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SUMMARY 
 

It is usually assumed that the initial magnetisation curve for a rock, soil or ore sample is linear in the applied field, for fields much 
less than the coercivity of the magnetic minerals in the sample. This implies that the measured susceptibility, defined as the induced 
magnetisation divided by the inducing applied field, is independent of the field H that is used in the measurement and that the 
induced magnetisation of the rock unit in situ can be calculated, irrespective of the field used by the measuring instrument, by 
multiplying the measured susceptibility by the Earth’s field at the location of the rock unit. A better approximation for many 
materials that contain ferromagnetic (sensu lato) minerals is a quadratic dependence of the weak-field magnetisation on the applied 
field, given by Rayleigh’s Law, which yields a linear dependence of susceptibility on applied field. This field-dependent 
susceptibility is associated with hysteresis and a phase lag of magnetisation behind the applied field for AC measurements, which can 
masquerade as a phase lag produced by magnetic viscosity. Field-dependence of susceptibility is strongly affected by self-
demagnetisation, so measurements of the Rayleigh coefficient η of strongly magnetic samples, as well as the initial susceptibilityχ, 
must be corrected for self-demagnetisation in order to calculate intrinsic properties of the rock unit. Self-demagnetisation also largely 
explains why rocks containing low-Ti magnetite grains, which have high intrinsic susceptibility, exhibit only weak field-dependence 
of susceptibility, whereas rocks bearing titaniferous magnetite, monoclinic pyrrhotite or multidomain hematite exhibit relatively 
pronounced field-dependence of susceptibility. Under the conditions of the Néel approximation (ηH << χ), the Rayleigh laws are still 
obeyed even when self-demagnetisation is considered. However, considerable departures from the Rayleigh relations occur when ηH 
> χ. This paper examines implications of field-dependent susceptibility for measurements of susceptibility and its anisotropy, and 
methods for correcting calculations of induced magnetisation. 
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INTRODUCTION 

 
Magnetic susceptibility is an important rock property for many geophysical applications, including magnetic and EM modelling, 
lithological characterisation and correlation, petrofabric studies using magnetic anisotropy, magnetic petrology, and environmental 
magnetism. To a first approximation, the induced magnetisation of rocks and ores is proportional to the applied field, for fields of the 
same order of magnitude as the relatively weak geomagnetic field, which ranges from about H = 20 to 50 A/m (B ≈ 25-65 µT) 
depending on geographic location. The constant of proportionality is defined as the magnetic susceptibility. However when the 
magnetisation is not perfectly proportional to the applied field, the nominal susceptibility obtained after dividing the measured 
magnetisation by the applied field is field-dependent. 

The assumption of linearity is strictly obeyed for weakly magnetic rocks and ores that contain only paramagnetic and/or 
diamagnetic minerals. For many moderately to strongly magnetic rocks and ores that contain ferromagnetic sensu lato minerals, 
however, the induced magnetisation is not perfectly proportional to the applied field (Néel, 1955; Clark, 1983, 1984; Bloemendal et 
al., 1985; Smith and Banerjee, 1987; Worm, 1991; Worm et al., 1993; Markert and Lehmann, 1996; Jackson et al., 1998; de Wall, 
2000; Hrouda , 2002; de Wall and Nano, 2004; Vahle and Kontny, 2005; Hrouda et al., 2006; Martin-Hernandez et al., 2008; 
Guerrero-Suarez and Martin-Hernandez, 2012) and the concept of susceptibility becomes less clear. Ideally, susceptibilities of rocks 
and ores should be measured in a field that is similar to that of the geomagnetic field at their location. However, many susceptibility 
instruments use fields that are up to an order of magnitude stronger than the geomagnetic field, in order to improve sensitivity (see 
Table 1). Furthermore the apparent susceptibility can be somewhat different, depending on the physical principle used in the 
measurement. This means that, in some circumstances, field-dependence of susceptibility may need to be taken into account when 
using susceptibility measurements. Measured anisotropy of susceptibility values can be significantly affected by field-dependence of 
susceptibility (Markert and Lehmann, 1996; de Wall, 2000; Hrouda, 2002, 2007; Vahle and Kontny, 2005; Hrouda et al., 2006; 
Guerrero-Suarez and Martin-Hernandez, 2012), with implications for petrofabric studies and for magnetic modelling of highly 
anisotropic rock units, although orientations of magnetic foliations and lineations are usually less affected.  Although field-
dependence of susceptibility complicates magnetic petrophysics, magnetic fabric studies and magnetic modelling, it may have merit  
as a tool for characterising magnetic mineralogy and magnetic granulometry (Bloemendal et al., 1985; Jackson et al., 1998; de Wall, 
2000; Hrouda , 2002; de Wall and Nano, 2004; Vahle and Kontny, 2005). Except at very low fields (generally much less than the 
geomagnetic field), field-dependent susceptibility reflects irreversible magnetisation processes and hence it is associated with 
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magnetic memory effects, such as isothermal remanence and hysteresis. Hysteresis in an alternating applied field produces a phase 
lag of the magnetisation behind the field and introduces odd harmonics into the susceptibility signal (Chikazumi and Charap, 1978, 
p.296-298). The phase lag introduces a quadrature component into the fundamental frequency component of the measured 
susceptibility (Worm et al., 1993), as seen by Bloemendal et al. (1985) in basalts that contain titaniferous magnetite, which can 
masquerade as an effect due to magnetic viscosity.  The phase lag also implies that measured susceptibility depends on the method of 
measurement. Phase-sensitive detection of the induced magnetisation signal yields the in-phase susceptibility component, whereas 
detection of signal amplitude at the excitation frequency, without regard to phase, yields the total susceptibility (square root of the 
summed squares of the in-phase and quadrature signals). 
 

FIELD-DEPENDENT MAGNETIC SUSCEPTIBILITY - THEORY 
 
When a weak magnetic field (one that is small compared to the coercive field Hc) is applied to an initially demagnetised material, the 
magnetisation Mi of the material often exhibits a quadratic dependence on the applied field H: 
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where χ is the initial susceptibility and η is the Rayleigh parameter.  If the applied field increases to a maximum Hm and then is 
decreased, the magnetisation Md on the concave-downward descending arc obeys 
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where Mm = M(Hm) is the maximum magnetisation attained and is given by 
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If, after the field decreases to H1 (but not to less than −Hm) and the corresponding magnetisation decreases to M1, the field is 
increased again, the magnetisation Ma on the concave-upward ascending branch of the hysteresis loop obeys 
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From (2)-(4), therefore, if the field is cycled between ± Hm the magnetisation Ma on the ascending arc obeys 
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Equations (2) and (5) describe two parabolic arcs that together comprise a hysteresis loop, known as a Rayleigh loop. Relations (1)-
(5) are known as Rayleigh’s Laws, as they were first formulated by Lord Rayleigh (1882). Néel gave the first physically convincing 
model of these hitherto purely phenomenological laws, in terms of displacement of domain walls over multiple energy barriers 
produced by random fluctuations in material properties (Néel, 1988). Figure 1 illustrates the general form of the initial magnetisation 
curve and Rayleigh loop for a magnetic material that exhibits pronounced hysteresis in weak fields. From (2) and (3), the isothermal 
remanent magnetisation (IRM) obtained after reducing the field from Hm to zero is given by 
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Equation (6) can in principle to be used for determining the Rayleigh parameter of a magnetic material by measuring the IRM 
imparted by applying a field Hm, which is then reduced to zero, to an initially demagnetised sample.  
    The total differential susceptibility kdiff  is the slope of the magnetisation curve, and includes contributions from both reversible and 
irreversible processes. From (1), for the initial magnetisation curve this is given by 
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From (2) and (5) the differential susceptibility around the Rayleigh loop is 
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We can also define an average susceptibility for the initial magnetisation curve as the ratio of the maximum magnetisation attained to 
the maximum applied field. From (3) this is given by 
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It follows from (8) that the differential susceptibility at the loop turning points, immediately after each field reversal, is equal to the 
initial susceptibility χ, as shown in Figure 1.  At all other points of the loop, kdiff > χ.  At the points where the loop crosses the 
magnetisation axis, kdiff (M = ± MIRM, H = 0) = kav = χ + ηHm.  For each point (M, H) on the Rayleigh loop a reversible susceptibility 
krev can be measured by superimposing a small oscillating field ΔH << Hm on the steady applied field. According to (4), the resultant 
magnetisation describes a very thin minor hysteresis loop that essentially parallels the initial magnetisation curve near the origin. The 
average slope of this minor loop represents the reversible susceptibility and is given by krev = χ + ηΔH ≈ χ.  From the above 
discussion, it follows that in general susceptibility is not uniquely defined. Furthermore, measured susceptibility depends on the field 
in which it is measured, on the past magnetic history of the sample (including remanence it has acquired), and on the measurement 
method. 

The initial susceptibility χ represents reversible magnetisation processes. These processes include, for single domain and 
multidomain ferromagnetic mineral grains, rotation of magnetisations within magnetic domains away from the easy magnetisation 
axis in response to the perpendicular component of the applied field, as well as the contribution of paramagnetic and diamagnetic 
minerals. In multidomain ferromagnetic grains, bowing of domain walls between pinning sites and reversible lateral displacement of 
domain walls within local energy minima, away from their equilibrium positions, are important contributors towards the reversible 
susceptibility. In the Rayleigh region, irreversible jumps of domain walls over potential barriers between local energy minima, in 
response to the applied field, account for the Rayleigh coefficient.   
 

EFFECTS OF SELF-DEMAGNETISATION ON FIELD-DEPENDENT SUCEPTIBILITY 
 
The theory discussed above relates to the response of intrinsic properties to the internal field experienced by the magnetic material. It 
therefore applies to magnetisations measured in a closed magnetic circuit (e.g. a toroidal sample in a toroidal coil or a sample tightly 
fitting a narrow gap in a ring of high permeability material); or measured along the axis of a long thin sample or in the plane of a thin 
disc-like sample; for which the internal field is essentially equal to the external applied field. More generally, however, the internal 
field H′ is the resultant of the external applied field H and the demagnetising field produced by the magnetisation of the sample. The 
modified internal field is given by 
 

,NMHH −=′           (10) 
 
where N is the demagnetising factor of the sample along the axis of measurement. In SI, 0 ≤ N ≤ 1 and, for a uniformly magnetised 
sample, the sum of the demagnetising factors along three orthogonal directions (principal axes of the volume-averaged 
demagnetising tensor) is one (Brown, 1962). Rearranging (19) gives a useful expression for the magnetisation in terms of the external 
and internal fields: 
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Substituting (10) into (1), the modified internal field obeys 
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The physically meaningful root of the quadratic equation (12) gives the following expression for the internal field in terms of the 
external applied field: 
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Substituting (13) into (1) or (10) gives alternative, equivalent, expressions for the initial magnetisation curve, subject to self-
demagnetisation: 
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Equation (14) does not accord with Rayleigh’s relation for the initial magnetisation curve, so it can be seen immediately that the 
general applicability of the Rayleigh laws is compromised by self-demagnetisation. For the important case where ηHm << χ, 
however, equation (14) reduces to 
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where cubic and higher order terms in H have been neglected. Thus, provided the maximum applied field is not too strong, the initial 
magnetisation curve of the sample conforms to Rayleigh’s laws, to a good approximation: 
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where χ′ and η′ are the apparent or effective (demagnetisation-limited) initial susceptibility and Rayleigh coefficient, given by 
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Note that χ′ < χ and η′ < η.  The relations (10)-(17) are applicable to measurements made on a macroscopic homogeneous sample, or 
to the magnetisation of a mineral grain in a rock, soil or ore.  Néel (1955) gave expressions equivalent to (17) for the 
demagnetisation-limited susceptibility and Rayleigh coefficient, and stated that the Rayleigh laws still apply to magnetic particles 
when self-demagnetisation is considered. As can be seen from (14), this conclusion is not strictly correct, but is reasonable in many 
circumstances.  

For magnetic materials with high intrinsic susceptibility, equation (17) implies, firstly, the well-known suppression of the 
apparent susceptibility by self-demagnetisation and, secondly, an even stronger suppression of the Rayleigh coefficient. The 
shielding factor for the Rayleigh coefficient is equal to the cube of the shielding factor for the intrinsic susceptibility. As the intrinsic 
susceptibility increases without limit, such that Nχ >>1,  χ′ → 1/N and η′/η, η′Hm/χ, η′Hm/χ′ → 0.  In these circumstances, the 
magnetisation becomes essentially proportional to the applied field, hysteresis becomes negligible, the Rayleigh loop closes, and the 
susceptibility is field-independent.  On the other hand, if Nχ << 1, either because N is very small or χ << 1, then  χ′ ≈ χ and η′ ≈ η.  
The intrinsic properties can be determined from measured properties of a sample that is subject to self-demagnetisation by inverting 
(17): 
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Beyond the range of validity of the Néel approximation, the intrinsic properties may be estimated by using (10) to calculate H′ and 
fitting a straight line to M/H′ (= χ + η′H′) versus H′.  Markert and Lehmann (1996) give an expression equivalent to η ≈η′(1+3Nχ′) 
for the relationship between the intrinsic and extrinsic (demagnetisation-affected) Rayleigh coefficients, but their approximation is 
only valid for Nχ << 1. The self-demagnetisation corrections of (18) are difficult to apply when Nχ >>1, because the denominators 
(1−Nχ′) become very small, so that measurement errors become amplified. For this reason, measurements of highly magnetic 
samples are usually made with a geometry that ensures that N is very small. From (14), the maximum magnetisation attained in an 
applied field of Hm is 
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Provided the maximum field is not too large 
 

,)(     ,
)1()1(

2
3

2

χηηχ
χ

η
χ

χ <<′+′=
+

+
+

≈′ mmm
mm

m HHH
N
H

N
HM       (20) 

 
The effect of self-demagnetisation on the descending and ascending arcs of the Rayleigh loop can be obtained similarly. The results 
are 
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where the approximate expressions on the RHS of these equations apply if the nonlinearity is not too great, up to the maximum field.   
Thus, under the conditions of the Néel approximation (ηHm << χ), and to the second order in the applied field, the Rayleigh laws are 
still obeyed throughout the hysteresis loop even when self-demagnetisation is considered. However, considerable departures from the 
Rayleigh relations occur when ηHm > χ.  Figure 2 shows the field-dependence of kav = M/H, calculated using the exact expression 
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(14), for a spherical sample or for an equidimensional magnetic grain, with intrinsic properties χ = 0.1 SI, η = 0.001 m/A, in fields 
up to 1000 A/m. The corresponding Néel approximation, calculated using (16) and (17), is also shown for comparison.  The Néel 
approximation implies a linear increase of susceptibility with field over the full range of applied fields. The exact expression yields a 
line with significant curvature and shows that the suppression of the Rayleigh coefficient by self-demagnetisation is even stronger 
than predicted by the Néel approximation. The two curves are in good agreement up to 100 A/m (ηH/χ = 1), but diverge significantly 
thereafter. Figure 3 illustrates the effect of self-demagnetisation on low-field hysteresis loops of equidimensional samples or 
magnetic grains. Self-demagnetisation reduces the slope of the loop axis and narrows the loop. These effects are very substantial 
when the initial susceptibility is high (~1 SI or higher). The Néel approximation is clearly grossly in error for the case ηH/χ = 10 and 
noticeably differs from the exact calculation even for ηH/χ = 1. Figure 4 shows the predicted effects for differing demagnetising 
factors, reflecting sample or grain shape, on measured susceptibility versus applied field curves, for several different combinations of 
intrinsic properties.  Self-demagnetisation flattens the slope of the susceptibility-field curve, especially for higher intrinsic 
susceptibility, and produces concave-down curvature. Since the Rayleigh relationships imply a linear increase of susceptibility with 
increasing field, this curvature on the plots that use a linear scale for the field indicates departures from the Rayleigh relationships. 
Because field-dependence of susceptibility is often measured over several decades of field strength, a logarithmic scale for the field is 
often used for convenience of display in published studies. The plots on the RHS of Figure 4 show that this form of display gives the 
impression of constancy of susceptibility throughout the lower end of the field range, which then increases substantially at higher 
fields. The pronounced curvature of the log-scale plots tends to obscure the conformity, or otherwise, of the data with the Rayleigh 
laws.  

 
FIELD-DEPENDENT SUSCEPTIBILITY OF ROCKS AND MINERALS 

 
The Rayleigh relations predict that susceptibility, however measured, should increase linearly with applied field. Experimentally it is 
found that rocks, ores and soils obey the Rayleigh laws over a limited range of applied fields. In very low fields, much less than the 
geomagnetic field, susceptibility is often found to be almost field-independent or to increase much more slowly than is predicted by 
measurements made in moderate fields, or even to decrease slightly with increasing field (Smith and Banerjee, 1987; Hrouda et al., 
2006). The Rayleigh laws usually provide a quite good fit to the measured field- dependent susceptibility over a limited range of 
applied fields usually, but not always, spanning the geomagnetic and common instrumental field range, in some cases up to several 
decades of field strength. In all cases, the Rayleigh relationships break down for sufficiently high fields, generally several times to 
many times higher than the geomagnetic field. 

Studies of rocks and ores containing nearly pure magnetite as the only significant magnetic mineral (Worm et al., 1993; Hrouda, 
2002; Hrouda et al., 2006), as well as measurements on synthetic samples with dispersed magnetite grains (Jackson et al., 1988; de 
Wall, 2000; Hrouda, 2002; Vahle and Kontny, 2005; Hrouda et al., 2006), consistently show negligible field dependence of 
susceptibility for applied fields ranging from less than the geomagnetic field up to the fields commonly used in laboratory 
measurements, which can be an order of magnitude higher than the geomagnetic field. This is somewhat comforting, because 
magnetite is the most common magnetic mineral in rocks and ores that are associated with magnetic anomalies. However, similar 
studies of samples that contain titaniferous magnetite (Bloemendal et al., 1985; Smith and Banerjee, 1987; Worm, 1991; Worm et al., 
1993; Markert and Lehmann, 1996; Jackson et al., 1998; de Wall, 2000; Hrouda , 2002; de Wall and Nano, 2004; Vahle and Kontny, 
2005; Hrouda et al., 2006), monoclinic pyrrhotite (Clark, 1983, 1984; Worm, 1991; Worm et al., 1993; Markert and Lehmann, 1996; 
Martin-Hernandez et al., 2008; Guerrero-Suarez and Martin-Hernandez, 2012), or large crystals of hematite (Guerrero-Suarez and 
Martin-Hernandez, 2012), which can also be important sources of magnetic anomalies, consistently show significant field-
dependence of susceptibility.  

Jackson et al.(1998) showed that the measured susceptibility of a pure magnetite single crystal in the form of a sphere ~1.5 mm in 
diameter was essentially indistinguishable, within the accuracy of the measurements, from the theoretical upper limit of 1/N = 3 SI. 
This means that the intrinsic susceptibility is so large that it is indistinguishable from infinity, using this method of measurement, and 
that the field dependence must be negligible, because the observed low field susceptibility has already attained its ceiling in low 
fields. With increasing titanium content the observed susceptibility in fields smaller than, and comparable to, the geomagnetic field 
decreases to values well below the 1/N limit, so the characteristic increase of susceptibility with increasing field can be observed. 
Furthermore, equation (18) can be applied to calculate the intrinsic initial susceptibility and Rayleigh coefficient for these samples. 
Several studies have confirmed the correlation between the degree of field-dependence of susceptibility of titanomagnetite-bearing 
rocks and measured Curie temperatures, which serve as a proxy for titanomagnetite composition (de Wall, 2000; de Wall and Nano, 
2004; Vahle and Kontny, 2005). Table 2 lists measured initial susceptibilities and Rayleigh coefficients for well-characterised large 
crystals of titanomagnetite, sized monoclinic pyrrhotite grains and large hematite crystals, along with estimated intrinsic properties, 
calculated using the Néel approximation. The parameter ηH/χ, calculated for an applied field of 300 A/m, which characterises the 
reliability of the Néel approximation and the applicability of equation (18) is also given. Table 2 also gives a standard measure of the 
observed field-dependence of susceptibility for these samples, kHd, given by the percentage increase in susceptibility from 30 A/m to 
300 A/m. kHd  ranges from < 1% for pure magnetite to ~20% for moderately Ti-rich titanomagnetite, from ~4% for 30 μm pyrrhotite 
to  45% for 250 μm pyrrhotite, and falls in the range 62%-73% for large hematite crystals. Hrouda et al. (2006) report measurements 
of field-dependence of susceptibility (in this case over the range <10 A/m to 450 A/m) for titanomagnetite-bearing rocks of up to 
70%-80%; and in pyrrhotite-bearing rocks of up to 150% and occasionally more.  These data show clearly that failing to account for 
field-dependence of susceptibility can lead to substantial errors in estimating induced magnetisation in the geomagnetic field.  
 

CONCLUSIONS 
 

Field-dependence of susceptibility is negligible for most rocks and ores for which nearly pure magnetite is the only significant 
magnetic mineral. Susceptibility is strictly field-independent for weakly magnetic rocks that contain only paramagnetic and/or 
diamagnetic minerals. Many rocks and ores that contain titaniferous magnetite, monoclinic pyrrhotite, or very coarse-grained 
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hematite exhibit pronounced field-dependence of susceptibility. The non-linearity of the initial magnetisation, which translates into 
susceptibility that varies with the applied field, is more pronounced for larger grain sizes that contain many magnetic domains. For 
samples of this type, measurements of susceptibility in fields that are substantially larger than the geomagnetic field, can significantly 
overestimate the geophysically applicable susceptibility of the sampled lithology. Measurements of the field-dependence of 
susceptibility can provide information on magnetic mineralogy and granulometry, as well as allowing estimation of the susceptibility 
in the geomagnetic field of the study area.  
     Many commercially available susceptibility instruments use fields that are several times larger, or even an order of magnitude 
larger, than the geomagnetic field. This means that we should exercise caution when applying susceptibility measurements made with 
such instruments. Information on the magnetic mineralogy of the samples, from rock magnetic methods or otherwise, can be used to 
determine if there is likely to be a problem with the measurements. Susceptibility measurements made at least two different field 
strengths can be used to estimate the geophysically applicable susceptibility, by applying Rayleigh’s relationships. Ideally, a 
complete characterisation of the field-dependence of susceptibility by measurements over a substantial range of fields, will give the 
most reliable estimate of the susceptibility in the ambient field of the study area. Since not many laboratories have the capability to 
fully characterise field-dependent susceptibility, susceptibility instruments that use relatively low fields, as close as possible to the 
geomagnetic field range, are preferable to instruments that use relatively strong fields. 
    The Rayleigh laws are modified by self-demagnetisation. This means that, for strongly magnetic samples the measured initial 
susceptibility and a fortiori the measured Rayleigh coefficient are suppressed with respect to the intrinsic properties of the sample by 
an amount that depends on the sample shape, via the demagnetising factor along the applied field.  Within the Rayleigh domain 
intrinsic properties can be recovered by using equation (18) when the Néel approximation is applicable or, for stronger fields, by 
estimating χ and η from a linear regression of M/H′ = M/(H−NM) on H′ = (H−NM). Self-demagnetisation also strongly affects the 
low-field properties of multidomain magnetic mineral grains dispersed within the weakly magnetic matrix of a rock, soil or ore. 
Field-dependence of susceptibility is strongly suppressed by self-demagnetisation for dispersed mineral grains that have high 
intrinsic susceptibility, such as end-member magnetite or nearly pure magnetite. Field-independence of susceptibility has also been 
confirmed over a wide range of fields for single domain magnetite (Hrouda et al., 2006). As the titanium content of titanomagnetite 
increases, the intrinsic susceptibility decreases, and field-dependence of susceptibility becomes important. Field-dependence of 
susceptibility is important for pyrrhotite grains larger than ~10 μm, and becomes more prominent with increasing grain size. 
Multidomain hematite grains, i.e. those larger than 100 μm, also exhibit pronounced field-dependence of susceptibility. 
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Instrument Field (A/m) Type of field Company/Institute 

CSIRO susceptibility bridge1,4 ~80 Peak CSIRO 
KLY12 150 Effective AGICO 
KLY22 300 Effective AGICO 
KLY32 300 Effective AGICO 

KLY4S3 2-450 Effective AGICO 
KLF4A3 5-300 Effective AGICO 
MFK12 2-700 Effective AGICO 
SI2/2B2 60 Peak Sapphire 

Lakeshore 71302 0.1-2000 Peak Sapphire 
SI2 HF12 1-1800 Peak Sapphire 
SI2 HF22 400-40,000 Peak Sapphire 
SI2 HF32 500-80,000 Peak Sapphire 
MS2/32 ~200 Peak Bartington 
MPMS2 0-1600 Effective Quantum Designs 

Magnon VFSM2 20-400 Peak? Magnon GmbH 
“Roly-Poly” magnetic anisotropy bridge2 8-800 Effective Institute for Rock Magnetism 

(University of Minnesota) 
Low field hysteresis loop tracer4,5 0-1200 Peak Arun Electronics 

*Data sources: 1Ridley and Brown, (1980);  2Guerrero-Suarez and Martin-Hernandez (2012); 3Hrouda et al. (2006); 
4Clark (1983);  5Radhakrishnamurty and Sastry (1970). 

Table 1. Applied fields used by susceptibility instruments* 
 
 
Mineral χ′ η′ χ η ηH/χ  (H = 300 A/m) kHd (%) 
TM0 (1-2 mm)1,2

 2.99 ~10−4 > 50 - - 0.7 
TM5 (1-2 mm)1,2 2.84 ~4×10−4 ~50 ~2.5 ~15 3.8 
TM28 (1-2 mm)1,2 2.64 0.00152 22 0.84 12 13.3 
TM41 (1-2 mm)1,2 2.23 0.00264 8.6 0.15 5.3 23.6 
TM55 (1-2 mm)1,2 1.93 0.00148 5.4 0.032 1.8 16.7 
Pyrrhotite2,3 (250 μm) 0.174 5.82E-04 0.182 0.00066 1.00 45.1 
Pyrrhotite 2,3 (150 μm) 0.155 4.04E-04 0.161 0.000452 0.78 39.5 
Pyrrhotite 2,3 (100 μm) 0.132 2.61E-04 0.136 0.000287 0.59 33.5 
Pyrrhotite 2,3 (75 μm) 0.107 1.00E-04 0.110 0.000108 0.28 19.7 
Pyrrhotite 2,3 (55 μm) 0.087 7.00E-05 0.089 0.0000745 0.24 17.5 
Pyrrhotite 2,3 (40 μm) 0.072 4.00E-05 0.073 0.0000421 0.17 12.9 
Pyrrhotite 2,3 (30 μm) 0.059 1.00E-05 0.060 1.04E-05 0.05 4.4 
Hematite2 0.173 0.00255 0.180 0.00289 4.4 73.4 
Hematite2 0.29 0.00328 0.312 0.00407 3.4 69.5 
Hematite2 0.163 0.00119 0.170 0.00134 2.2 61.8 
1Jackson et al. (1998); 2Hrouda (2002); 3Worm et al. (1993). TMx = titanomagnetite with x% ulvospinel content 
kHd = field dependence of susceptibility = [k(H = 300 A/m) − k(H = 30 A/m)]/ k(H = 300 A/m) × 100% ; N = 1/3 assumed 

Table 2. Field-dependent susceptibility properties of common magnetic minerals 
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Figure 1. Intrinsic initial magnetisation curve (solid grey line) and Rayleigh hysteresis loop (black) for a magnetic material 
with initial susceptibility χ and Rayleigh parameter η, for the case where χ = ηHmax. Note that the total differential 
susceptibility at each turning point of the loop, immediately after a field reversal, is equal to the initial susceptibility. The 
total differential susceptibility at all other points of the loop and along the initial magnetisation curve, and the average 
susceptibility over the interval [0,Hm] of the initial magnetisation curve, are greater than χ. 
 

 
Figure 2.  Comparison of the exact expression for the field-dependent average susceptibility kav = M/H with the Néel 
approximation kav = χ ′ +η ′H, as a function of applied field, for a spherical specimen or magnetic particle (N = 1/3). The 
intrinsic properties used for this calculation are χ = 0.1 SI and η = 0.001 m/A. Note the significant divergence of the exact 
solution from the Néel approximation for ηH/χ > 1. 
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Figure 3. Effect of self-demagnetisation on the intrinsic Rayleigh loop. A spherical sample or mineral grain, for which N = 1/3 
SI, is assumed. (a) χ = 1 SI, η = .001 m/A,  ηHm/χ = 1; (b) χ = 1 SI, η = .01 m/A,  ηHm/χ = 10. The intrinsic Rayleigh loop is 
shown in grey; the measured loop, accounting for self-demagnetisation, is in black; and the Néel approximation to the 
measured loop is shown by the dashed line. 
 

 
Figure 4. Effect of self-demagnetisation on field-dependent susceptibility. The horizontal axis is the external applied field H; 
the vertical axis is kav = M/H, where M is calculated using the exact treatment of self-demagnetisation. The horizontal scale is 
linear on the LHS and logarithmic on the RHS. For (a) and (b) the assumed intrinsic properties are χ = 0.1 SI, η = 0.001 m/A; 
for (c) and (d) they are χ = 1 SI, η = 0.01 m/A.  In both cases ηHm/χ = 10 for a maximum applied field of 1000 A/m. Values of 
the demagnetising factor range from N = 0 (e.g. a sample in a closed magnetic circuit, or a needle-like grain with its long axis 
aligned with the field) to N = 1 (a thin disc-like sample or grain, perpendicular to the field), and are indicated next to the 
corresponding kav vs H curve. 

Field-Dependent Susceptibility of Rocks and Ores — Implications for Magnetic Petrophysics and Magnetic Modelling Clark

ASEG-PESA-AIG 2016 August 21–24, 2016, Adelaide, Australia9


