Supplementary Material

Two phosphatidylinositol 3-kinase components are involved in interactions between Nicotiana benthamiana and Phytophthora by regulating pathogen effectors and host cell death

Shan Lua,b,c, Jia Yud, Lina Mad and Daolong Doud

aDepartment of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.

bState Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.

cCorresponding author. Email: lushan@njau.edu.cn.

Fig. S1. Plant and detached leaf phenotypes of silenced N. benthamiana.

Fig. S2. Cell death induced by P. sojae in N. benthamiana leaves silencing the VPS genes.

Fig. S3. Full-length blots of effectors stability in silenced VPS N. benthamiana leaves.

Table S1. Oligonucleotides used for PCR and plasmid constructions.

Table S2. Expression of the three N. benthamiana VPS genes in response to P. parasitica infection.
Fig. S1. Plant and detached leaf phenotypes of silenced *N. benthamiana*. Whole plants and detached leaves from the same position were shown at 14 days after inoculated. Bars = 2 cm.

Fig. S2. Cell death induced by *P. sojae* in *N. benthamiana* leaves silencing the *VPS* genes. *N. benthamiana* leaves were inoculated with *P. sojae* hyphae. Cell death of VIGS plants silencing the *VPS* genes or control (TRV) was viewed under UV illumination at 48 hpi. Bar = 2 cm.

Fig. S3. Full-length blots of effectors stability in silenced *VPS N. benthamiana* leaves.
Table S1. Oligonucleotides used for PCR and plasmid constructions.

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Applications</th>
<th>Sequence (from 5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NbVPS15-F/xbaI</td>
<td>Construct the fragment of NbVPS15 into TRV2 vector</td>
<td>gcTCTAGACATCTTTTGCTGTGGGGT G</td>
</tr>
<tr>
<td>2</td>
<td>NbVPS15-R/smaI</td>
<td></td>
<td>GGGAGCCCTTCTCCATCTCC</td>
</tr>
<tr>
<td>3</td>
<td>NbVPS30-F/xbaI</td>
<td>Construct the fragment of NbVPS30 into TRV2 vector</td>
<td>gcTCTAGATGTCAAGAATCGGCACTCGA</td>
</tr>
<tr>
<td>4</td>
<td>NbVPS30-R/smaI</td>
<td></td>
<td>GGGATCTGGCTGCTGCTT</td>
</tr>
<tr>
<td>5</td>
<td>NbVPS34-F/xbaI</td>
<td>Construct the fragment of NbVPS34 into TRV2 vector</td>
<td>geTCTAGAGGATTTGAACCTGTTG</td>
</tr>
<tr>
<td>6</td>
<td>NbVPS34-R/smaI</td>
<td></td>
<td>TAG</td>
</tr>
<tr>
<td>7</td>
<td>NbEF1α-F</td>
<td>Internal primers of EF1α, used for quantitative real-time PCR assay</td>
<td>AGAGGCCCCTCAGAAACAC</td>
</tr>
<tr>
<td>8</td>
<td>NbEF1α-R</td>
<td></td>
<td>TAGGCCAAAGGTCACAC</td>
</tr>
<tr>
<td>9</td>
<td>NbVPS15(RT)-F</td>
<td>Primers of NbVPS15, used for quantitative real-time PCR assay</td>
<td>GAGACCAAGGTGAAGAC</td>
</tr>
<tr>
<td>10</td>
<td>NbVPS15(RT)-R</td>
<td></td>
<td>TGCTCATACACCAACACT</td>
</tr>
<tr>
<td>11</td>
<td>NbVPS30(RT)-F</td>
<td>Primers of NbVPS30, used for quantitative real-time PCR assay</td>
<td>GTTCTTGACCTGCATTA</td>
</tr>
<tr>
<td>12</td>
<td>NbVPS30(RT)-R</td>
<td></td>
<td>GTCCAACCTTCTGGCTT</td>
</tr>
<tr>
<td>13</td>
<td>NbVPS34(RT)-F</td>
<td>Primers of NbVPS34, used for quantitative real-time PCR assay</td>
<td>AAGCATACAACATTCTCCG</td>
</tr>
<tr>
<td>14</td>
<td>NbVPS34(RT)-R</td>
<td></td>
<td>TTTCTCGTCGTCACAGT</td>
</tr>
<tr>
<td>15</td>
<td>RxLR132-F</td>
<td>Construct PcRxLR132 (deletion the signal peptide sequence) into PVX-HA vector</td>
<td>GGGATGGAATGTGGCCTGAAACCA AAAC</td>
</tr>
<tr>
<td>16</td>
<td>RxLR132-R</td>
<td></td>
<td>GAAGGAAGAAAGCGGCGGCCACAC TAATCCCTATAGGTCA</td>
</tr>
<tr>
<td>17</td>
<td>RxLR236-F</td>
<td>Construct PcRxLR236 (deletion the signal peptide sequence) into PVX-HA vector</td>
<td>GGGATGCGACTTGTAACGCACTG A</td>
</tr>
<tr>
<td>18</td>
<td>RxLR236-R</td>
<td></td>
<td>GAAGGAAGAAAGCGGCGGCCACAC TAATCCCTATAGGTCA</td>
</tr>
<tr>
<td>19</td>
<td>RxLR306-F</td>
<td>Construct PcRxLR306 into PVX-HA vector</td>
<td>GGGATGCGCATCTCTCTACCAACCAA AT</td>
</tr>
<tr>
<td>20</td>
<td>RxLR306-R</td>
<td></td>
<td>GAAGGAAGAAAGCGGCGGCGGCTG A</td>
</tr>
<tr>
<td>21</td>
<td>CRN18-F</td>
<td>Construct PcCRN18 into PVX-HA vector</td>
<td>GGGATGTTGTCGCGAGCCGCA</td>
</tr>
<tr>
<td>22</td>
<td>CRN18-R</td>
<td></td>
<td>GAAGGAAGAAAGCGGCGGCGGCTG A</td>
</tr>
<tr>
<td>23</td>
<td>RxLR132-F</td>
<td>Primers of PcRxLR132, used for</td>
<td>AGGCACGACTGAACG</td>
</tr>
<tr>
<td></td>
<td>Primer Name</td>
<td>Description</td>
<td>Primer Sequence</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>24</td>
<td>RxLR132-R</td>
<td>quantitative real-time PCR assay</td>
<td>TCCGCCCACTTCTGGTAT</td>
</tr>
<tr>
<td>25</td>
<td>RxLR236-F</td>
<td>Primers of PcRxLR236, used for quantitative real-time PCR assay</td>
<td>AAGTATCGATGGTGACAG</td>
</tr>
<tr>
<td>26</td>
<td>RxLR236-R</td>
<td></td>
<td>ATACATCCTTGGCCCTCC</td>
</tr>
<tr>
<td>27</td>
<td>RxLR306-F</td>
<td>Primers of PcRxLR306, used for quantitative real-time PCR assay</td>
<td>CCGGACGAGGAAGAAAGG</td>
</tr>
<tr>
<td>28</td>
<td>RxLR306-R</td>
<td></td>
<td>TTGAGGTAAGGCGAGTAAGC</td>
</tr>
<tr>
<td>29</td>
<td>CRN18-F</td>
<td>Primers of PcCRN18, used for quantitative real-time PCR assay</td>
<td>CCAGCCTACCAGGTGTTT</td>
</tr>
<tr>
<td>30</td>
<td>CRN18-R</td>
<td></td>
<td>TTCTCCGTCAGACGCTATCC</td>
</tr>
<tr>
<td>31</td>
<td>GFPRTF</td>
<td>Primers of GFP, used for quantitative real-time PCR assay</td>
<td>ACAACCACCTACCTGACACC</td>
</tr>
<tr>
<td>32</td>
<td>GFPRTR</td>
<td></td>
<td>CTGTACAGCTCGTCCATGC</td>
</tr>
<tr>
<td>33</td>
<td>CAP6-F</td>
<td>Construct PcCAP6 into PVX-HA vector</td>
<td>GGGATGAACACGTAACCTTGGCCCTC</td>
</tr>
<tr>
<td>34</td>
<td>CAP6-R</td>
<td></td>
<td>GAAGGAAGAAAGCGGCCGCGAGGCACCACCTGCGGC</td>
</tr>
</tbody>
</table>
Table S2. Expression of the three *N. benthamiana* VPS genes in response to *P. parasitica* infection. Based on the RNA-Seq data (Shen et al., 2016) which is composed of two samples, 6 h inoculated and non-inoculated *N. benthamiana*, the expression value was showed in each sample for the three genes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Gene ID</th>
<th>Non-infection</th>
<th>Infection</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NbVPS15</td>
<td>NbS00025777g0007</td>
<td>7.93</td>
<td>12.66</td>
<td>1.60</td>
</tr>
<tr>
<td>NbVPS30</td>
<td>NbS00006597g0015</td>
<td>13.91</td>
<td>11.42</td>
<td>0.82</td>
</tr>
<tr>
<td>NbVPS34</td>
<td>NbS00054532g0002</td>
<td>11.81</td>
<td>16.30</td>
<td>1.38</td>
</tr>
</tbody>
</table>