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SUMMARY 
 

The integration of geological modelling, petrophysics and geophysics in a single inversion scheme is a complex and powerful strategy 

for solving challenges faced in geoscientific resource exploration. Probabilistic geological modelling and geophysical inversion are 

non-linear processes that show various degrees of sensitivity to uncertainty in input measurements. Using field geological 

measurements from the Mansfield area (Victoria, Australia) and synthetic geophysical data, we present a synthetic case study 

investigating the impact of geological uncertainty on constrained joint geophysical inversion. We investigate the influence of uncertain 

geological measurements on geologically constrained inversion through a sensitivity analysis to uncertainty in orientation data. 

Probabilistic geological models used to define constraints for geophysical joint inversion are obtained through a Monte-Carlo based 

uncertainty estimation (MCUE) method. We simulate a broad range of possible cases through a parameter sweep on uncertainty levels 

in geological measurements to provide a reference for practitioners. The analysis and comparison of the results at varying uncertainty 

levels show that results can be grouped into two main categories. For the highest uncertainty levels, significant portions of the models 

retain the characteristic features of geologically unconstrained inversions. Meanwhile, below a threshold in uncertainty level, inversion 

benefits from the interaction of geophysical data and geologically conditioned constraints. In such cases, inverted models are improved 

compared to both the geological modelling alone and geologically unconstrained inversion. The conclusion of this work is that 

knowledge of this threshold is critical for the interpretation of results and decision making because it indicates whether the datasets 

provide enough information to take advantage of the complementarities between geological modelling and geophysical inversion. 

Knowledge of this threshold can also support decision making pertaining to inversion strategies and geological field data collection.  
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INTRODUCTION 
 

In the past decade, the integration of different geophysical techniques has been of growing importance in geophysical resource 

exploration due to the need to exploit complementarities between exploration techniques in increasingly challenging scenarios. 

Previous studies have focused on joint inversion techniques using constraints enforcing structural similarity between the different 

models (Gallardo and Meju, 2003; Colombo and De Stefano, 2007), or the use of constitutive petrophysical laws to link the different 

domains (Gao et al., 2012).  

More recently, Sun and Li (2012, 2016) have introduced clustering algorithms as a means of enforcing similarities between the inverted 

model and prior petrophysical data. Zhang and Revil (2015), and more recently Bijani et al. (2017) and Giraud et al. (2016 and 2017) 

integrate petrophysics and geology in joint inversion and demonstrate the advantages of integration and joint inversion. However, even 

if the goal of the aforementioned methods is to obtain better-constrained models, little work has been done to quantify the impact of 

uncertainty in non-geophysical sources of information used to derive constraints accounting for geological information (Reid et al., 

2013).  

 

In this extended abstract, we present a study of the sensitivity of integrated geophysical inversion to uncertainty in geological 

measurements. Using quality and similarity indicators, we characterize the response of inverted models to varying geological 

uncertainty. Knowledge of the dependency of constrained inversion to the uncertainty of input geological data is key to guide 

geoscientists during inversion result interpretation, survey design or project management. In this study we first introduce the inverse 

modelling approach in three steps (i) the objective function, (ii) we explain how the probabilistic geological model (PGM) is obtained 

and (iii) how it is used to condition petrophysical constraints. In the second section, we introduce our synthetic case study. The third 

and last section presents and illustrates the findings of the study. 



 

AEGC 2018: Sydney, Australia   2 

 

 

MODELLING APPROACH 

 
Inversion framework  

We formulate the inverse problem in a least-squares sense using the framework introduced by Tarantola and Valette (1982). Let the 

objective function we minimize be:  

𝜃(𝒎) = (𝒎𝟎 − 𝒎)𝑇𝑪𝒎
−𝟏 (𝒎𝟎 − 𝒎) + (𝒅 − 𝒈(𝒎))

𝑇
𝑪𝒅

−𝟏(𝒅 − 𝒈(𝒎)) + 𝛩𝑐(𝑷(𝒎)), (1) 

 
    model misfit          data misfit  constraints 
 

where 𝜃(𝐦) is the function to be minimised. 𝒎 represents the inverted model while 𝒅 represents the measurements. 𝒈 is the operator 

that calculates the data 𝒎 produces. 𝒎𝟎 is the starting model. 𝑪𝒎 and 𝑪𝒅 are the model covariance and data covariance matrices, 

respectively. 𝑷 is statistical representation of petrophysical measurements in the area and 𝛩𝑐  is a function of 𝑷 giving the constraints 

to be optimized.   

The first two terms in equation (1) relate to model and data misfit, respectively. The third term is a measure of the closeness of the 

petrophysical values of 𝒎 and the lithologies observed in the studied area. With spatial geological conditioning, it acts as a local 

constraint on inversion.  

 

We minimize 𝜃(𝐦) using the least-square root algorithm (see Paige and Saunders, 1982) as implemented in the inversion platform 

TOMOFAST3D (Martin et al., 2013). We extended TOMOFAST3D to the joint inversion of gravity and magnetic data using 

geologically conditioned petrophysical constraints, implementing in 3D the methodology introduced for 2D scenarios by Giraud et al. 

(2017).  

 

Monte-Carlo Uncertainty Estimation  

MCUE is a heuristic uncertainty propagation method for 3D geological modelling that uses topological rules and structural data as 

inputs, for which we vary the level of uncertainty (Pakyuz-Charrier et al., 2017). MCUE is a stochastic method which samples 

probability distributions that are thought to best represent input uncertainty (e.g. a representation of measurement error about geological 

structural data). This approach produces a suite of geologically plausible models. The error distribution of input orientation data is 

represented by a von Mises-Fisher distribution (vMF). The parameter of the vMF which we vary here, κ, can be interpreted as the 

analogous to the inverse of the standard deviation for Gaussian distributions. In our case, using Mardia and Jupp (2000), the vMF can 

be written as:  

 𝑣𝑀𝐹(𝑥|𝛾, 𝜅) =
𝜅

4𝜋 sinh(𝜅)
 𝑒𝜅𝛾𝑇𝑥, 𝜅 ∈ ℝ+ and ‖𝛾‖ = 1, (2) 

where 𝑥 is the vector representing orientation data. 𝑇 denotes the transpose operator. 𝛾 is the mean direction vector. 𝜅, the parameter 

we study here, is called the concentration parameter. It is analogous to the inverse of the standard deviation for normal distributions.  

 

The suite of plausible models is combined into a PGM that records the probabilities of each geological model over a 3D grid. For the 

𝑖-th cell of the medium, the probability of rock unit 𝑗 is given by 𝜓𝑗,𝑖, with ∑ 𝜓𝑗,𝑖 
𝑛𝑙 
𝑗=1 = 1. If the geological dataset is perfectly 

constrained, the PGM reduces to the original geological model. For sufficiently uncertain data, all units are nearly equiprobable. 

Examples displayed in Figure 1 show the probability cube obtained for the basement lithology, with κ = 4, 20 and κ = 90, equivalent 

to decreasing levels of uncertainty in the measurements. 

 

Geologically conditioned petrophysical constraints 
To maximize the similarity between the statistical properties of the measured petrophysical data and the inverted model we follow 

concepts introduced by Sun and Li (2012, 2016) and Lelièvre et al. (2012) and condition the petrophysical constraints geologically 

following Giraud et al. (2017): 

𝑷(𝒎) =

[
 
 
 

𝑃1(𝑚1)

𝑃2(𝑚2)
…

𝑃𝑛𝑚
(𝑚𝑛𝑚

)]
 
 
 

, with 𝑃𝑖(𝑚𝑖) = ∑ 𝜓𝑘,𝑖 𝑁(𝑚𝑖|𝝁𝒌, 𝝈𝒌)

𝑛𝑙

𝑘=1

, (3) 

In equation (3), each normal distribution 𝑁 is characterized by a mean value vector, 𝝁𝒌, which corresponds to the mean value for the 

𝑘-th lithology, and the associated covariance matrix, 𝝈𝒌. 𝜓𝑘,𝑖 is the relative weight of the 𝑘-th lithology in the 𝑖-th cell that is extracted 

from the probabilistic geological model. The parameters 𝝈𝒌 and 𝝁𝒌, are estimated from petrophysical measurements in the area. Once 

𝜓𝑘,𝑖 and 𝑁 are computed, the starting model 𝒎𝟎 is derived from the mathematical expectation of 𝑷. 

 

SENSITIVITY ANALYSIS 
 

Test model 

We built the 3D unperturbed geological model from surface orientation (foliations) and contact (interface points) data collected in the 

Mansfield area (Victoria, Australia). It presents a Carboniferous sedimentary syncline oriented N170, abutting a faulted contact with 

a folded ultramafic basement. The complexity of the model was artificially increased to better test the inversion algorithm through 

the addition of a fictitious north-south fault and of a mafic intrusion to the south-west. The original Mansfield model can be found as 

part of the GeoModeller installation (Tutorial case study H). Figure 2 shows the resulting magnetic susceptibility and density 
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contrast. Figure 3 shows and the statistical petrophysics when all lithologies are unweighted and equiprobable (e.g., all 𝜓𝑘,𝑖 equal to 

1/6 as there are 6 lithologies in our model).  
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                                  κ = 4                κ = 20          κ = 90 

 
  Figure 1 – Comparison of probabilities of a given voxel belonging to the basement lithology class for different κ values.  

 

 
 

Figure 2 – Unperturbed (or true) model, density contrast (in kg per cubic meter) and magnetic susceptibility (SI). 

 

 
 

Figure 3 – Petrophysical model. Crosses symbolize the centre of Gaussians defining N used to derive the petrophysical 

constraints. The brighter values corresponds to the case where two lithologies have the same properties.  
 

Orientation parameter 

We generated a series of probabilistic geological models using uncertainty levels on orientations with κ ranging between 0.1 and 200. 

We made the hypothesis that uncertainty on for the interfaces’ locations was equal to 50m (isotropic and uniform) for all simulations. 

Figure 1 shows the probability model obtained for the cases κ = 4, 20, and 90, corresponding to cases level where 99% of the data lies 

within 52, 22 and 12.5 degrees aperture cones, respectively. The tested uncertainty levels range from values corresponding to high 

quality field data (κ = 200, e.g., 7 degrees aperture cone) to highly uncertain, poor quality field data (κ < 10), to nearly void of 

information measurements (κ = 0.1, 160 degrees aperture cone) with maximum uncertainty.  

 

Quality and similarity indicators 

We characterize the distance between inverted and true models using the root-mean-square (RMS) misfit between true and inverted 

models. We also compare spatial variations of inverted and true models by calculating the cosine between their respective spatial 

gradients. To complement the analysis, we calculate the different components of the Structural SIMilarity index (SSIM, Wang et al., 

2004). The SSIM index is the products of three terms, which characterise the closeness between inverted and true models in terms of 

“texture”, “contrast”, and “structure”.  

 

RESULTS 
 

Comparisons of inverted models demonstrates that below a threshold of κ=20, the geology of inverted models (Figure 4) is inconsistent 

with that of the true model even if inversion results are better than for unconstrained inversion. This knowledge is critical for sound 

interpretation and decision making. This is illustrated in Figure 4, where the different portions of the high-density contrast lithology 

reconnect for κ = 20 (arrow) for both density contrast and magnetic susceptibility models. In addition, for κ lower than 4, results 

obtained from constrained inversion become very similar to unconstrained inversions. As pointed out in Giraud et al. (2017) and 

references therein, geophysical data misfit in joint inversion exhibits little sensitivity to the level of integration due to the non-

uniqueness of the inversion problem. For this reason, we do not show the evolution geophysical data misfit in this document. 

The SSIM indicator and the RMS model misfit (Figure 5) display rapid improvement of inversion result quality with increasing κ. For 

example, with κ=1, SSIM and RMS indicate significantly improved inversion results compared to unconstrained inversions. 

(1) (2) (3)
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Nevertheless, improvements in terms of similarity between inverted and true models decrease rapidly for 𝜅 ≥ 20 to near stationarity 

for 𝜅 ≥50. This suggests that κ = 20 could be used as a threshold for optimum trade-off between final result quality and data certainty 

level. It also means that it is necessary to reduce other sources of uncertainty to help increase the closeness between true and inverted 

models. For example, better constrained petrophysical distributions would increase inverted to true model fidelity.  

 

For lower values of κ, κ = 1 can be used as a threshold below which the interest of integrating geological information in inverse 

modelling is limited. This means that for κ <1, geological information is too uncertain to be exploited in geophysical inversion. 

 

 
 

Figure 4 – Comparison of inversion results for kappa 4 (a, top), 20 (b, middle) and 90 (c, bottom). 

 

Figure 5 – Plot the Structural SIMilarity (SSIM) index and RMS model misfit for different 𝛋 values, represented in log 

(black) and linear (red) abscissa scale representing 𝛋. 

 

CONCLUSION AND DISCUSSION 

 

The sensitivity analysis of joint inversion to uncertainty in information used to derive constraints illustrates the non-linear relationship 

between input and prior information uncertainty and inversion quality. It also shows that the use of data containing uncertainty may 

improve results significantly even for high input uncertainty levels (for example, κ values as low as 1 permit to reduce the RMS model 

misfit by a factor of 2 with respect to κ = 0.5). However, it also suggests that, provided the input uncertainty level is lower than a 

specific threshold (κ ≥ 20), a decrease may not lead to proportional improvement in inversion results. The threshold value κ = 20 is 

important for both decision making and interpretation in that (i) results are nearly optimum for κ > 20, and that (ii) for 20 > κ > 1, 

efforts in reducing geological input data uncertainty can improve final modelling results quality and uncertainty.  

(b) (b’)

(a) (a’)

(c) (c’)

= 4 = 4

= 20 = 20

= 90 = 90
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Current work include the illustration and validation of the work presented here using geological, petrophysical and geophysical data 

collected in the Yerrida Basin (Western Australia). Current work also extends to the study of the influence of petrophysical 

measurements quality. Future work include the study of the presented work to other sources of uncertainty, with the aim to create a 

more comprehensive study of the influence of uncertainty in prior information and constraints on geophysical inversion results. 
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