
poses in several studies (e.g. Kala et al. 2015; Zhao et al. 
2021; Shao et al. 2022). To be consistent with ACCESS-S1, the 
last 4 days of October were also removed from the AWAP 
dataset. To enable comparison of the ACCESS-S1 forecasts 
with observed precipitation, the AWAP precipitation 
data were re-gridded to the 60-km ACCESS-S1 grid using 
the first-order conservative remapping tool, remapcon, 
from Climate Data Operators (https://code.mpimet.mpg. 
de/projects/cdo/), and a land fraction of 0.3 was chosen 
as the threshold to determine the land–sea mask. 

2.1.3. ERA5 reanalysis 
To explore the large-scale processes in ACCESS-S1, we 

used the ERA5 reanalysis (Hersbach et al. 2020) as a surro
gate truth for key atmospheric variables such as winds and 
SST. The ERA5 is a re-analysis produced from the European 
Centre for Medium Range Weather Forecasts, replacing and 
improving upon the previous ERA-Interim reanalysis (Dee 
et al. 2011). It has a horizontal resolution of ~30 km and 
there are 137 vertical levels from the surface up to 0.01 hPa. 
To enable comparison with ACCESS-S1, the ERA5 data were 
re-gridded to the 60-km ACCESS-S1 grid and the last 4 days 
of October were removed. We compared ERA5 growing 
season precipitation (GSP) to AWAP, and these were very 
similar (not shown), hence, warranting the use of ERA5 data 
to explain precipitation biases in ACCESS-S1. 

2.2. Analysis 

Two forecast periods during the growing season were 
selected for analysis based on the timing of key rainfall- 
related management decisions. One of the most important 
management decisions involves choosing how much fertili
ser to apply so that favourable conditions are either 
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exploited to maximise profits, or resources are conserved 
during less favourable conditions to minimise losses. Fertiliser 
is initially applied at the beginning of the growing season 
based on the rainfall outlook for the season ahead. Decisions 
are then made as to whether to apply a ‘top up’ of fertiliser 
approximately mid-way through the season based on rainfall 
that has already fallen and the outlook for the remainder of 
the season. To tie into these two critical decision-making time 
periods, this study evaluated May–October (MJJASO) and 
July–September (JAS) precipitation forecasts with both 
0- and 1-month lead times. 

The forecasts were analysed based on wet, dry and average 
rainfall years. To classify years as wet, dry and average, the 
SWWA domain (36–28°S; 114–122°E; Fig. 2) averaged anom
aly for the MJJASO growing season (GS) was calculated from 
the AWAP observational data for each year. Based on an 
evaluation of all of these values together, a subjective decision 
was made to use the anomaly thresholds as follows: 
<−40 mm per GS = dry year, >40 mm per GS = wet year 
and >−40 mm per GS and <40 mm per GS = average year. 
This resulted in 6 dry years (2000, 2002, 2006, 2007, 2010 
and 2012), 6 wet years (1992, 1996, 1998, 1999, 2005 and 
2011) and 11 average years (1990, 1991, 1993, 1994, 1995, 
1997, 2001, 2003, 2004, 2008 and 2009) for analysis. We note 
that because years are classified as either wet, dry or average 
based on the entire growing season, for some years, the JAS 
anomaly may not necessarily show a positive (negative) anom
aly for a wet (dry) year. Although it could have been possible 

to also use the JAS anomaly to classify years, this would have 
resulted in a different set of years being classified as wet, dry 
and average for JAS compared with MJJASO. Because the 
interest is largely in whether a particular growing season 
will be either very wet or very dry overall, for simplicity we 
just used the anomaly for the MJJASO period to classify years. 

Anomalies for the ACCESS-S1 hindcasts were calculated 
by computing the climatology (1990–2012) from the ensem
ble mean hindcasts for each start date. The climatology was 
then subtracted from the ensemble mean (or individual 
ensemble members) for each start date to produce the fore
cast anomalies, and in so doing a first-order linear correc
tion for model bias or drift was made (Hudson et al. 2017b). 

The AWAP dataset was used as a reference to estimate the 
errors in ACCESS-S1 GSP, and the ERA5 dataset allowed an 
exploration of the dynamical processes driving the errors. 
We examined the ACCESS-S1 ensemble mean precipitation 
during the growing season spatially over the SWWA domain 
and compared it with the AWAP observations, for all years, 
as well as wet, dry and average years. We also assessed the 
ensemble spread, displayed as box and whisker plots for the 
SWWA region. 

To contribute to an understanding of the model errors in 
rainfall over SWWA, the ability of ACCESS-S1 to capture the 
frequency and timing of rain-days of different intensities, i.e. 
light to heavy rainfall events, was evaluated. Five rain-day 
categories were defined based on the 25th, 50th, 75th and 
95th percentiles for the daily domain sum of rainfall from 
ACCESS-S1 and AWAP (Table 1). ACCESS-S1 had lower rain
fall values than AWAP across all percentiles (Table 1). The 
percentiles were used to generate five rain-day categories 
(Table 2). We examined the frequency of different rain-day 
categories in ACCESS-S1 and AWAP for wet, dry and average 
years. Additionally, we examined the timing of the most 
extreme rainfall (i.e. categories 4 and 5; Table 2), as these 
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Fig. 2. The SWWA domain used for analysis showing ACCESS-S1 
topography.   

Table 1. ACCESS-S1, and AWAP 25th, 50th, 75th and 95th 
percentiles for the daily domain sum of rainfall (mm) on rain-days.     

Percentile ACCESS-S1 AWAP   

25 4.1 5.8 

50 27.3 35.6 

75 120.9 168.7 

95 493.6 604.4   

Table 2. Rain-day categories based on percentiles.    

Category Percentile range   

1 ≤25th 

2 >25th and ≤50th 

3 >50th and ≤75th 

4 >75th and ≤95th 

5 >95th   
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heavy rainfall events can have significant impacts. The rain- 
day category analysis was based on the entire growing sea
son and 0-month lead time. 

The final part of the analysis focused on the large-scale 
circulation, including SST and wind anomalies, and how well 
these were captured by ACCESS-S1 during wet and dry years. 

3. Results and discussion 

3.1. Spatial analyses of mean bias 

The first stage of our analysis involved evaluating the 
ensemble mean bias in ACCESS-S1 spatially across SWWA 

for the full growing season of MJJASO as well as for the JAS 
forecast period for lead times of 0- and 1-month. This 
allowed us to initially assess how the model errors varied 
regionally. Fig. 3 shows the total precipitation for JAS and 
MJJASO averaged over 1990–2012 for the AWAP observa
tions (re-gridded to ACCESS-S1 resolution) and for the 
ACCESS-S1 ensemble mean at 0- and 1-month lead times. 
The observations showed that most rainfall occurred in the 
south-west corner and there was a clear south-west to north- 
east gradient with rainfall decreasing moving further inland. 
Although ACCESS-S1 captured this rainfall pattern well, rain
fall in the south-west corner was markedly underestimated, 
with a notable dry bias evident. This was apparent in both 
forecast periods and there was no obvious drift in the bias 

35°S

115°E 116°E 117°E 118°E

0

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

30 60 90 120 150 180 210 240

Precipitation (mm)

Precipitation (mm)

270 300 330 360 390 420 450 480

119°E 120°E 121°E

OBS ACC-0 month lead ACC-1 month lead

34°S

33°S

32°S

31°S

30°S

29°S

35°S

115°E 116°E 117°E 118°E 119°E 120°E 121°E

34°S

33°S

32°S

31°S

30°S

29°S

35°S

115°E 116°E 117°E 118°E 119°E 120°E 121°E

34°S

33°S

32°S

31°S

30°S

29°S

(a) Average precipitation (July–September)

35°S

115°E 116°E 117°E 118°E 119°E 120°E 121°E

OBS ACC-0 month lead ACC-1 month lead

34°S

33°S

32°S

31°S

30°S

29°S

35°S

115°E 116°E 117°E 118°E 119°E 120°E 121°E

34°S

33°S

32°S

31°S

30°S

29°S

35°S

115°E 116°E 117°E 118°E 119°E 120°E 121°E

34°S

33°S

32°S

31°S

30°S

29°S

(b) Average precipitation (May–October)

Fig. 3. Total precipitation averaged over 1990–2012 from observations (left panels) and ACCESS-S1 with 0-month (middle panels) 
and 1-month lead times (right panels) for (a) July–September and (b) May–October.    
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with lead time. These findings are consistent with those of  
Hudson et al. (2017a), who showed that although the rainfall 
climatology in ACCESS-S1 is much improved compared to 
POAMA, its predecessor, there is still a dry bias over SWWA. 

Similarly, Fig. 4–6 show the precipitation anomalies for 
dry, wet and average years respectively (refer to Methods 
for definitions of wet, dry and average). For dry years 
(Fig. 4), although the ACCESS-S1 anomalies were negative 
in some areas of SWWA, the forecasts did not capture the 
significant deficiency of rainfall for these years. The 
ACCESS-S1 forecasts suggested closer-to-average conditions 
rather than the dry conditions that were observed. This bias 
appeared more pronounced for the 1- compared with the 
0-month lead time particularly for the MJJASO forecast 

(Fig. 4b). ACCESS-S1 better captured the wet years com
pared to dry years in that the precipitation anomalies were 
largely positive across most of SWWA (Fig. 5). However, the 
forecasts still showed a dry bias, slightly more evident at 
1- compared to 0-month lead time. During average years, 
forecasts at 0-month lead time showed slightly drier condi
tions whereas the forecast at 1-month lead time showed 
average to neutral conditions (Fig. 6). 

The results in Fig. 4–6 demonstrated an overall poor 
performance of ACCESS-S1 in simulating GSP for SWWA. 
Having identified the bias in the ensemble mean forecasts, 
we took a more probabilistic approach, and examined the 
ensemble spread for all years combined as well as each 
individual year, to provide an assessment of forecast skill. 

(a) Precipitation anomaly (Dry years, July–September)

(b) Precipitation anomaly (Dry years, May–October)
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Fig. 4. Precipitation anomalies using a 1990–2012 climatology averaged across dry years for observations (OBS) and ACCESS-S1 
with 0- and 1-month lead time for (a) July–September and (b) May–October.    
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3.2. Ensemble spread and forecast skill 

The ensemble spread for the SWWA region is illustrated in  
Fig. 7–9. These show the median and spread of the ACCESS- 
S1 ensemble precipitation anomalies averaged across 
SWWA compared with observed for dry, wet and average 
years respectively. The JAS and MJJASO forecasts are 
shown for both 0- and 1-month lead times. All years are 
plotted together in panel (a) and each year is plotted sepa
rately in panel (b) to provide an indication of forecast skill. 

Overall, Fig. 7–9 show that regardless of whether the 
season was very wet or very dry, the ACCESS-S1 ensemble 
median forecast anomaly was generally weak. This is consist
ent with our spatial analysis of the ensemble mean (Fig. 4–6) 

that showed close to average mean forecasts during both dry 
and wet years. For dry years, the ACCESS-S1 ensemble spread 
generally captured the observed precipitation anomalies, but 
mostly within the lower tail of the distribution, explaining 
why the ensemble mean precipitation for dry years was not 
dry enough (Fig. 4). For the JAS forecasts, the ensemble 
median anomaly was closer to the observed anomaly com
pared with the MJJASO forecasts for most years, with the 
exception of 2010 and 2012. Notably, these were both partic
ularly dry years. We note that all years were classified as wet, 
dry or average based on the precipitation anomaly of the 
MJJASO period. Hence, for some years, the observed JAS 
rainfall anomaly for the dry or wet years may be closer to 

(a) Precipitation anomaly (Wet years, July–September)

(b) Precipitation anomaly (Wet years, May–October)
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Fig. 5. Precipitation anomalies using a 1990–2012 climatology averaged across wet years for observations (OBS) and ACCESS-S1 
with 0- and 1-month lead time for (a) July–September and (b) May–October.    
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zero if these anomalies happened predominantly during 
May–June or in October. 

The years when the observed anomalies were most nega
tive, i.e. the driest years (2006, 2010 and 2012) were the 
years when the ACCESS-S1 ensemble spread least consis
tently captured the observed anomaly. For example, in 
2010, one of the driest years on record, none of the forecasts 
for either time frame or lead time captured the observed 
anomalies in its ensemble spread. Furthermore, for the 
MJJASO forecast at 1-month lead time, the ensemble median 
actually showed a forecast with a positive anomaly. This 
implies that ACCESS-S1 had limited skill in capturing more 
extreme conditions. When examining all years together, the 
ensemble spread increased with lead time for dry years. 

However, this pattern was not consistent for each individual 
year. For example, for the year 2000 the ensemble spread 
decreased with increasing lead time for both the JAS and the 
MJJASO forecast periods. 

For wet years (Fig. 8), the opposite was shown, with the 
observations mostly in the upper tail of the ensemble spread. 
We note that the observed anomalies for some years for the 
JAS period were close to zero or negative, suggestive of 
average or dry conditions. The classification of those years 
being wet was due to the wetter-than-average conditions 
experienced in May–June or October rather than the JAS 
period. ACCESS-S1 performed marginally better for wet 
years compared to dry years in that the average anomaly 
was generally positive across the region. When examining 

(a) Precipitation anomaly (Average years, July–September)

(b) Precipitation anomaly (Average years, May–October)
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Fig. 6. Precipitation anomalies using a 1990–2012 climatology averaged across average years for observations (OBS) and 
ACCESS-S1 with 0- and 1-month lead time for (a) July–September and (b) May–October.    
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the forecasts for all wet years, for the MJJASO forecast 
period, the observations were mostly within the upper tail 
of the ensemble spread. This can explain why ACCESS-S1 
overall did not simulate large enough positive precipitation 
anomalies during wet years, as illustrated in Fig. 5. For the 
1-month lead time for MJJASO, it is worth noting that the 
spread in ACCESS-S1 was much larger above the median 
and the observations generally lay in the lower part of the 
upper tail. The larger upper tail in the ensemble spread for 

the 1-month lead time forecast shows that there was a large 
range of values among the higher rainfall forecasts and 
hence less agreement among ensemble members. When 
examining all wet years, the ensemble spread decreased 
for increasing lead time for the JAS forecast but increased 
for the MJJASO forecast. It is expected that with increasing 
lead time there would be more uncertainty with a forecast 
and increased spread, as demonstrated for MJJASO, and it 
may be that the spread difference between the two lead 
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times for JAS was not significantly different. For wet years 
(Fig. 8b), forecast skill appeared poorest during the wettest 
years (1992, 1996 and 1999), supporting the premise that 
ACCESS-S1 is limited in its forecasts of extreme rainfall in 
this region and time of year. Notably, for 1992 and 1996, 
when a significant proportion of the rainfall occurred during 
the JAS period, the observed anomaly was still not captured 
within the ensemble spread even for the shorter forecast 
period of 3 months and 0-month lead time. 

For average years (Fig. 9), the observed anomalies fell 
within the middle range of the ensemble spread, which is to 
be expected since ACCESS-S1 tends to forecast average con
ditions for these forecast periods and lead times as shown 
earlier. Across all years, the ensemble spread increased 
slightly with increasing lead time for the JAS forecast but 
decreased for the MJJASO forecast. 

The results above (Fig. 7–9) showed that model skill was 
limited, especially for very dry and very wet years. Previous 
studies that investigated seasonal precipitation forecasts in 
ACCESS-S1 have focused on periods of 1 month (e.g. King 
et al. 2020) and up to a 3-month season (e.g. Hudson et al. 
2017b; Marshall et al. 2021a). King et al. (2020) examined 
the area-averaged correlation coefficient matrices for each 
state of Australia for each calendar month and for both 
0- and 1-month lead times. Relevant to the present study, 
the correlation for total precipitation averaged across 
WA at 0-month lead time with observed, was statistically 
significant for forecasts for May, July, August and 
September. However, with 1-month lead time, none of the 
monthly forecasts had significant correlation coefficients 
for WA, demonstrating that forecasts beyond the first 
month performed poorly for the broader region. Similarly,  

Hudson et al. (2017b) evaluated ACCESS-S1 skill for fore
casts of four separate seasons of 3 months duration for the key 
horticultural regions across Australia at both 0- and 1-month 
lead times. For the SWWA region, there were no significant 
correlations with observations for any of the forecasts (refer to 
fig. 2, A1 and A2 of Hudson et al. 2017b). Marshall et al. 
(2021a) examined correlations between the MJO and extreme 
precipitation across Australia. For SWWA during strong 
phases of the MJO, they showed some skill during SON and 
DJF for small parts of SWWA (fig. 11 of Marshall et al. 
2021a), but not during MAM and JJA, which are the key 
seasons during the growing season. Our results demonstrated 
that forecasts for a longer period, i.e. a 6-month growing 
season, were similarly limited in terms of skill. 

3.3. Rain-day category frequency and timing 
based on percentiles 

We next investigated how accurately ACCESS-S1 captured 
the frequency and timing of light to heavy rainfall events 
(rainfall was aggregated over the SWWA domain, i.e. grid
boxes receiving rainfall were summed to create the domain 
total) to understand how these variables contributed to the 
inaccuracies in the ACCESS-S1 GSP forecasts. Fig. 10 shows 
the relative frequency of the different rain-day categories for 
ACCESS-S1 and AWAP for dry and wet years. For dry years, 
ACCESS-S1 overestimated the frequency of categories 4 and 
5 but underestimated the driest category (rainfall less than 
the 25th percentile). The overestimation of the heavier rain
fall categories contributed to ACCESS-S1 not sufficiently cap
turing the dry conditions during dry years (Fig. 4 and 7). For 
wet years, ACCESS-S1 had a very similar rainfall distribution 
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Fig. 9. Median and spread of ACCESS-S1 ensemble anomalies averaged over SWWA compared with observed anomaly (red dots) 
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to AWAP, perhaps slightly underestimating the heaviest rain
fall categories. 

We next examined the timing of the heavy rainfall events 
showing the relative frequency of rain-day categories 4 and 
5 for ACCESS-S1 compared with AWAP for dry and wet 
years for each month of the growing season (Fig. 11). For 
dry years, it is most notable that ACCESS-S1 forecast too 
many extreme (category 5) rainfall days in May and June but 
too few for July–October. The differences between ACCESS- 
S1 and AWAP were less marked for the timing of category 4 
rain-days. Category 5 rain-days represent extreme rainfall 
events which, in this region, are most commonly driven by 
strong cold fronts traversing the region during winter (Hope 
et al. 2014). These results therefore suggest that during dry 
years, ACCESS-S1 likely simulated the intense cold fronts 
that bring the heavy rainfall days in SWWA too early in 
the season. Since these mid-latitude fronts are not strongly 
directly linked to any one mode of natural climate variabil
ity, this inevitably makes their predictability on seasonal 
timescales more challenging. King et al. (2020) showed in 
their evaluation of ACCESS-S1 that model performance was 
superior in the northern areas and the interior where climate 
modes of variability such as ENSO have a greater influence 
in comparison to the south and coastal regions. Nonetheless, 
as far as we are aware, this inconsistency in the timing of 
extreme rainfall events in SWWA has not been identified in 
previous evaluations of ACCESS-S1 and should be explored 
further when developing and improving the model. 

For wet years, there was a similar pattern of differences 
between ACCESS-S1 and AWAP for category 5 rain-days 
(Fig. 11b). Early growing season heavy rainfall was over
estimated (May–July) and later in the season was under
estimated (August–October). It is likely that during wet 
years too many cold fronts were simulated early in the 
season but too few later in the season. 

The analysis of the frequency and timing of low to heavy 
rainfall events was based on the domain sum of rainfall across 
the south-west region. It is acknowledged that the majority of 
this rainfall comes from the south-west coast (Fig. 3) and is 
therefore outside of the agricultural region which is the main 
focus of this study and by using the domain sum the spatial 
differences were lost. We re-performed the analysis but 
focused on a smaller region of the south-west (36–28°S; 
114–117.5°E), where the majority of rainfall occurs. The 
results obtained (not shown) were very similar to Fig. 10 
and 11, demonstrating that these results were largely 
driven by the rainfall from this smaller region in the 
south-west corner. This highlights a limitation due to the 
relatively coarse 60-km resolution of ACCESS-S1 when 
examining a small region like SWWA. Higher spatial- 
resolution seasonal forecasts in the future would allow a 
better understanding of rainfall biases within the inland 
wheatbelt region. However, given that the main rain- 
bearing frontal systems would also bring rainfall inland, 
although with lower rainfall amounts, it is not unreasonable 
to suggest that a similar distribution frequency would be 
obtained if the percentile thresholds were relative to the 
inland regions. 

3.4. Large-scale circulation 

It was established in previous work that variations in Indian 
Ocean SST and surface winds can partly explain very dry–wet 
years in SWWA (e.g. England et al. 2006; Ummenhofer et al. 
2008). Fig. 12 shows wind vector and wind speed anomalies 
over the growing season averaged across dry years and wet 
years for ERA5 compared with ACCESS-S1 at 0- and 1-month 
lead times. It is clear from ERA5 that during dry years, there 
is anomalous strong offshore (easterly–south-easterly) antic
yclonic circulation across SWWA, suggestive of the drier 
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Fig. 10. Relative frequency of rain-day categories ( Table 2) for (a) dry years and (b) wet years for ACCESS-S1 at 1-month lead 
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R. Firth et al.                                                                                               Journal of Southern Hemisphere Earth Systems Science 

142 



conditions that were observed. The wind pattern identified 
here during dry years is similar to previous results (fig. 4 of  
England et al. 2006) despite the different reanalysis (NCEP 
v. ERA5 re-analysis) and timeframes (yearly v. growing 
season) used for the analysis. It is evident that ACCESS-S1 
failed to capture this wind pattern driving dry conditions 
in the region. Instead, ACCESS-S1 simulated anomalous 
southerly–south-westerly winds moving across the region 
at 0-month lead time and weaker south-easterlies at 
1-month lead time. During wet years, ERA5 showed an 
anomalous strong onshore (north-westerly) cyclonic circu
lation across SWWA, which would advect more moist air 
into the region, again very similar to results in England et al. 
(2006). There was some cyclonic motion evident in ACCESS- 
S1 at both lead times over SWWA; however, this was weaker 
than in ERA5. In ERA5 there were also strong northerly 
anomalies extending from the Maritime continent region 
and eastern tropical Indian Ocean down over WA, which 

were not captured in the model. Additionally, the anoma
lously strong wind speeds present north of Papua New 
Guinea and south-west of Sumatra during wet years were 
absent in the ACCESS-S1 simulations. 

Fig. 13 shows SST anomalies averaged for May–October 
for ERA5 compared with ACCESS-S1 at 0- and 1-month lead 
times averaged for dry and wet years. England et al. (2006) 
identified a dipole of SST anomalies associated with wet and 
dry years for SWWA. This dipole has peak amplitudes in the 
eastern Indian Ocean adjacent to the west coast of Australia 
– off the north-west and south-east coast (fig. 5 in England 
et al. 2006). The dipole was also evident here in the ERA5 
SST (Fig. 13), but with differences in the magnitude and 
spatial distribution due to different models, SST datasets and 
timeframes. During dry years there were anomalously cooler 
temperatures to the north of Australia and extending to 
Sumatra similar to the SST pole (P1) shown in England 
et al. (2006) (their fig. 5a) but evidently much weaker 
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Fig. 11. Relative frequency for each month of the growing season (May–October) for dry years (a) category 4 and (b) category 
5 rain-days and wet years (c) category 4 and (d) category 5 rain-days for AWAP and ACCESS-S1. Error bars for ACCESS-S1 
denote standard deviations for ensemble means.    

www.publish.csiro.au/es                                                                                 Journal of Southern Hemisphere Earth Systems Science 

143 

https://www.publish.csiro.au/es


here compared to their study. Another pole of warmer 
temperatures was shown in the Indian Ocean to the west 
of WA, similar to the second pole (P2) identified by England 
et al. (2006). These poles switched sign during wet years; 
however, it is notable that, although there is symmetry 
between the wet and dry years in England et al. (2006), 
the dipoles identified in our study were asymmetrical. 

As described by England et al. (2006), this dipole in SST 
develops as a result of the anomalous wind fields in the 
region during extreme rainfall years. In addition, in dry 
years the SST anomaly in the tropics shows another dipole − 
a weak positive IOD pattern. The IOD is the SST anomaly 
difference between the western (50–70°E; 10°S–10°N) 
and eastern (90–110°E; 10°S–0°) tropical Indian Ocean 
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years and (b) wet years, for ERA5 and ACCESS-S1 at 0- and 1-month lead times. Vectors indicate direction only, with the wind 
speed anomalies shown as colour shading.    

30°N

ERA5 SST anomaly
(Dry years, May to October)

15°N

15°S

45°S

30°S

0°

30°E 60°E 90°E 120°E 150°E 180°

30°N

ACC SST anomaly
(Dry years, May to October, 0 month lead)

15°N

15°S

45°S

30°S

0°

30°E 60°E 90°E 120°E 150°E 180°

30°N

ACC SST anomaly
(Dry years, May to October, 1 month lead)

15°N

15°S

45°S

30°S

0°

30°E 60°E 90°E 120°E 150°E 180°

30°N

ERA5 SST anomaly
(Wet years, May to October)

15°N

15°S

45°S

30°S

0°

30°E

–0.4 –0.35 –0.3 –0.25 –0.2 –0.15 –0.1 –0.05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

(°C)

60°E 90°E 120°E 150°E 180°

30°N

ACC SST anomaly
(Wet years, May to October, 0 month lead)

15°N

15°S

45°S

30°S

0°

30°E

–0.4 –0.35 –0.3 –0.25 –0.2 –0.15 –0.1 –0.05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

(°C)

60°E 90°E 120°E 150°E 180°

30°N

ACC SST anomaly
(Wet years, May to October, 1 month lead)

15°N

15°S

45°S

30°S

0°

30°E

–0.4 –0.35 –0.3 –0.25 –0.2 –0.15 –0.1 –0.05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

(°C)

60°E 90°E 120°E 150°E 180°
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(Saji et al. 1999). In ACCESS-S1 dry years, the anomalously 
cooler waters to the north of Australia were absent for both 
lead times, with the model simulating warmer than average 
SST. In addition, the tropical west–east SST anomalies in the 
model are indicative of a negative (0-month lead) or neutral 
(1-month lead) IOD. 

During wet years there are warm SST anomalies sur
rounding much of Australia, particularly the north and 
north-west, but there are cold SST anomalies over the cen
tral Indian Ocean and the signature over the tropics is for a 
negative IOD. ACCESS-S1 captured the general large-scale 
pattern of SST anomalies, but the warm anomalies north of 
Australia and the central Indian Ocean cold anomalies were 
much weaker than observed. The limited skill of ACCESS-S1 
to capture the large-scale circulation and SSTs associated 
with wet and dry years in SWWA likely contributed to the 
errors identified in our analysis of GSP forecasts during the 
wheat growing season in SWWA. 

These results highlight how errors in ACCESS-S1’s simu
lation of the Indian Ocean SSTs and wind fields potentially 
drive the shortcomings in SWWA rainfall prediction. Previous 
work also highlighted that model errors in simulating the 
relationship between Indian Ocean SST and Australian 
weather are potentially causing issues in forecasting for 
Australia. For example, Lim et al. (2016) demonstrated how 
the inability of ACCESS-S1 to accurately simulate the telecon
nection between the tropical western Indian Ocean SST and 
Victorian rainfall limited the skill for rainfall forecasts in the 
region. Similarly, Marshall et al. (2021b) showed that, 
although ACCESS-S1 was able to capture the relationship 
between the negative IOD phase and extreme fire weather 
over Australia quite well, there were clear inaccuracies in the 
depiction of this relationship during the positive phase. 

4. Conclusion 

In this study we have investigated the ability of the Bureau 
of Meteorology’s dynamical seasonal forecasting model, 
ACCESS-S1, to simulate and forecast rainfall for the wheat 
growing season (May–October) in SWWA. The timing and 
frequency of light to heavy rainfall events was compared 
between AWAP observations and ACCESS-S1 to understand 
how these contributed to mean biases in the model’s GSP 
forecasts. Additionally, ACCESS-S1’s ability to accurately 
capture the large-scale drivers of SWWA rainfall over the 
Indian Ocean was also explored using the ERA5 reanalysis. 
We acknowledge that the short hindcast period (23 years) 
for ACCESS-S1 means that the sample sizes for the analysis 
were relatively small (6 dry years, 6 wet years and 11 
average years). The recently released ACCESS-S2 system 
has a larger hindcast period (38 years). Our future work 
will focus on ACCESS-S2, as well as other forecast models, 
for example from the S2S database (Vitart et al. 2017). In 
addition, slight differences may be obtained from our results 

if a different observation dataset or reanalysis is used for the 
verification. However, the main conclusions are unlikely to 
change. 

We showed that ACCESS-S1 had an overall dry bias for 
SWWA particularly for the most south-western corner. 
However, regardless of whether a given season was notably 
wetter or drier than average, ACCESS-S1 ensemble mean 
and median tended to forecast close-to-average rainfall. 
Specifically, dry years were generally forecast as dry but 
not dry enough, whereas wet years were forecast as wet, but 
not wet enough. We note that it is promising that in several 
instances, the ACCESS-S1 ensemble spread captured the 
observed anomalies even for this extended 6-month forecast 
period (which is quite a long period for a seasonal rainfall 
forecast). Our results also showed that a short lead time of 0 
months was not always consistently more skilful than longer 
lead time forecasts of 1 month. In some instances, 0-month 
lead time showed slighter better results such as for the 
spatial analysis of the mean bias for wet and dry years 
(Fig. 4 and 5). When considering the ensemble spread and 
forecast skill (Section 3.2), some results showed improve
ment for 0-month lead time and for others 1-month lead time 
was more skilful. Similarly, when considering wind anoma
lies (Fig. 12) and SST anomalies (Fig. 13), the differences 
between the two lead-times were minimal. We also note that  
King et al. (2020) showed in their analysis that extended 
lead-times had a more noticeable effect on reducing the 
performance of the model during the warmer months in 
comparison to the cooler months, and our analysis focused 
largely on the cooler seasons. Overall, for the extended 
forecast periods considered in our study, the difference 
between 0- and 1-month lead times was less obvious com
pared to studies that focused on shorter forecast periods. 

We identified that the SWWA rainfall biases were likely 
driven by inaccuracies in the timing of heavy rainfall events 
as well as Indian Ocean SST and wind anomaly biases. 
Seasonal forecasts of SWWA rainfall are generally challenging 
due to the weak teleconnections between the large-scale cli
mate drivers such as ENSO and rainfall when compared to 
eastern Australia. For example, King et al. (2020) noted that 
ACCESS-S1 generally performs better when the relationship 
between the large-scale climate drivers and Australian mean 
and extreme rainfall is strongest. However, there is an estab
lished association between an Indian Ocean dipole in SSTs 
and SWWA rainfall, as identified here and in previous 
work (e.g. England et al. 2006; Ummenhofer et al. 2008).  
Ummenhofer et al. (2008) provided evidence that these 
Indian Ocean SSTs are key in forcing mid-latitude rainfall 
changes over SWWA. In addition, there is a weak association 
between the IOD and SWWA rainfall (e.g. Fig. 13 and England 
et al. 2006). ACCESS-S1 did not capture these SST anomalies 
and associated circulation during wet and dry years, which led 
to the poor forecast skill. The Indian Ocean SSTs are a poten
tial source of seasonal predictability for SWWA and improve
ments in the model could lead to improved forecasts. 
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Model biases in the tropical eastern Indian Ocean limit 
our seasonal prediction skill for Australia in general 
(Hudson et al. 2017a). These persistent biases are currently 
the focus of a key collaboration between the Bureau, UKMO 
and other organisations. Areas of model development cur
rently being investigated, with a key focus on the Indian 
Ocean region, are improving the model’s convection scheme 
and the modelling of the ocean in the Indonesian Throughflow 
region (which affects SSTs north of Australia). These future 
developments have the potential to improve seasonal forecasts 
of rainfall for SWWA. 

To conclude, our study suggests that the ensemble mean 
or median seasonal rainfall forecasts for the growing season 
in SWWA are not skilful sources of information for wheat 
growers of SWWA particularly when growing season condi
tions are going to be very wet or very dry. Although a 
probability forecast that would translate the information 
contained in the ensemble spread of the forecasts would 
provide more useful information, they should still be inter
preted with caution. 
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