Supplementary Material

Metabolomics analysis of postphotosynthetic effects of gaseous O2 on primary metabolism in illuminated leaves

Cyril AbadieA, Sophie BlanchetA,B, Adam CarrollA and Guillaume TcherkezA,C

AResearch School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia.

BInstitute of Plant Science Paris-Saclay, UMR Université Paris-Sud-CNRS-INRA-Université Paris-Diderot-UEVE 1403, 91405 Orsay, France.

CCorresponding author. Email: guillaume.tcherkez@anu.edu.au
Figure S1. 15N-enrichment in metabolites upon labelling with 15N-glycine in different CO$_2$/O$_2$ gaseous conditions in illuminated sunflower leaves. Here, data shown for 14N or 15N signals are that obtained by GC-MS and are semi-quantitative. % corresponds to the percentage in 15N calculated from the isotopic pattern in the mass spectrum. A, heat map showing significant features along a one-way ANOVA ($p<0.01$). Conditions in each column are indicated with O$_2$ (in %)/CO$_2$ (ppm) (the last number is the replicate no.). B-D, boxplots showing 14N-glycine, 14N-alanine and 15N-alanine in different O$_2$ mole fraction (in %) in the background gas. Data redrawn from Abadie et al. (2016a).
Figure S2. Univariate and multivariate analyses of leaf metabolome of illuminated Arabidopsis rosettes under different CO2/O2 conditions: A, heat map showing significant metabolites \((p<0.01)\) along a one-way ANOVA. Conditions in each column are indicated with CO2 (ppm)/O2 (in %) (the last number is the replicate no.). B-C, volcano plots (VIP versus loading) associated with O2 and CO2 effects, respectively, in the O2PLS analysis. The O2PLS analysis was associated with very good regression coefficient \(R^2\) of 0.91, but a cross-validated regression coefficient \(Q_{cum}^2\) of 0.29 only, due to the limited response to CO2 in terms of total variance. However, the statistical O2PLS model was significant and not the result of chance, since the \(Q_{perm}^2\) coefficient upon the permutation test was negative (-0.17).
Figure S3. Metabolic ratios in sunflower (A-C) and Arabidopsis (D-F) illuminated leaves under different % O₂. In A-C, each box integrates all data obtained in the % O₂ considered regardless of time (all boxes) or CO₂ (at 21% O₂) thus n = 16 to 48. In C-D, n = 6. Mal/Pyr, malate-to-pyruvate ratio; Succ/Cit, succinate-to-citrate ratio; Succ/GABA, succinate-to-γ-aminobutyrate ratio; GOGAT, apparent mass action ratio of glutamine oxoglutarate amino transferase calculated as glutamate²/[2-oxoglutarate·glutamine].
Figure S4. Relative content in S-adenosylhomocysteine (SAHC), S-methylthioadenosine (SMTA), S-adenosylmethionine (SAM) (A) and SAM content in % of all three species (B), in sunflower illuminated leaves under different O₂/CO₂ conditions. The only significant difference at the 0.05 level is between SMTA (or SAHC) and SAM under 100% O₂. Replotted from source data in Abadie et al. (2016a).

Figure S5 (next page). Magnification of Fig. 4.