Supplementary Material

Fred Chow: the contributions of a quiet giant of photoinhibition and photoprotection

Alonso ZavaletaA,B,D and Douglas A. CampbellC

AResearch School of Biology, the Australian National University, Canberra, ACT 2600, Australia.

BClimate Change Cluster, University of Technology Sydney, Ultimo, NSW 2001, Australia.

CMount Allison University, Sackville, NB E4L 1E2, New Brunswick, Canada.

DCorresponding author. Email: alonso.zavaleta@anu.edu.au
Table S1. Some chemicals used to study photodamage in order of appearance in this work

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Abbrev.</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>-</td>
<td>A PSII inhibitor that binds to the plastoquinone binding sites thereby blocking electron transport between between QA to QB.</td>
</tr>
<tr>
<td>3-(3,4-Dichlorophenyl)-1,1-dimethylurea</td>
<td>DCMU</td>
<td>A PSII inhibitor that binds to the plastoquinone binding sites thereby blocking electron transport between between QA to QB.</td>
</tr>
<tr>
<td>Bromoxinil</td>
<td>-</td>
<td>A PSII inhibitor that blocks electron transport between QA to QB.</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>-</td>
<td>Antibiotic that inhibits the translation of proteins in the chloroplast, thus inhibiting PSII repair.</td>
</tr>
<tr>
<td>Nigericin</td>
<td>-</td>
<td>A lipophilic uncoupler that collapses the trans-thylakoid ΔpH gradient</td>
</tr>
<tr>
<td>Dithiothreitol</td>
<td>DTT</td>
<td>Inhibitor of violaxanthin to zeaxanthin conversion</td>
</tr>
</tbody>
</table>
Table S2. Summary of frequently used parameters in photosynthesis research

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_O</td>
<td>Chlorophyll fluorescence when all traps are open in the dark-adapted state, with quinone A (Q_A) in an oxidized state.</td>
</tr>
<tr>
<td>F_M</td>
<td>Maximum chlorophyll fluorescence in the dark-adapted state when all reactions centres are transiently closed and Q_A is in reduced state.</td>
</tr>
<tr>
<td>F_V</td>
<td>Variable fluorescence. Arithmetical difference between F_M and F_O.</td>
</tr>
<tr>
<td>F_V/F_M</td>
<td>Maximum quantum yield of primary photochemistry.</td>
</tr>
<tr>
<td>F_M'</td>
<td>Maximum fluorescence when sample is light adapted.</td>
</tr>
<tr>
<td>NPQ</td>
<td>Non-photochemical quenching of excitation independent of photochemical reactions and fluorescence emission.</td>
</tr>
<tr>
<td>qI</td>
<td>Non-photochemical quenching due to photoinhibition, such as the formation of silent centres or photodamaged reaction centres.</td>
</tr>
<tr>
<td>qZ</td>
<td>Non-photochemical quenching due to sustained conversion of the xanthophyll violaxanthin to zeaxanthin via de-epoxidation to induce sustained quenching of excitation.</td>
</tr>
<tr>
<td>qE</td>
<td>Non-photochemical quenching caused by the reversible formation of ΔpH energization across the thylakoid membranes, which in turn can trigger xanthophyll de-epoxidation.</td>
</tr>
<tr>
<td>$1/F_O-1/F_m$</td>
<td>The functional fraction of PSII that can perform photochemistry at a given time, in a dark-adapted state.</td>
</tr>
<tr>
<td>F_S</td>
<td>Fluorescence intensity at steady-state irradiance.</td>
</tr>
</tbody>
</table>