
 

AEGC 2018: Sydney, Australia   1 

 

 

THE UTILITY OF MACHINE LEARNING IN IDENTIFICATION OF KEY GEOPHYSICAL 
AND GEOCHEMICAL DATASETS: A CASE STUDY IN LITHOLOGICAL MAPPING IN 

THE CENTRAL AFRICAN COPPER BELT 

 
Stephen Kuhn*                                        Matthew J. Cracknell                                Anya M. Reading      
Sch. of Physical Sci. (Earth Sciences)             Sch. of Physical Sci. (Earth Sciences)                Sch. of Physical Sci. (Earth Sciences) 
CODES Centre of Excellence and          CODES Centre of Excellence and                     CODES Centre of Excellence and 
ARC ITR Hub for Transforming          ARC ITR Hub for Transforming                     ARC ITR Hub for Transforming 
the Mining Value Chain                                    the Mining Value Chain                                       the Mining Value Chain               
University of Tasmania                                    University of Tasmania                       University of Tasmania  
stephen.kuhn@utas.edu.au                             m.j.cracknell@utas.edu.au                         anya.reading@utas.edu.au  
                                                                                              
*Presenting Author 

 

SUMMARY 
 

Random Forests, a supervised machine learning algorithm, provides a robust, data driven means of predicting lithology from 

geophysical, geochemical and remote sensing data. As an essential part of input selection, datasets are ranked in order of importance 

to the classification outcome. Those ranked most important provide, on average, the most decisive split between lithological classes. 

These rankings provide explorers with an additional line of reasoning to complement conventional, geophysical and geochemical 

interpretation workflows. The approach shows potential to aid in identifying important criteria for distinguishing geological map 

units during early stage exploration. This can assist in directing subsequent expenditure towards the acquisition and further 

development of datasets which will be the most productive for mapping. 

 

In this case study, we use Random Forests to classify the lithology of a project in the Central African Copper-Belt, Zambia. The 

project area boasts extensive magnetic, radiometric, electromagnetic and multi-element geochemical coverage but only sparse 

geological observations. Under various training data paradigms, Random Forests produced a series of varying but closely related 

lithological maps. In this study, training data were restricted to outcrop, simulating the data available at the early stages of the 

project. Variable ranking highlighted those datasets which were of greatest importance to the result. Both geophysical and 

geochemical datasets were well represented in the highest ranking variables, reinforcing the importance of access to both data types. 

Further analysis showed that in many cases, the importance of high ranking datasets had a plausible geological explanation, often 

consistent with conventional interpretation. In other cases the method provides new insights, identifying datasets which may not have 

been considered from the outset of a new project. 
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INTRODUCTION 
 

Machine learning is seeing increasing uptake in the search for 

solutions to geoscientific problems. Random Forests (RF) 

(Breiman, 2001) has proven a strong choice for geological 

classification problems (Cracknell & Reading, 2014, Kuhn, 

Cracknell & Reading, 2016; Cracknell, Reading & McNeill, 

2014).  

 

As a supervised classification algorithm, RF employs a set of 

user defined training data to build a set of rules which in turn 

are used to classify unknown samples.  RF is an extension of 

the classification tree method which mitigates the effects of 

over fitting by generating a multitude, or forest, of 

classification trees (Figure 1), each built on a subset of training 

data.  

 

Randomness is introduced at two stages. Firstly, bootstrap 

aggregation, also known as bagging, is used to select the 

subset of training data available to each tree.  Secondly, a 

subset of input variables is selected at random for each node, 

with the variable from within that subset which provides the 

best split, used to split that node. Nodes are split to produce 

the maximum improvement in homogeneity in the child nodes, 

relative to the parent node until nodes become homogenous to 

within a defined tolerance.  

Figure 1: Random Forest (subset) visualised as 

Pythagorean trees (Beck et. al., 2014). The side length of 

each square (node) is proportional to the sample size at that 

node. Side lengths of triangles between nodes describe the 

partition of samples from parent to child nodes. The 

enlarged tree shows an example high order split based on 

Ta (red circle), prior to further class separation. Colours 

represent the majority class (if present) at each node. 
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Each tree within the forest casts a vote on the final classification 

produced by the forest. RF has been shown to achieve 

comparable accuracy to optimal use of other machine learning 

algorithms for lithological classification applications (Cracknell 

& Reading, 2014). 

 

When applied to lithological mapping, a balance must be 

negotiated between the information gained through the 

introduction of higher dimensionality and the ability to produce 

output that is understandable to a human user. Previous studies 

(Cracknell, Reading & McNeill, 2014; Kuhn, Cracknell & 

Reading 2016) have shown a tendency for a point of 

diminishing returns whereby the addition of more input 

variables no longer produces an improvement in classification 

results. In order to perform this dimensionality reduction, input 

variables must be ranked in order of their importance to the RF 

classification. This process is described in detail by Breiman 

(2001) and involves a permutation of each input variable 

through the forest. Those variables which, when permuted 

produce the largest variations in classification error. While the 

primary purpose of such ranking is input selection for a RF 

classification exercise, these rankings are also valuable in 

isolation, providing an objective starting model for any multi-

dataset interpretation. 

 

In this case study, comprising the Trident project area (Figure 

2), we used RF to rank a combination of geophysical, 

geochemical and remote sensing data; provided by First 

Quantum Minerals Ltd. The Trident project is located within the 

Domes region of the Central African Copper Belt, in northwest 

Zambia (Capistrant et. al., 2015). In this example, we limited 

training data to regions of mapped outcrop (Figure 2) in a 

simulation of training constraints available to an exploration 

team prior to the development of additional interpretation.  

 

 

METHOD AND RESULTS 

 

Data 

 

Data were compiled over the extent of the project area and combined into a single matrix in the form of x, y, d1, d2, …, dn (where x 

and y are co-ordinates and d are data channels). Geophysical data comprised reduced to pole (RTP) airborne magnetics, radiometrics, 

multiple airborne EM channels and elevation (DTM). Additional products were derived from these datasets. Soil geochemistry (ICP-

MS) was collected at 300 x 300 m spacing. All data were resampled to a 100 x 100 m grid size. As a preliminary dimensionality 

reduction stage, highly correlated variables (r > 0.8) were omitted. With correlated variables removed, a total of 44 data channels 

were presented to the RF classifier, the top 10 of which are shown in Table 1. Sample size was balanced such that an equal number of 

samples were available from each lithological class. 

 

Results of Random Forests Ranking 

 

A RF comprising 500 trees (example subset in Figure 1) was 

used for this exercise with no limitations on depth extent or 

pruning. Variables were ranked by RF and passed to an 

additional step of 10 fold cross validation where the classifier 

performance was tested as variables were successively added. 

In this case, the top ranked variable would be used in isolation, 

followed by the top 2 ranked, top 3 and so on. In this study, a 

point of diminishing returns was reached at the inclusion of the 

top 10 variables, beyond which the inclusion of additional 

variables did not meaningfully increase accuracy.  

 

The datasets represented in Table 1 are those deemed by the RF 

classifier to have a measureable impact on classifier accuracy. 

Geophysical data included the thorium radiometric channel, EM 

and the RTP magnetics in addition to the DTM which ranked 

highest. Figure 3 shows clearly the occurrence of geometries in 

the EM data due to geology, in particular a NE trending 

Figure 2. Geology of the Trident project area. Interpreted 

geology map with observed outcrop, defining the training 

data used in this study, shown opaque. Map is projected 

in WGS84 UTM zone 35s. 

 

Table 1. Top 10 datasets ranked by RF. RF score is a 

measure of error variability produced by variable. 10 

folds Acc was the accuracy achieved during 10 fold 

cross validation performed using the corresponding 

variable in addition to those ranked higher. 
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antiform pattern in the central southwest of the project. The 

DTM shows some geological control on topographic features 

(Figure 3) but is also likely serving as a proxy for position, 

hence the high ranking. From the geochemistry, long known 

immobile trace elements (e.g. Pearce & Norry, 1979; Maclean 

& Barrett, 1999) Ti and Ta featured prominently. Ta scored a 

0.98 correlation with Nb, resulting in the omission of Nb prior 

to ranking through an objective process. While a subjective 

decision may have retained Nb due to greater abundance, the 

high correlation in this case indicates Ta performs equally well, 

making this, along with Ti a geochemically meaningful 

selection. Clear zonation can be seen in the Ta dataset (Figure 

3) indicating a major domain change. As, Mg, Ni and La were 

also featured in the ranking. 

 

CONCLUSIONS 

 

Ranking via RF in this simulation has provided a list of datasets 

deemed most productive to classification. This ranking of 

datasets provides additional value in facilitating the 

prioritisation of datasets for any further interpretation. The fact 

that prominent geophysical mapping datasets and several 

elements that are well known lithological discriminators such as 

Ti and Ta (or equally Nb, with an r=0.98 correlation) are ranked 

highly lends confidence to the validity of these rankings for use 

in other geological interpretations outside of the machine 

learning space.  

 

The RTP magnetics dataset was ranked as necessary albeit of low importance while the first vertical derivative was redundant. This 

could be due to the similarity in magnetic signature across multiple lithologies. Alternatively, the higher frequency magnetic data 

may be mapping sub-units or other textures within lithological domains and thus the magnitude of magnetic response cannot be 

diagnostic of lithology at the scale of this investigation. This is an interesting finding as magnetic data are commonly used as a 

primary mapping and interpretation tool. In this case, use of objective ranking would caution the user that while this dataset may be 

extremely useful for structural and textural mapping, it may be unreliable for distinguishing one lithological unit from another. It is 

important to note that this could also be an indication that available outcrop poorly expresses the variability of magnetisation in the 

project area. In this case, the usefulness of magnetics will manifest with the use of more spatially representative training data. 

Nevertheless, these ranking indicate that attempting to use magnetics to propagate beneath cover, the rock types seen in outcrop, 

would not be productive in this scenario. 

 

Several other elements were identified as important during ranking. Geochemists can rationalise their use in most cases. For example, 

the La dataset (Figure 3) shows a strong trend in the centre northeast of the project which company geologists (Ireland, pers coms, 

2016) identify as a monazite trend within a unit of Roan group sediments. Additionally, company geochemists have used As and Mg 

for subdivision of mafic packages and partitioning of talc rich rock units respectively. This further demonstrates that RF produces 

rankings that are geologically meaningful. 

 

We have demonstrated that in addition to a lithological prediction, as a bi-product, RF provides geoscientists with a means of 

identifying and ordering the datasets most relevant to mapping of a project. The high importance of well subscribed mapping datasets 

in RF ranking, lends confidence that other datasets deemed important by RF are geologically sound albeit in a project specific 

context. In this case, as noted above, well-established datasets such as topography or high field strength elements are simple to 

rationalise, while others are idiosyncratic to the Trident project, such as the use of La for mapping monazite. Geochemical knowledge 

of the Trident project explains the influence other elements consistent with RF rankings.  

 

Our findings make an important demonstration of a method capable of providing a rapid means of prioritising data for interpretation. 

We do not suggest that a skilled geoscientist cannot perform this task; rather, this method is able to do so in an objective manner and 

in the absence of geophysical or geochemical expertise. Additionally, this method reduced the number of datasets required for any 

first-pass exercise from 59 to 10, giving an interpreter a much simpler starting space to begin work. This is of particular value in the 

early stages of a project, where a robust understanding of the available data is under-developed. Ranking via RF can assist in the 

development of such an understanding. 
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Figure 3. Examples of datasets ranked as important to 

RF constructing the classifier used in this study (Ta, EM, 

La and the DTM). The extent of these datasets 

corresponds to project area shown in Figure 1. 
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