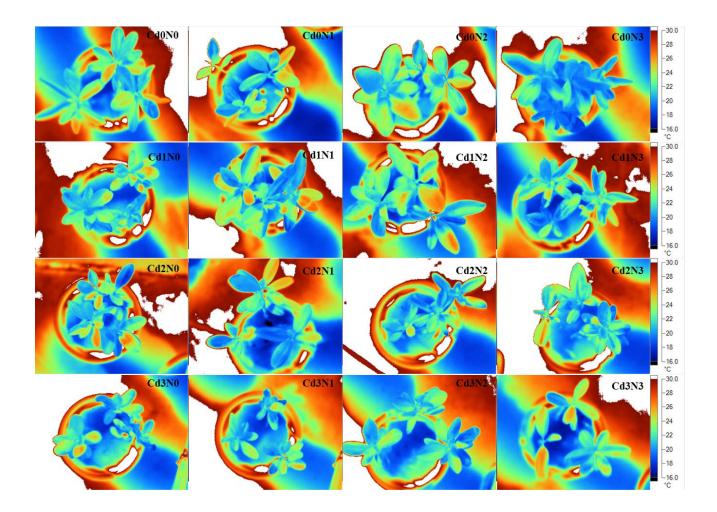
10.1071/FP17295_AC © CSIRO 2018 Supplementary Material: *Functional Plant Biology*, 2018, 45(11), 1162–1171.

Supplementary Material


Assessing the effect of extra nitrogen on *Kandelia obovata* growth under cadmium stress using high-resolution thermal infrared remote sensing and the three-temperature model

Xiaoxue Shen^A, Ruili Li^{A,C}, Minwei Chai^A, Ke Yu^A, Qijie Zan^B and Guo Yu Qiu^A

^ASchool of Environment and Energy, Peking University, Shenzhen, Guangdong, 518055, China.

^BGuangdong Neilingding Futian National Nature Reserve, Shenzhen 518000, China.

^cCorresponding author. Email: liruili@pkusz.edu.cn

Fig. S1. Thermal images of *K. obovata* under 16 treatments using the infrared thermal imager. Cd0, Cd1, Cd2, and Cd3 indicate Cd concentrations of 0, 1, 5, and 10 mg·L⁻¹, respectively; N0, N1, N2, and N3 indicate N concentrations of 0, 10, 50, and 100 mg·L⁻¹, respectively. Various treatments were named Cd0N0, Cd1N0, Cd2N0, Cd3N0, Cd0N1, ..., Cd3N3 to comprise a total of 16 different treatments.

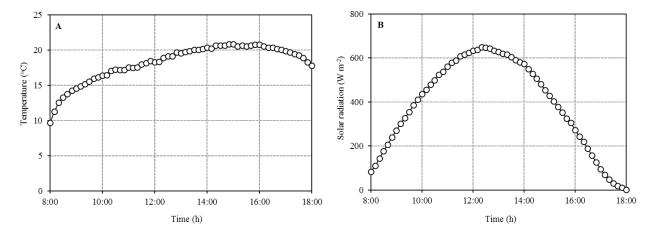
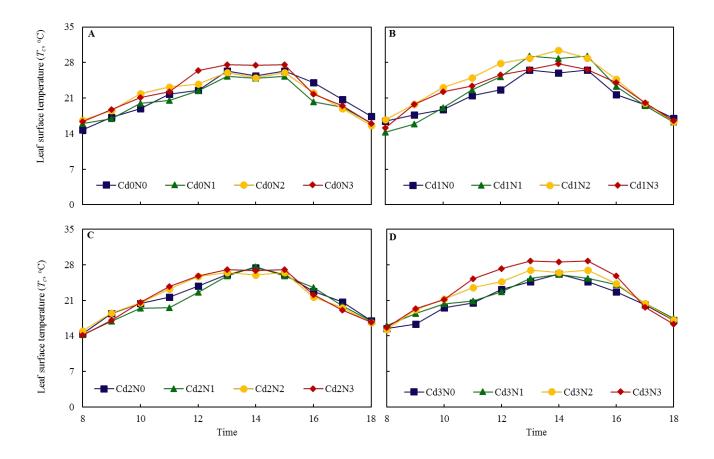
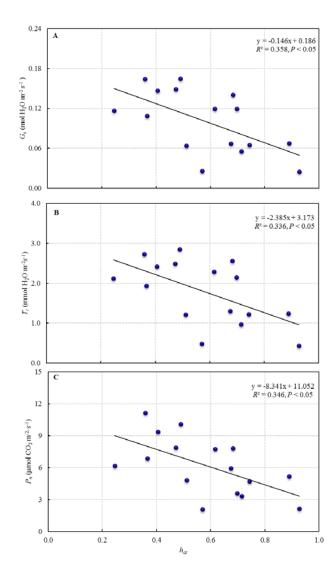




Fig. S2. Daily changes of air temperature (A) and solar radiation (B).

Fig. S3. Daily changes of leaf surface temperature (T_c) of K. *obovata* under different combined Cd and N stress. (A), (B), (C), and (D) represent daily changes of T_c under Cd0, Cd1, Cd2, and Cd3 treatments, respectively. Cd0, Cd1, Cd2, and Cd3 indicate Cd concentrations of 0, 1, 5, and 10 mg·L⁻¹, respectively; N0, N1, N2, and N3 indicate N concentrations of 0, 10, 50, and 100 mg·L⁻¹, respectively.

Fig. S4. Relationship between the photosynthetic parameters and plant transpiration transfer coefficient of *K. obovata*. (A), (B), and (C) represent the relationship between the photosynthetic parameters (including stomatal conductance (G_s), transpiration rate (T_r), and net photosynthetic rate (P_n)) and plant transpiration transfer coefficient (h_{at} , using the thermal images and the three-temperature model) under sixteen combined levels of stress, respectively.