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SUMMARY 
 

We have developed an algorithm and released open-source code for 1D inversion of airborne electromagnetic data 

incorporating spatial and conductivity log constraints. The deterministic gradient based inversion algorithm uses an all-at-

once approach, in which whole datasets or flight lines are inverted simultaneously. This allows spatial constraints to be 

imposed while also ensuring the inversion model closely matches any downhole conductivity logs that are near to the flight 

lines. The intent of the algorithm is to improve consistency along and across flight lines by taking advantage of the assumed 

coherency of the geology. 

 

Instead of roughness constraints, ‘sameness’ constraints are used. To implement these the regularization penalizes 

differences between the conductivity of 1D model/layer pairs and the weighted average conductivity of every other 

neighbouring 1D model within a user selected radius of their position. The neighbour averages are computed with inverse 

distance to a power weighting. The comparisons can be made over equivalent elevations. Downhole conductivity log 

constraints are imposed in a similar fashion, by penalizing the differences between conductivity logs, averaged over selected 

intervals, with their respective neighbouring 1D models. Overall the regularization encourages the final 1D conductivity 

models to be as similar as possible to their neighbours and to conductivity logs. 

 

It is demonstrated with an example that the method enhances geological interpretation by improving the model’s continuity 

along and between flight lines, and its match to conductivity logs. 
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INTRODUCTION 
 

Conductivity models derived from layered earth, or one dimensional (1D) inversion of airborne electromagnetic (AEM) data 

often exhibit some degree of incoherency when displayed as depth-sections or imaged grids of depth slices. This can 

particularly be the case for conventional, so called ‘stitched’, 1D inversion where each AEM sounding (or sample) is 

inverted totally independently of all other soundings and then later stitched into a combined model. The incoherence stems 

from noise in the data coupled with the fundamental non-uniqueness of the geophysical inversion process. Increased noise in 

adjacent soundings results in, sometimes large, differences in adjacent conductivity models, leading to conductivity sections 

that are somewhat vertically striped, or have artefacts at depth. 

 

When each sounding is inverted independently there is no opportunity to take advantage of the fact that adjacent 

conductivity models should be correlated at the same lateral scale length as the geology (subsurface conductivity). 

Furthermore, when inverting soundings independently, there is no obvious way to incorporate constraints from downhole 

conductivity log data from boreholes that may be located throughout the survey area. Certainly, if a borehole conductivity 

log is coincident with, or close enough to, a particular sounding it can be used as an a priori constraint, but this will not be 

the case in general. Typically one has to resort to using softer constraints based on a laterally-constant reference model by 

averaging conductivity logs over the whole, or some portion, of the survey area (e.g., Lane et al., 2004). 

 

One way to make use of the assumed lateral continuity of the geology, and hence the conductivity, and to also incorporate 

borehole conductivity log data is to invert some or all of the AEM soundings at once. By doing this some form of lateral 

constraint can be imposed between neighbouring soundings. Also constraints can be imposed between borehole data and 

their neighbouring soundings. This is an approach that has been used successfully for 1D AEM inversion previously, in for 

example, laterally constrained inversion (Auken et al., 2005), holistic inversion (Brodie and Sambridge, 2006; Brodie, 2010) 

and spatially constrained inversion (Viezzoli et al., 2008). Christensen et al. (2009) use a different three-stage procedure 

where the soundings are inverted independently in stages one and three, but in the final stage lateral constraints that were 

derived in the second stage by a parameter correlations technique, are imposed. 
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We have developed a 1D AEM inversion algorithm that inverts multiple samples at once in order to take advantage of the 

lateral correlation of the geology and borehole conductivity log data. Of the aforementioned methods, our is most closely 

similar to spatially constrained inversion (Viezzoli et al., 2008) since it inverts AEM data from soundings distributed across 

multiple flight lines, to a 1D conductivity model attached to each sounding. Rather than using a Voronoi tessellation to 

create a network of neighbouring soundings, across which lateral constraints are applied, our algorithm uses the concept of a 

search radius. Lateral constraints are applied by encouraging the individual layer conductivities of the 1D models to be as 

close as possible to the inverse distance weighted average of all neighbouring models that are within a specified search 

radius distance of itself. Borehole conductivity log data constraints are applied in a similar manner. We give the details of 

the formulation of the inverse problem and a real-data example of its application in the following sections. 

 

METHOD AND RESULTS 
 

Algorithm 
 

Our inversion program is called GALEIALLATONCE because the central concept is to invert all the AEM soundings from a 

particular survey at once, with constraints from all borehole conductivity logs, in a single optimisation problem. Although, 

there are user options for choosing data subsets from a particular flight line, list of flight lines, or polygonal area(s). The 

spatial distribution of the AEM soundings and the boreholes may be arbitrary. Conceptually, there is an individual fixed 

thickness 1D conductivity model associated with or attached to every AEM sounding, with a fixed number, 𝑁𝑙, of layers. 

 

In general there will be 𝑁𝑠 soundings of AEM data to be inverted, which for an AEM system that has 𝑁𝑤 windows (possibly 

in multiple transmitter moments), there will be 𝑁𝑑 = 𝑁𝑠 × 𝑁𝑤 data to be inverted and stored in the column vector 𝒅0 with 

associated assigned errors stored in the vector 𝒅𝑒. We solve for the model parameter vector, 𝒎, which has length 𝑁𝑚 =
𝑁𝑠 × 𝑁𝑙, and is made up of the logarithms of the conductivities (log-conductivity) of the layers of the individual 1D 

conductivity models attached to each AEM sounding. 

 

The algorithm minimises the following penalty or objective function, 

𝛷 = 𝛷𝑑 + 𝜆𝛷𝑚;  subject to 𝛷𝑑 ≈ 1. (1) 

The penalty function is comprised of a data misfit term 𝛷𝑑, a regularisation parameter 𝜆, and a model norm term 𝛷𝑚. The 

regularization parameter 𝜆 is used to tune the relative weights between the data misfit and model norm terms. In the current 

implementation, we manually set λ to a fixed value for all iterations. We expect to implement a line search method (e.g., 

Constable et al., 1987). to automatically choose a suitable value for the regularisation parameter within each iteration in 

future improvements. 

 

Data misfit (𝜱𝒅) 

 

The data misfit term, 

𝛷𝑑 =
𝟏

𝑵𝒅
∑ (

𝒈𝒊(𝒎) − 𝒅𝒊
𝟎

𝒅𝒊
𝒆 )

𝟐

= (𝒈(𝒎) − 𝒅𝟎)
𝑻

𝑾𝒅(𝒈(𝒎) − 𝒅𝟎),

𝑵𝒅

𝒊=𝟏

 (2) 

is a conventional error normalised 𝐿2 measure of misfit between the observed data, 𝒅𝟎, and the forward modelled data, 

𝒈(𝒎). The diagonal matrix, 𝑾𝑑 = (1 𝑁𝑑⁄ )[𝑑𝑖𝑎𝑔(𝒅𝑒)]−2 is the inverse noise covariance matrix normalised for the number 

of data, assuming independent Gaussian noise. The calculation of 𝒈(𝒎) is a straight forward procedure of modelling the 

forward response of the conductivity model attached to each sounding. All forward modelling and analytic derivative 

calculations are carried out using the 1D AEM forward modelling routines described in Brodie (2010). 

 

Model regularization norm (𝜱𝒎) 

 

The model regularization term, 

𝛷𝑚 = 𝛷𝑟 + 𝛷𝑣 + 𝛷ℎ + 𝛷𝑏 , (3) 

is comprised of four terms (𝛷𝑟 , 𝛷𝑣, 𝛷ℎ, 𝛷𝑏), that impose different types of constraints or regularization on the model 

parameters, 𝒎. The relative weights of the four regularization terms can be tuned by setting corresponding weights 

(𝛼𝑟 , 𝛼𝑣, 𝛼ℎ, 𝛼𝑏) on each term, as will become clear in the following equations. 

 

Reference model constraints (𝜱𝒓) 

 

The reference model term, 



 

 

 

 

AEGC 2018: Sydney, Australia   3 

 

 

 

 

 

𝜱𝒓 =
𝜶𝒓

𝑵𝒎
∑ (

𝒎𝒊 − 𝒎𝒊
𝟎

𝒎𝒊
𝒆 )

𝟐

=

𝑵𝒎

𝒊=𝟏

(𝒎 − 𝒎𝟎)
𝑻

𝑾𝒓(𝒎 − 𝒎𝟎), (4) 

penalises discrepancy between 𝒎 and a log-conductivity reference model, 𝒎0. The reference model also serves as a starting 

model in the iterative inversion process. The vector 𝒎𝑒 stores the uncertainties on the conductivity reference model values. 

The tuning factor 𝛼𝑟 is a weight to tune the overall influence of the reference model constraints. Thus the diagonal matrix 

𝑾𝑟 =  (𝛼𝑟 𝑁𝑚⁄ )[𝑑𝑖𝑎𝑔(𝒎𝑒)]−2 is an inverse model parameter covariance matrix normalised for the number of reference 

model constraints and the tuning weight 𝛼𝑟. 

 

Vertical roughness constraints (𝜱𝒗) 

 

The vertical roughness term, 

𝛷𝑣 =
𝛼𝑣

𝑁𝑠
∑

1

𝑁𝑙 − 1
∑ (

𝒎𝒊,𝒌+𝟏 − 𝒎𝒊,𝒌

[𝒕𝒊,𝒌+𝟏 + 𝒕𝒊,𝒌] 𝟐⁄  
)

𝟐𝑵𝒍−𝟏

𝒌=𝟏

=

𝑵𝒔

𝒊=𝟏

𝒎𝑻𝑽𝑻𝑽 𝒎, (5) 

or alternatively, 

𝛷𝑣 =
𝛼𝑣

𝑁𝑠
∑

1

𝑁𝑙 − 2
∑ (

𝒎𝒊,𝒌+𝟏 − 𝒎𝒊,𝒌

[𝒕𝒊,𝒌+𝟏 + 𝒕𝒊,𝒌] 𝟐⁄  
− 

𝒎𝒊,𝒌 − 𝒎𝒊,𝒌−𝟏

[𝒕𝒊,𝒌 + 𝒕𝒊,𝒌−𝟏] 𝟐⁄  
)

𝟐𝑵𝒍−𝟏

𝒌=𝟐

= 𝒎𝑻𝑽𝑻𝑽𝒎

𝑵𝒔

𝒊=𝟏

, (6) 

penalises the vertical roughness of the individual conductivity models. Here, 𝑚𝑖,𝑘   and 𝑡𝑖,𝑘 denote the log-conductivity and 

thickness of the 𝑘th layer of the model attached to the 𝑖th sounding respectively. The factor 𝛼𝑣 is a weight to tune the overall 

influence of the vertical roughness constraints relative to the other regularization constraints. In Equation (5) the roughness 

norm is measured in terms of first derivatives, and 𝑽  is a normalised first-finite-difference operator matrix (i.e., of the form 

[… −1 1 …] ). In Equation (6) the roughness norm is measured in terms of second derivatives, and 𝑽  is a normalised 

second-finite-difference operator matrix (i.e., of the form [… 1 −2 1 …] ). In both cases, the matrix 𝑽  also absorbs 

the tuning weight and factors to normalise for the number of constraints, (i.e., √𝛼𝑣 (𝑁𝑠 × [𝑁𝑙 − 1])⁄  or 

√𝛼𝑣 (𝑁𝑠 × [𝑁𝑙 − 2])⁄ ). Note that the square-root is necessary to account for the 𝑽𝑇𝑽 part of equations (5) and (6). 

 

Lateral continuity constraints (𝜱𝒉) 

 

The lateral continuity term, 𝛷ℎ, is a measure of lateral continuity between the conductivity model associated with every 

sounding and the conductivity of the models at their neighbouring soundings. The measure compares the log-conductivity of 

each layer with the average log-conductivity over the same elevation (i.e., above sea level) range of all its neighbours. It is 

therefore not a smoothness constraint as such, but is probably best 

described as a sameness or flatness constraint. 

 

The influence of each neighbour is weighed by an inverse distance 

to the power, 𝑝 ,scheme. If we denote the 𝑠th sounding to have 𝑛𝑠 

neighbours that are within its search radius distance, 𝑎 ,of itself, 

and that the distance between the 𝑠th and the 𝑡th soundings to be 

𝑟𝑠𝑡, then we can define the normalised inverse distance to the 

power 𝑝 weight that operates between the 𝑠th and the 𝑡th sounding 

to be, 

 

𝒘𝒔𝒕 = {
(

𝟏

𝒓𝒔𝒕
)

𝒑

∑ (
𝟏

𝒓𝒔𝒌
)

𝒑
𝒏𝒔

𝒌=𝟏

⁄ , 𝒓𝒔𝒕 ≤ 𝒂

𝟎, 𝒓𝒔𝒕 > 𝒂

, 

(7) 

such that the weights sum to unity. To prevent large or infinite 

weights, if there happens to be extremely close or coincident 

soundings, if 𝑟𝑠𝑡 is less than 10 m we set it to 10 m. 

 

Since there will be topographic variation within the search radius, 

in general, we need to compare the conductivity of a layer attached 

to one sounding with multiple different layers attached to 

neighbouring soundings. To allow this, we first denote, 𝑣𝑠𝑡𝑘𝑙 to be 

the fractional vertical overlap between the 𝑘th layer of the model 

attached to the 𝑠th sounding, and the 𝑙th layer of the model 

 
Figure 1: For a particular AEM sounding (red 

star), all neighbouring soundings (blue circles) 

within its’ search radius (pale red shaded circle) 

contribute to that soundings lateral constraints. 

Here, the size of the blue circles indicates the 

weights for inverse distance to the power p=1.5 

weighting. Green triangles represent borehole 

locations. 
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attached to the 𝑡th sounding (see Figure 2 for an explanation). Usually 𝑣𝑠𝑡𝑘𝑙, will be zero because any given layer in the 𝑠th 

model will not overlap with many layers in the 𝑡th model. The weighs 𝑣𝑠𝑡𝑘𝑙 are described as a fraction overlap because they 

sum to unity for any pair of soundings 𝑠𝑡. We can now define the lateral continuity term to be, 

𝛷ℎ =
𝛼ℎ

𝑁𝑠
∑

1

𝑁𝑙
∑ ∑ ∑[𝒘𝒔𝒕𝒗𝒔𝒕𝒌𝒍(𝒎𝒕,𝒍 − 𝒎𝒔,𝒌 )]

𝟐

𝑵𝒍

𝒍=𝟏

𝑵𝒔

𝒕=𝟏
𝒕≠𝒔

𝑵𝒍

𝒌=𝟏

𝑵𝒔

𝒔=𝟏

= 𝒎𝑻𝑯𝑻𝑯 𝒎. (8) 

The normalised operator matrix 𝑯  maps the model parameters, 𝒎, to a vector of differences between the model parameters, 

and the averages of the log-conductivity of the layers occupying the same elevation, in the models attached to neighbouring 

soundings, and weighted by their respective distances. The 𝑯  matrix also absorbs the tuning weight and factors to normalise 

for the total number of lateral constraints (i.e., √𝛼ℎ (𝑁𝑠 × 𝑁𝑙)⁄ ). 

 

Borehole conductivity log constraints (𝜱𝒃) 

 

The borehole conductivity regularization term, 𝛷𝑏,  penalises 

discrepancy between the logarithm of downhole conductivity data 

and the log-conductivity of the models attached to its neighbouring 

soundings at the same elevation. Let there be 𝑁𝑏 boreholes with 

conductivity logs to be considered as constraining information. For 

each borehole we segment the borehole conductivity log data into 

sections corresponding to the 1D model layer depths. We denote 

the average, of the measured log-conductivity, over the 𝑘th 

segment of the 𝑏th borehole log as 𝑐𝑏,𝑘
0 , to which we assign 

estimated noise 𝑐𝑏𝑘
𝑒 . In general there will be 𝑁𝑐 ≤ 𝑁𝑏 × 𝑁𝑙, 

borehole constraints in total, because the conductivity logs will 

only intersect a subset of layers due to the limited depth of 

boreholes and any portions of the boreholes that cannot be logged. 

 
Exactly analogous to Equation (7) we calculate a set of weights, 

𝑤𝑏𝑡, to weight 𝛷𝑏 based on the distance between the 𝑏th borehole 

and the 𝑡th sounding. Similarly, analogous to Equation (8) we use 

the weight 𝑣𝑏𝑡𝑘𝑙 that gives the fractional vertical overlap between 

the borehole conductivity log data associated with the 𝑘th segment 

in the 𝑏th borehole and the 𝑙th layer in the model attached to the 𝑡th sounding. The borehole conductivity regularization term 

is then defined as, 

𝛷𝑏 =
𝛼𝑏

𝑁𝑐
∑ ∑ ∑ ∑ [𝒘𝒃𝒕𝒗𝒃𝒕𝒌𝒍

𝒎𝒕,𝒍 − 𝒄𝒃,𝒌
𝟎

𝒄𝒃,𝒌
𝒆 ]

𝟐𝑵𝒍

𝒍=𝟏

𝑵𝒔

𝒕=𝟏

𝑵𝒍

𝒌=𝟏

𝑵𝒃

𝒃=𝟏

= (𝑩 𝒎 − 𝒄𝟎)
𝑻

𝑾𝒃(𝑩 𝒎 − 𝒄𝟎). (9) 

Here 𝑾𝑏 is the inverse noise covariance matrix of the segments of borehole data, assuming independent Gaussian noise, 

normalised for the total number of borehole data segments, and scaled by the tuning weight 𝑾𝑏 = (𝛼𝑏 𝑁𝑐⁄ )[𝑑𝑖𝑎𝑔(𝒄𝑒)]−2. 

The normalised operator matrix 𝑩  maps 𝒎, to a vector of the average log-conductivities corresponding to each borehole 

data segment. The averages are over all the neighbouring soundings within the search radius of the borehole, weighted by 

their respective distances, and over the same elevation range as the 

data segment. 

 

Linearized system of equations 
 

To solve the non-linear inversion problem we use an iterative 

gradient based minimisation scheme to minimise the penalty 

function 𝛷. The solution vector is initialised to the reference model 

𝒎0. In the 𝑛th iteration we seek to update the current model 𝒎𝑛 to 

an improved model 𝒎𝑛+1 such that the revised data misfit, 

𝛷𝑑
𝑛+1 ≈ 0.7 × 𝛷𝑑

𝑛. We begin by substituting the matrix forms of 

Equations (2), (3), (4), (5) (or (6)), (8) and (9) into Equation (1) to 

yield, 

 
 

Figure 2: Illustration of how the fractional vertical 

overlap weights are calculated for the lateral 

constraint for sounding s and linking neighbour t. 

In Equation (8) the fractional overlap weights for 

layer 4 are 𝒗𝒔𝒕𝟒𝟑 = 𝒃 𝒂⁄   and 𝒗𝒔𝒕𝟒𝟒 = 𝒄 𝒂⁄ . 

sounding  s

sounding  t

b

c
a

 
Figure 3: For a particular borehole conductivity 

log (red triangle), all neighbouring AEM soundings 

(blue circles) within its’ search radius (pale green 

shaded circle) contribute to that borehole log’s 

lateral constraints. The size of the blue circles 

indicates the weights for inverse distance to the 

power p=1.5 weighting. 
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𝛷 = (𝒈(𝒎) − 𝒅𝟎)
𝑻

𝑾𝒅(𝒈(𝒎) − 𝒅𝟎)

+ 𝜆 [(𝒎 − 𝒎𝟎)
𝑻

𝑾𝒓(𝒎 − 𝒎𝟎) + 𝒎𝑻𝑽𝑻𝑽𝒎 + 𝒎𝑻𝑯𝑻𝑯𝒎 +  (𝑩𝒎 − 𝒄𝟎)
𝑻

𝑾𝒃 (𝑩𝒎 − 𝒄𝟎)]. (10) 

Using, the first order Taylor series approximation, 

𝒈(𝒎𝒏+𝟏 ) ≅ 𝒈(𝒎𝒏) + 𝑮𝒏(𝒎𝒏+𝟏 − 𝒎𝒏) (11) 

where, 𝑮𝑛 is the Jacobian matrix evaluated at 𝒎𝑛 in model space, whose 𝑖, 𝑗th element is the partial derivative of 𝑖th 

predicted data with respect to the 𝑗th model parameter (i.e., 𝐺𝑖𝑗
𝑛 = 𝜕𝑔𝑖(𝒎𝒏) 𝜕𝑚𝑗

𝑛⁄ ). After substituting 𝒎𝑛+1 for 𝒎 and 

making use of Equation (11), Equation (10) becomes, 

𝜱 = (𝒈(𝒎𝒏) + 𝑮𝒏(𝒎𝒏+𝟏 − 𝒎𝒏) − 𝒅𝟎)
𝑻

𝑾𝒅(𝒈(𝒎𝒏) + 𝑮𝒏(𝒎𝒏+𝟏 − 𝒎𝒏) − 𝒅𝟎)

+ 𝝀 [(𝒎𝒏+𝟏 − 𝒎𝟎)
𝑻

𝑾𝒓(𝒎𝒏+𝟏 − 𝒎𝟎) + 𝒎𝒏+𝟏𝑻
𝑽𝑻𝑽𝒎𝒏+𝟏 + 𝒎𝒏+𝟏𝑻

𝑯𝑻𝑯𝒎𝒏+𝟏

+ (𝑩𝒎𝒏+𝟏 − 𝒄𝟎)
𝑻

𝑾𝒃 (𝑩𝒎𝒏+𝟏 − 𝒄𝟎)]. 
(12) 

A minima of the penalty function is found by differentiating with respect to the new model parameters (𝒎𝑛+1 ) and setting 

the result to zero, which yields, 

𝝏𝛷 𝝏𝒎𝒏+𝟏⁄ = 𝟐𝑮𝒏𝑻𝑾𝒅(𝒈(𝒎𝒏) + 𝑮𝒏(𝒎𝒏+𝟏 − 𝒎𝒏) − 𝒅𝟎)

+ 𝝀[𝟐𝑾𝒓(𝒎𝒏+𝟏 − 𝒎𝟎) +  𝟐𝑽𝑻𝑽𝒎𝒏+𝟏 + 𝟐𝑯𝑻𝑯𝒎𝒏+𝟏 + 𝟐𝑩𝑻𝑾𝒃 (𝑩𝒎𝒏+𝟏 − 𝒄𝟎)] = 𝟎.  (13) 

After eliminating the 2s and collecting the terms involving the unknown vector 𝒎𝑛+1  onto the left hand side Equation (13) 

becomes the linearized system of equations, 

𝑨𝒎𝒏+𝟏 = 𝒃, (14) 

where, 

𝑨 = 𝑮𝒏𝑻𝑾𝒅𝑮𝒏 + 𝝀[𝑾𝒓 + 𝑽𝑻𝑽 + 𝑯𝑻𝑯 + 𝑩𝑻𝑾𝒃𝑩], (15) 

and, 

𝒃 = 𝑮𝒏𝑻𝑾𝒅 (𝒅𝟎 − 𝒈(𝒎𝒏) + 𝑮𝒏𝒎𝒏) + 𝝀[𝑾𝒓𝒎𝟎 +  𝑩𝑻𝑾𝒃 𝒄𝟎]. (16) 

 

The linearized system in Equation (16) is solved using the preconditioned conjugate gradient method to yield the updated 

model vector 𝑚𝑛+1. We then predict the updated forward modelled data, 𝒈(𝒎𝑛+1), and corresponding data misfit to make 

sure that 𝛷𝑑
𝑛+1(𝒎𝑛+1) < 𝛷𝑑

𝑛(𝒎𝑛), Additionally, we apply step-length damping to find a step-factor 0 < 𝑢 ≤ 1  such that, 

𝛷𝑑(𝒎𝑠𝑡𝑒𝑝
𝑛+1 ) ≅  0.7 ×  𝛷𝑑(𝒎𝒏) where, 𝒎𝑠𝑡𝑒𝑝

𝑛+1 = 𝒎𝑛 + 𝑢(𝒎𝑛+1 − 𝒎𝑛) via a line search. This ensures that we only slowly 

converge to the solution, preventing too much unwarranted structure from entering into the model in the early iterations, that 

then becomes difficult to remove (Constable et al., 1987). Upon finding a suitable value for the step-factor 𝑢, we set 

𝒎𝑛+1 = 𝒎𝑠𝑡𝑒𝑝
𝑛+1  and proceed to the next iteration. The main non-linear iteration loop continues until either: 𝛷𝑑 ≅ 1; the 

percentage achieved improvement in the data misfit 𝛷𝑑 is less than a user defined percentage (e.g., 1%); or a maximum 

number of iteration is exceeded (e.g., 50). 

 

Computations 
 

The program code is fully parallelized for execution on a high performance distributed memory cluster computer or on a 

multi-core shared memory workstation using the MPI standard (Message-Passing-Interface-Forum, 1994). All the matrices 

in the algorithm are sparse and well suited to scalable operations, since they are stored in distributed compressed spare row 

fashion. We use the open-source software library PETSc (Balay et al., 2014) to handle all of the matrix storage and linear 

algebra requirements, including the conjugate gradient solver. To save memory, the more dense linear system matrix, 𝑨 in 

Equation (14), is never actually explicitly stored, instead the component matrices (𝑮, 𝑽, 𝑯, 𝑩 etc.) are stored and the matrix-

vector products 𝒃 = 𝑨𝒙 are computed on the fly as required by the conjugate gradient algorithm, 

 

The software is accessible as C++ source code which is packaged in a Git code repository and may be downloaded from 

Geoscience Australia’s ga-aem repository on GitHub® at https://github.com/GeoscienceAustralia/ga-aem. The code can be 

compiled using most modern C++ compilers on both Linux and Windows® based systems. In due course we also expect to 

make the algorithm available as a service on the Australian National Virtual Geophysics Laboratory (ANVGL) portal 

(http://www.anvgl.ga.gov.au). 

 

EXAMPLE 

https://github.com/GeoscienceAustralia/ga-aem
http://www.anvgl.ga.gov.au/


 

 

 

 

AEGC 2018: Sydney, Australia   6 

 

 

 

 

 

 

To demonstrate the results of the new algorithm we inverted SkyTEM data that were acquired in 2009 as part of the Broken 

Hill Managed Aquifer Recharge (BHMAR) project (Lawrie et al., 2012). The BHMAR survey consisted of a total of 32,659 

line kilometres of data acquired at 200 m line spacing and with a nominal 30 m transmitter/receiver frame height above 

ground level. We chose to invert a 3,700 line kilometre subset of the BHMAR data that is centred upon the Menindee AEM 

Calibration Range, which is currently being established by Geoscience Australia, near the township of Menindee, New South 

Wales. The calibration range is an area where there is a good concentration of boreholes with downhole conductivity logging 

and other ancillary ground based geophysical data. We inverted the data with our new all-at-once (AAO) program called 

GALEIALLATONCE, as well as with our conventional deterministic sample-by-sample (SBS) inversion program called 

GALEISBSTDEM (Brodie and Richardson, 2015) to facilitate comparison. 

 

Both the SBS and AAO inversions were run with identical data and noise settings. The low- and high-moment Z-component 

SkyTEM data were inverted together. The assigned noise levels were 3.6% relative error plus an absolute noise floor, which 

ranged from 5.78 × 10−11 V/Am4 for the earliest time low-moment window to 3.57 × 10−14 V/Am4 for the latest high-

moment time window. The subset area contained 161201 soundings, spaced approximately 23 m apart to 1D conductivity 

models discretised into 30 layers. The 1D models all had a thickness of 0.5 m for the top layer, increasing to 31.2 m for the 

penultimate layer before the halfspace. 

 

Since each dual-moment SkyTEM sounding had 19 low-moment and 21 high-moment windows for this specific survey, the 

AAO inversion had 6.4 million data and 4.8 million model parameters to solve for. There were 90 downhole conductivity 

logs in the subset area that were included as constraints in the AAO inversion, to which we assigned 10% relative error. 

Some of the logs were in clusters of nested boreholes, and were therefore quite close to each other. We set the search radius 

to 1,000 m for lateral constraints (see Figure 1), and 250 m for borehole constraints (see Figure 3). Both inversions used a 

homogeneous 0.050 S/m conductivity reference model. Figure 4 and Figure 5.show the inversion results for 18 km portions 

of the two particular flight lines (22870 and 23310), which are coincident with the two Menindee AEM Calibration Range 

lines. 

Figure 4: Comparison conductivity sections for flight line 22870 showing: (a) the data misfits for both inversions; (b) 

section for the conventional stitched sample by sample (SBS) inversion GALEISBSTDEM; and (c) section for the new 

all-at-once (AAO) inversion GALEIALLATONCE. The five adjacent borehole conductivity logs are superimposed on 

the sections with the same colour lookup table, along with their respective distance from the flight line. 

 

On Figure 4 and Figure 5, the top panels (a) show the final data misfits that were achieved. The SBS inversion (blue trace) 

typically reached the expected normalised misfit Φ𝑑 ≈ 1.0 for every individual sounding. The AAO inversion, however 
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reached an overall misfit (black trace) of Φ𝑑 = 2.93 in iteration 14, after which the algorithm finishes because the misfit 

could no longer be improved. The AAO inversion also calculates and outputs a data misfit for each individual sounding (red 

trace). It can be seen that the individual AAO by sounding misfit is typically close to the desired level of 1.0, but is also 

often very high on some soundings. These outliers bias the overall misfit and prevent further convergence. 

 

On Figure 4 and Figure 5, the second panels (b) show the conductivity sections from the SBS inversion and panel (c) shows 

the conductivity section from the AAO inversion. The sections also have adjacent (within 500 m of the flight line) 

conductivity logs superimposed with the same colour lookup table. The respective distances between borehole and flight line 

are also shown. It is immediately clear on both figures that the AAO inversion is more geologically plausible than the SBS 

inversion because it does not contain the vertical striping and the artefacts toward the bottom of the section. The AAO 

inversion sections are more coherent in nature and the apparent stratigraphic layering appears more contiguous. Furthermore 

the AAO inversion matches the conductivity logs better than the SBS inversion, as would be expected since the logs were 

included as constraints in the AAO inversion only. 

 

It can be seen that in most places where there are larger spikes in the AAO inversion individual sample data misfit (red 

traces on panel a), there are corresponding artefacts in the SBS inversion conductivity section. Our interpretation of this is 

that these soundings have higher than the usual noise (compared to our assigned noise levels), which the SBS inversion 

chases, and is still able to (over-)fit the data with an inferior model. Whereas, since the AAO inversion is laterally 

constrained it is not free to chase the noise. Instead it averages through the noise and produces a more plausible model. In 

these places the AAO appears not to fit the data locally, however, nor should it if those soundings do possess more noise 

than those assigned in the inversion. 

 

Also, our assessment is that the deeper parts of the sections (below ~0 m elevation) are likely to be more correct in the AAO 

inversion. In this conductive terrain, the sensitivity of the data to the conductivity of layers below ~70 m depth is diminished 

because of the diffusive nature of EM methods, and the SBS inversion results tend to be heavily influenced by sounding-to-

sounding noise and/or non-uniqueness. 

 

Figure 5: Comparison conductivity sections for flight line 23310 showing: (a) the data misfits for both inversions; (b) 

section for the conventional stitched sample by sample (SBS) inversion GALEISBSTDEM; and (c) section for the new 

all-at-once (AAO) inversion GALEIALLATONCE. The three adjacent borehole conductivity logs are superimposed 

on the sections with the same colour lookup table as the AEM conductivity section, along with their respective 

distance from the flight line. 
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CONCLUSIONS 
 

Our new all-at-once inversion algorithm is an intuitive and effective way to imposing lateral constraints that encourage 

similarity between neighbouring AEM soundings, which cannot be achieved in conventional independent sample-by-sample 

stitched 1D inversion. It also provides a mechanism for incorporating borehole conductivity log data as a hard constraint 

rather than a soft regularization constraint. 

 

We have demonstrated that our new algorithm produces a superior conductivity model compared to our conventional 

sample-by-sample algorithm. This is in terms of how well the conductivity models match borehole data, as well as the 

coherency of the resultant sections. By including borehole data, non-uniqueness is reduced at least in the vicinity of the 

boreholes, but this is extended further afield by virtue of the lateral constraints. The algorithm tends to suppress the effect of 

localised sounding-to-sounding noise, which when coupled with non-uniqueness, results in artefacts in conventional 

conductivity sections. The lateral constraints prevent overfitting of the localised noise, by in-effect fitting through it. The 

more coherent models, which also match the borehole data, ultimately lead to more geological plausible and interpretable 

conductivity sections. 

 

A potential risk with using lateral constraints is that, if they are too tight, short-wavelength real anomalies, caused for 

example by discrete conductors, may not be fitted and thus would not appear in the resultant conductivity sections. 

Accordingly we would encourage that the method be used alongside conventional sample-by-sample inversion algorithms. A 

further pitfall that can occur when large groups of soundings are inverted simultaneously, is that the occasional extremely 

noisy sounding or areas where the geology is not 1D, can prevent the inversion from converging. As part of future 

improvements, we expect to implement the L1 norm instead of the 𝐿2 norm for the data misfit term to help remedy this. 
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