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Abstract.

The United Nations Food and Agriculture Organisation (FAO) forecasts a 34% increase in the world

population by 2050. As a consequence, the productivity of important staple crops such as cereals needs to be boosted
by an estimated 43%. This growth in cereal productivity will need to occur in a world with a changing climate, where more
frequent weather extremes will impact on grain productivity. Improving cereal productivity will, therefore, not only be a
matter of increasing yield potential of current germplasm, but also of improving yield stability through enhanced tolerance
to abiotic stresses. Successful reproductive development in cereals is essential for grain productivity and environmental
constraints (drought, cold, frost, heat and waterlogging) that are associated with climate change are likely to have severe
effects on yield stability of cereal crops. Currently, genetic gains conferring improved abiotic stress tolerance in cereals is
hampered by the lack of reliable screening methods, availability of suitable germplasm and poor knowledge about the
physiological and molecular underpinnings of abiotic stress tolerance traits.
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Introduction

By the year 2050 the world population is expected to have
grown by 34%, with an additional 2.3 billion people to feed
(FAO 2009). This increase will occur mainly in developing
countries where the population is expected to be more affluent
and predominantly urbanised. World food production is,
therefore, required to increase by 70% with the demand for
staple crops like cereals to rise by 43%, an increase of almost
one billion tonnes. Global rice production, which feeds
approximately half the world population, has to increase by
0.6-0.9% annually until 2050 to meet demand (Carriger and
Vallee 2007).

Since the introduction of ‘Green Revolution” wheat and rice
varieties, yields have reached a plateau, suggesting that increased
crop yield targets will not be reached (FAO 2002; Tilman et al.
2002; Rosegrant and Cline 2003; Edmeades et al. 2010). The
average annual yield increase has steadily declined from 3.2% per
annum in 1960, to 1.5% in 2000 as a result of limited genetic
biodiversity and environmental factors. The genetic gain that can
be obtained via technologies such as heterosis, molecular
breeding and transgenics is currently estimated at 50%, falling
short of the 70% yield increase required by 2050 (Edmeades ez al.
2010). In Europe, climate change, rather than lack in genetic
progress, is considered to be the main reason for decreasing yield
growth rate in wheat (Brisson et al. 2010). Agriculture will be
affected by climate change through higher temperatures
(estimated to increase +2°C by 2050), changing rainfall
patterns and higher carbon dioxide (CO,) levels. A change in
weeds, pests and disease pressure on crops will also be associated
with these climatic changes (Jaggard et al. 2010).
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An additional challenge is that increasing areas of farmland
are being diverted to biofuel production, causing competition
for food production. The rising global scarcity and insecurity
regarding availability of fossil fuels has caused increased interest
in converting grain into biofuel, resulting in an unprecedented
insecurity in food supply (Young 2009; Banerjee 2011). The
increasing diversion of food crops to biofuel production risks
escalating food prices and provides an additional challenge to
meet future food production targets.

Under the majority of environmental conditions crop
productivity is limited by water availability, light, heat and
nutrients. Although higher temperatures and CO, levels can
improve crop yields, the gain in productivity can be
counteracted by other factors. For instance, free-air CO,
enrichment (FACE) studies have shown that rice crops
become more sensitive to the damaging effect of cold
temperatures, thereby neutralising the expected yield
improvements obtained from CO, enrichment (Shimono et al.
2008, 2009). Application of higher nitrogen levels to boost
yields may also have a negative impact under -certain
environmental conditions. In rice, high nitrogen supply before
and during the critical stage of pollen development exacerbates
the effect of cold-induced pollen sterility (Williams and Angus
1994; Gunawardena et al. 2003). High nitrogen fertilisation
levels also have an adverse effect on grain-filling and drought
tolerance (Demotes-Mainard and Jeuffroy 2001; Ruuska et al.
2008).

In the United States the lack of adaptation to abiotic stresses
is responsible for 71% of reduction in yield potential (Boyer
1982). There are opportunities to increase crop yield by closing
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the gap between actual yield and the genetic yield potential
(Richards 2000; Araus et al. 2008). However, this strategy
may be compromised by climate change. Extreme weather
events have already become more frequent and have caused
crop losses in many parts of the world (Vellinga and Van
Verseveld 2000). Boosting future yield will not only be a case
of increasing yield and yield potential per se, but it will also
be a question of maintaining this higher productivity under
adverse weather conditions. Improving abiotic stress tolerance
will be crucial to achieve greater yield stability within a changing
environment.

Improving abiotic stress tolerance through conventional
breeding methods has so far been met with limited success.
Detailed accounts of the problems generally associated with
quantitative trait loci (QTL) mapping for abiotic stress
tolerance in cereals have recently been published (Collins
et al. 2008; Fleury et al. 2010; Dolferus et al. 2011). Breeding
programs tend to focus on commercial factors such as high yield
potential and grain quality, not on abiotic stress tolerance. This
has caused a bias in the selection of breeding lines, which may
so far have excluded those lines with superior abiotic stress
tolerance (Forster er al. 2000). Reintroducing stress tolerant
traits in current cereal germplasm is essential and will require
a focussed effort. This paper will discuss the effect of abiotic
stresses on reproductive development and grain productivity
in cereals, focusing on the two temperature stresses (cold/frost
and heat), and extremes of water availability (drought and
waterlogging).

Vegetative versus reproductive stage abiotic stresses

Plants are sessile organisms, so they must adapt their development
continuously in function of the reigning environmental
conditions. Abiotic stress stimuli affect both vegetative and
reproductive development. Even though grain yield in cereals
depends on successful reproductive development in a given
environment, unrestrained development of the plant during the
vegetative growth phase is critical. In cereals, ‘yield’ is measured
as the amount of grain produced per surface area. At the plant
level, grain yield is determined by both grain weight (hereafter
referred to as grain size) and grain number. The timing of the
stress stimulus in relation to reproductive development
determines whether grain number or size will be affected.
Grain number is affected by abiotic stresses such as drought
mainly during the earlier stages of reproductive development
and is widely considered to be the main contributor to yield
losses (Fig. 1a—g; Savin and Slafer 1991; Fischer 1993; Abbate
et al. 1995; Sayre et al. 1997; Gonzalez et al. 2003). In contrast,
the effect of drought on grain weight occurs from anthesis
onwards (Fig. 15) and during the grain maturation stage (Ji
et al. 2010).

Abiotic stresses can affect tiller development and formation
of spikes, as well as the number of spikelets per spike during
floral meristem differentiation. Spikelets and florets also abort
when stresses occur later during floral development (Dolferus
etal.2011). The fixation of grain number is, therefore, a dynamic
process that is determined continuously by the environment
throughout reproductive development. Several traits have been
identified that improve vegetative stage tolerance of cereals to
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abiotic stress conditions (Blum 2005, 2011). For instance, in
the case of drought stress these traits include yield potential,
water use efficiency (WUE), harvest index (HI), deep root
penetration (to access water and nutrients) and improved
transpiration efficiency. These traits are ultimately important
for reproductive development but they are not the focus of this
paper.

In wheat, the ability to accumulate carbohydrates in the stem
and leaf sheaths and remobilise these to the reproductive
structures is important for the determination of grain number
and size during reproductive development. Water-soluble
carbohydrates are important for maintaining grain size,
particularly under drought conditions when photosynthesis is
arrested (Gebbing et al. 1999; Yang et al. 2001; Ruuska et al.
2006, 2008). Genetic variation in the ability to mobilise stem
reserves to the developing grain has been identified and used
for biochemical characterisation and QTL mapping (Yang
et al. 2007; Ehdaie et al. 2008; Xue et al. 2008). The stay-
green trait, which is characterised by delayed leaf senescence,
is generally considered to improve tolerance at the vegetative
stage to mid-season droughts (Thomas and Howarth 2000), but
the trait may also interfere with carbohydrate mobilisation
to the reproductive structures and affect grain-filling (Blum
1998; Sanchez et al. 2002; Collins et al. 2008; Blum 2011).

Drought stress

Drought stress is the most common cause of yield loss, with the
affected area likely to double as a result of climate change,
especially in tropical regions of the world (Isendahl and
Schmidt 2006; IPCC 2007; Passioura 2007). Rice is a staple
food for more than half of the global population; however,
production uses 2—3 times more water than other cereal crops
such as wheat or maize and uses 30% of the freshwater used
for crops worldwide (Barker et al. 1999). Half of the world’s rice
production is affected by water stress (Bouman et al. 2005; Tao
et al. 2006; Yang and Zhang 2006).

The effect of drought on reproductive processes in cereals
has been extensively reviewed (Barnabas et al. 2008). Drought
during the pre-anthesis stage of reproductive development has a
dramatic effect on grain number (Fig. la—c; Bingham 1966;
Fischer 1973; Ji et al. 2010). Even short, mild water stress
periods at the young microspore stage of pollen development
(Fig. 2b, c) cause sterility; the ovule appears to be more resilient
(Ji et al. 2010). The higher sensitivity of pollen to drought
stress may be due to the unique properties of the tapetum, the
innermost layer of the anther wall. This specialised sporophytic
secretion cell layer is dedicated to feeding the nascent
microspores and the deposition of the pollen cell wall. These
functions occur during meiosis and at the young microspore
stage when the tapetum is most active (Clément et al. 1996).
Drought stress in rice causes a pre-mature programmed cell
death (PCD) response in the tapetum (Nguyen et al. 2009).
PCD is a process that is also responsible for pollen abortion in
cytoplasmic male sterile lines in rice (Li et al. 2004). The
capacity of the tapetum to download sugars for pollen
development is downregulated, consistent with repression in
cell wall invertase gene expression in rice and wheat (Sheoran
and Saini 1996; Koonjul et al. 2005; Ji et al. 2010). In drought-
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Fig. 1.

Effect of abiotic stresses on cereal reproductive development. (a) Effect of young microspore stage drought stress (5 days; 40% relative water
content) on grain number in wheat. (b) Drought stress at anthesis causes reduction in grain size in wheat. (¢) Young microspore stage drought stress in rice
causes reduction in grain number and in many cases the panicle fails to exert completely from the leaf sheaths. (/) Effect of young microspore stage cold
stress in wheat. In the field, empty spikes (red arrows) are clearly visible against the bright background. (e) Young microspore stage cold stress (4 days at
12°C) causes massive reduction in grain number in rice. (f') Effect of heat stress (38°C, 4 days) at the young microspore stage in wheat.
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(c)

Fig. 2. The reproductive structures are very sensitive to various abiotic
stresses. In rice (@) and wheat, the anthers in particular are very sensitive to
stress conditions. Abiotic stresses such as cold, drought and heat stress cause
abortion of male gametophyte development. Compared with pollen, the ovule
is more resilient to the effect of abiotic stress. The most sensitive stage of
pollen development is immediately after meiosis, when the tetrads (b) separate
to form the uni-nucleate young microspores (c), the first stage of pollen
development.

tolerant wheat, maintaining sugar transport to pollen and cell
wall invertase expression is correlated with drought tolerance
(Jietal. 2010).

Drought stress at the young microspore stage causes abscisic
acid (ABA) to accumulate in reproductive structures, resulting in
pollen sterility. Pollen sterility can be mimicked by exogenous
application of ABA (Morgan 1980; Zeng et al. 1985; Westgate
et al. 1996; Ji et al. 2010). Application of sucrose to developing
panicles reduces the detrimental effect of ABA, indicating that
ABA acts via repression of sucrose metabolism (Waters et al.
1984). Under drought stress, the water potential in floral organs
was maintained whereas it decreased in all other plant parts,
suggesting that ABA is transported to the anthers from other
plant parts (Morgan 1980; Saini and Aspinall 1982; Morgan and
King 1984). However, ABA biosynthesis does also occur in the
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anthers and ABA can repress sugar transport to pollen by
downregulating cell wall invertase expression. Downregulation
of anther ABA levels using transgenic approaches resulted in
improved stress-tolerance (Ji et al. 2011).

Post-anthesis drought stress has a strong effect on grain-
filling and grain size (Artlip et al. 1995; Jamieson et al. 1995;
Yang and Zhang 2006; Ji et al. 2010). Drought stress during
early seed development reduces the rate of grain filling, induces
early senescence and shortens the grain-filling and ripening
period by 10 days (Nicolas et al. 1985; Westgate 1994). The
process of grain-filling is supported by carbohydrate mobilisation
from the stem of'the plant. Cell wall invertase is also an important
component in controlling sugar transport during grain filling in
rice and maize (Miller and Chourey 1992; Hirose et al. 2002).
Under drought conditions, ABA levels increased in developing
barley seeds, resulting in induction of B-amylase genes and a
reduction in starch accumulation and quality (Seiler et al. 2011).
However, the fact that wheat germplasm that maintains grain
number under young-microspore-stage drought conditions but
does not maintain grain size when stressed at anthesis indicates
that the genetic control may be different (Ji ef al. 2010).

In maize, drought stress reduces kernel number as a result
of ovary abortion. Drought-stressed ovules show decreased
vacuolar and cell wall invertase activity, starch depletion and
inhibited photosynthesis (Zinselmeier et al. 1999). The maize
nucellus is supported by the pedicel and cell wall invertase is
expressed in the placento-chalaza cell layer which separates the
nucellus from the pedicel (Miller and Chourey 1992). Abortion of
ovary development is associated with the induction of a PCD
response and sugar flow to the nucellus is restricted (McLaughlin
and Boyer 2004). These events, leading to ovary abortion in
maize, are analogous to loss of pollen viability in rice and wheat
under drought conditions.

Genes associated with tolerance to drought stress include

dehydrins,  late-embryogenesis  abundant-like =~ (LEA),
aquaporins, heat shock proteins and several metabolic
enzymes involved in osmolyte (glycinebetaine), sugar,

antioxidant, lipid and amino acid (proline) biosynthesis are
likely to be expressed throughout the plant (Ergen et al. 2009;
Matsui et al. 2008). Extensive studies into the signal transduction
and gene regulatory events associated with drought stress
have also been conducted (Seki et al. 2007; Qin et al. 2011).
The transcription factors of the DREB family (dehydration
responsive element binding) play a central role in regulating
the expression of ABA-independent-drought-inducible genes
(Lata and Prasad 2011). Elaboration of the gene networks
involved in response to drought is expected to be one of the
important outputs as gene expression profiling using microarrays
and deep sequencing technologies continue to be applied to
cereals.

Cold and frost damage

Low temperatures, chilling (0-12°C) and freezing (<0°C), are
another major yield limitation to cereal productivity. Plants
growing in temperate regions have evolved a cold acclimation
response that is triggered under mild chilling conditions (4—6°C),
which enhances tolerance to more severe, sub-zero, temperatures
(Guy 1999; Thomashow 1999). In contrast to drought stress,
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which establishes progressively over several weeks, yield losses
due to chilling and frost conditions are often caused by short
events at night (‘cold spells’).

Temperate climate cereals, such as wheat and barley, have
the capability to sense and adapt to seasonal changes in
temperatures and daylength. However, they show considerable
variability in their ability to mount an acclimation response and
survive freezing temperatures. Wheat and related temperate
cereals that are grown under widely diverse conditions vary
dramatically in their ability to withstand chilling and freezing
conditions (Dubcovsky and Dvorak 2007), consistent with a
broad genetic variability (Fowler and Gusta 1979; Monroy
et al. 2007; Winfield et al. 2010). Throughout warm growing
seasons plants have little capability to withstand freezing
temperatures (below 0°C). However, as the year progresses,
some are able to sense the change in environmental conditions
that signal the coming winter. The gradual exposure to low non-
freezing temperatures triggers an increase in freezing tolerance,
known as cold acclimation (Guy 1999; Thomashow 1999). The
temperature at which cold acclimation is initiated differs
amongst the cereals. Acclimation in rye starts at warmer
temperatures, but spring wheat and barley do not initiate
acclimation until around 2°C (Fowler et al. 1999). There are
also differences between wheat varieties in threshold
temperatures at which cold acclimation is induced (Fowler 2008).

Cereals are most sensitive to freezing temperatures during
the reproductive stage of development, in particular the young
microspore stage (Fig. 2b, ¢). Non-freezing temperatures below
10°C are destructive at meiosis (Figs 1d, 2), causing male sterility
(Langer and Olugbemi 1970; Downes and Marshall 1971;
Qian et al. 1986; Demotes-Mainard ef al. 1995, 1996; Subedi
et al. 1998). Long-season varieties and delayed sowing can
ensure that flowering is past the highest risk period for low
temperatures, minimising the risk of yield loss. However, in
some environments this can result in greater yield losses when
flowering and grain filling is pushed to the hottest and driest
periods. Some wheat varieties are quite chilling and frost
hardy at the vegetative phase of development but show no
tolerance at the reproductive stages, indicating that the genetic
control is different (Fuller et al. 2007).

Winter and spring temperate cereals both exhibit a degree
of chilling tolerance that is either induced by cold or constitutive
(Jan et al. 2009). The response to cold has been extensively
characterised in wheat and barley. Sugar accumulation in the
vacuoles decreases the osmotic potential, causing increased
ABA levels. Gene expression studies have revealed several
cold-responsive genes, including signalling and transcription
components, genes encoding putative protective components
(cellular transport, cell membrane proteins, cryo-protectants and
chaperones), as well as genes encoding metabolic, respiratory and
photosynthetic components that are downregulated (Guy 1999;
Thomashow 1999; Svensson et al. 2006; Monroy et al. 2007;
Rapacz et al. 2008; Winfield et al. 2010). Some of these genes
play an important regulatory function in the cold response (Tsuda
et al. 2000; Iba 2002; Winfield ez al. 2010).

Cold inducible promoters contain a C repeat/dehydration
responsive element, which binds C repeat binding factors/
dehydration responsive element binding proteins (CBFs/
DREB:s), as well as cis-elements binding bZIP transcription
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factors (basic leucine zipper; Thomashow 2001; Zhang et al.
2004). It has been documented that within 15 min of exposure
to low temperatures CBF transcripts accumulate within the plant
(Gilmour et al. 1998). In barley, 20 CBF genes have been
identified; half of these are located in two tight clusters on the
long arm of chromosome 5H in the same region as the Fr-H2
frost resistance locus (Francia et al. 2004; Skinner et al. 2000).
A similar gene cluster at the orthologous region on chromosome
5A in diploid wheat (Triticum monococcum) is also located at the
Fr-A"2 frost resistance QTL for the level of transcription of the
cold-regulated gene CORI4b at 15°C. (Snape et al. 2001;
Vagujfalvi et al. 2003; Miller et al. 2006). The locus for frost
tolerance was shown to be completely linked to the central gene
cluster (Cbf-14, —15, —12; Sandve et al. 2011; Tondelli et al.
2011).

Flowering time in cereals is an important adaptation
mechanism to protect sensitive reproductive structures against
frost. Winter genotypes require a long period of cold exposure to
accelerate the transition from the vegetative to the reproductive
growth phase, a process called vernalisation (Trevaskis et al.
2007; Distelfeld et al. 2009). The requirement of periods of low
but non-freezing temperatures is common to both vernalisation
and cold-acclimation, suggesting that there is functional overlap
between the two processes. The main vernalisation gene VRN-1
co-locates with the frost resistance QTL FR-1 on chromosome 5.
When the reproductive phase has been reached in winter cereals
the ability to maintain the expression of frost tolerance genes
decreases and throughout the spring they de-acclimatise (Prasil
et al. 2004). VRN-1 is induced during vernalisation and was
shown to play a role in decreasing the cold acclimation ability
during reproductive development (Limin and Fowler 2006). The
correlation between winter habit (V7n1) and frost tolerance (Fr/)
could be a result of pleiotropic effects of Vrnl loci. In spring
wheat varieties the vernalisation pathway limits the expression of
cold-responsive genes; expression of cold responsive genes is
initially the same for spring and winter varieties but spring
varieties are unable to sustain their expression (Monroy et al.
2007; Galiba et al. 2009). Further, the fact that QTL for copper
tolerance were localised in the same position as the Vin-A1 and
Vrn-D1 alleles on chromosome 5A and 5D, respectively, suggests
that the VRNI gene may also play a role in other abiotic stress
responses (Balint er al. 2008). In wheat, a QTL for ABA
accumulation on chromosome 5A was also found to coincide
with the VRNI gene (Quarrie ef al. 1997). It is evident that
response pathways to vernalisation and photoperiodism
integrate a variety of other environmental cues (Distelfeld
et al. 2009).

Some of our major cereal crops are of tropical origin (maize,
rice and sorghum). Rice is increasingly grown in temperate
climate zones but is not adapted to cold and does not have a
cold acclimation response. In temperate climate zones rice is
grown as a summer crop, but yields are compromised by cooler
temperatures (Lin and Peterson 1975; Satake 1976; Board et al.
1980; Jacobs and Pearson 1994). The shorter temperate climate
zone growing season confronts rice crops with cold conditions
both at the start and end of the season. Currently, an estimated
7 million ha worldwide are prone to damage by cold at the
reproductive stage (Sthapit and Witcombe 1998). In Australia,
cold spells during the early booting stage cause an average yield
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reduction of 5-10% annually (A$44 million), making spikelet
sterility the main yield-limiting factor.

Cold-induced sterility inrice is due to pollen abortion (Fig. le).
Pollen development is most sensitive to cold at the young
microspore stage (Fig. 20, ¢). The effect of cold is irreversible
and cross-fertilisation with non-cold-stressed pollen results in
seed production, suggesting that the ovule is not affected (Hayase
etal. 1969). Cold stress in rice was shown to primarily affect the
endoplasmatic reticulum (ER) in the tapetum layer (Gothandam
etal.2007). The ER plays a role in PCD of animal and plant cells
(Zuppini et al. 2004). Physiological characterisations indicated
that non-reducing sugars accumulate in cold-stressed panicles
12—24 h after cold treatment (Ito 1974); this is followed by tapetal
hypertrophy (Nishiyama 1984). Cold stress induces a reduction
in sink strength in anthers of sensitive rice lines; cell wall invertase
activity and gene expression (OSINV4) are reduced and sugar
transport to the pollen grains is repressed. Cold-tolerant rice
maintains sink strength and pollen fertility (Oliver et al. 2005).
ABA plays an important role in cold-induced sterility in rice.
ABA accumulates in cold-sensitive but not cold-tolerant rice
anthers and ABA treatments result in repression of anther cell
wall invertase gene expression (Oliver e al. 2007). Reducing
ABA accumulation in anthers by overexpressing the ABA
catabolic gene ABA &'-hydroxylase results in improved cold
tolerance (Ji et al. 2011). Cold-induced sterility in sorghum
shows the same stage-specificity; sterile pollen lacks starch
and ovule development is not affected by cold stress. A high
altitude sorghum line showed strong tolerance to cold at the
young microspore stage (Brooking 1976, 1979). There is a
striking similarity between cold and drought-induced pollen
sterility. Rice germplasm that is tolerant to cold stress at the
young microspore stage is also tolerant to drought stress (Fig. 3).
This suggests that both stresses affect overlapping pathways and
induce pollen abortion.

Heat stress

Accumulation of greenhouse gasses (carbon dioxide, methane
and nitrous oxide) in the Earth’s atmosphere has caused annual
average temperatures to rise by 0.35-1.13°C from 1979 to 2003
(Peng et al. 2004). The average global surface air temperature will
increase by 1.8—4°C by the end of this century (IPCC 2007). In
Europe, summer precipitation is predicted to decrease and heat
waves will become more common and severe, placing heat ahead
of drought in terms of overall effect on crop productivity
(Semenov and Shewry 2011). Higher temperatures will
exacerbate the problem of heat stress on crop yields. For
instance, rice yields are estimated to be reduced by 41% by the
end of this century (Ceccarelli et al. 2010). Similarly, wheat
production in Australia is estimated to decrease by 50% when
average growing season temperatures increase by 2°C (Semenov
and Shewry 2011). It is estimated that around 9 million ha of
wheat in tropical or subtropical areas experience yield losses
due to high-temperature stress (Lillemo et al. 2005).

The response to heat stress involves physiological adaptations
that are required to protect the cellular functions (compatible
osmolytes such as glycinebetaine, y-aminobutyric acid), changes
in photosynthesis and assimilate partitioning, hormonal changes
(ABA and ethylene) and accumulation of secondary metabolites
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Fig. 3. Rice germplasm that is tolerant to cold stress is also tolerant to
young microspore stage drought stress. The cold-sensitive Australian variety
Doongara is sensitive to both cold and drought stress, whereas the cold-
tolerant Chinese varieties R31 and R32 are tolerant to cold and drought stress.
Apart from higher sterility levels, Doongara shows higher levels of leave
senescence compared with the tolerant lines R31 and R32.

(carotenoids, phenolics, isoprenoids; for reviews, see Kotak
et al. 2007; Wahid et al. 2007; Barnabas et al. 2008; Krishnan
et al. 2011). As with other abiotic stresses, heat stress induces
a response to oxidative stress to protect against the damaging
effect of activated oxygen species. Chaperone-like heat shock
proteins are induced, as well as known drought-response
proteins (late embryogenesis abundant, LEA and osmotin-like
proteins). Heat stress is often combined with drought stress,
with high temperatures leading to tissue dehydration. Under
field conditions, selection for heat stress is often confounded
by drought stress conditions and the regulatory system for both
stresses may have co-evolved (Jagadish et al. 2011).

The effect of heat on the reproductive stage in rice ranges
from pollen sterility induced at meiosis (Fig. 1f), poor anther
dehiscence at anthesis, to reduced grain-filling and reduced
grain quality (Stone and Nicolas 1994; Prasad et al. 2006;
Jagadish et al. 2007; Shah et al. 2011). Research efforts on the
effect of heat stress have often focussed on the effect on grain-
filling and grain quality. In wheat, heat stress alters the high
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molecular weight gluten protein content in the grain (Gibson
and Paulsen 1999; Yang et al. 2002a; Don et al. 2005; Wahid
et al. 2007). Heat stress during grain development reduces
grain weight in wheat (Wardlaw ef al. 1989a). During the
early stages of reproductive development the effect of heat
was mainly on grain number. When heat-stressed at meiosis,
most pollen grains were found to lack starch, causing high levels
of sterility in barley (Sakata ef al. 2000; Abiko ef al. 2005). In
rice, exposure to heat during the fertilisation process prevents
anther dehiscence and reduces pollen shedding and germination
(Matsui and Omasa 2002; Prasad et al. 2006). High temperatures
at the young microspore stage induce pollen sterility in rice as
a result of premature tapetum degeneration and abnormal
vacuolation and persistence of the tapetum cells in rice and
wheat (Wardlaw et al. 1989a, 1989h; Endo et al. 2009). This
is similar to what was observed for drought conditions (Saini
et al. 1984; Dorion et al. 1996; Lalonde et al. 1997; Ku et al.
2003). The young microspore stage of pollen development is
also very sensitive to heat stress in Arabidopsis (Kim et al. 2001).
Similar to cold and drought stress in rice and wheat, heat stress
affects carbohydrate assimilation by the tapetum and young
microspores. Cell wall invertase gene expression is repressed
by heat in sorghum, and starch and sugar content in anthers is
downregulated (Aloni et al. 2001; Pressman et al. 2002; Jain
et al. 2007, 2010). The hormone ABA has also been implicated
in the response to heat stress (Toh ez al. 2008). This may be due to
the fact that heat and drought stress often coincide. However,
ABA can induce thermo-tolerance in maize and it can activate
some genes encoding heat shock proteins (Wu et al. 1994; Gong
et al. 1998). In addition, heat-resistant dwarf mutants can be
made sensitive to heat stress by GA treatment (Barnabas et al.
2008). Treatment of wheat plants with an ethylene receptor
inhibitor alleviates the effect of heat stress, suggesting that
ethylene plays a role in inducing kernel abortion in wheat
(Hays et al. 2007).

Genetic variability for heat tolerance has been identified in
maize, wheat and rice (Maestri et al. 2002; Prasad et al. 2006;
Spiertz et al. 2006). In wheat, QTL for yield stability at the
early grain-filling stage and grain-filling duration were mapped,
and QTL for pollen heat tolerance were identified in maize
(Frova and Sari-Gorla 1994; Yang et al. 2002h; Mason et al.
2010).

Waterlogging

Waterlogging affects ~10% of the global land area and an
estimated 10 million hectares of land in developing countries
(Samad et al. 2011). Periodic flooding affects many cereal crops
in high rainfall environments and under irrigation conditions.
About 15-20% of the world’s wheat crops (10—15 million ha)
are prone to periodic flooding every year (Sayre et al. 1994;
Setter and Waters 2003). Climate change and rising sea levels
are expected to affect the frequency and intensity of rainfall in
some areas, thereby increasing the risk of floods. Waterlogging
can cause a wide variety of symptoms that can affect yield
either directly or indirectly, through affecting leaf senescence,
tiller number and reduced plant height (Samad er al. 2011).
Waterlogging causes a reduction in both grain number
and size in wheat (Van Ginkel et al. 1992; Musgrave 1994),
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but also spikelet sterility. Spikelet sterility has been blamed on
the combination of reduced light intensity (due to high cloud
cover) and high humidity (Fischer 19854, 1985h). Waterlogging
also causes nutrient deficiencies and it has been suggested that
flooding-induced spikelet sterility in wheat is caused by reduced
boron uptake (Rawson et al. 1996; Saifuzzaman and Meisner
1996; Saifuzzaman et al. 2008). Boron plays an essential
role in pollen cell wall biosynthesis and pollen tube growth
(Iwai et al. 2006).

Selecting germplasm tolerant to abiotic stress

The difficulties associated with generating tolerant cereal lines
using classic breeding approaches have been abundantly
illustrated in other recent review papers (Collins et al. 2008;
Fleury et al. 2010; Dolferus et al. 2011). Many abiotic stress
tolerance QTL have so far been identified in plants (for a
summary, see Plant Stress, http://www.plantstress.com, 22
May 2012; and Gramene website, http://www.gramene.org,
accessed 22 May 2012). Suitable germplasm is available in
some cereals for cold, drought and heat tolerance, but the
focus of breeding programs on commercial traits (e.g. grain
quality) may have led to exclusion of germplasm that is
superior in terms of abiotic stress tolerance. What has
hampered the quest for tolerant germplasm so far is the lack of
reliable screening methods and the lack of control in the timing,
severity and even occurrence of the stress stimulus under field
conditions. The use of controlled environment conditions
(growth chambers) or in the field using managed environment
facilities (Rebetzke er al. 2012; e.g. use of irrigation and
rainout shelters to control water stress conditions) are valuable
developments for the establishment of reliable pre-screening
methods.

Manipulation of abiotic stress tolerance using transgenic
approaches

Transgenic approaches using overexpression of stress-responsive
genes in model plants (e.g. Arabidopsis and rice) have identified
several genes that contribute positively to abiotic stress
tolerance, including several transcription factors and metabolic
genes (see the Plant Stress website, address given above). The
effect of very few of these genes has been investigated at the
reproductive stage. Likely candidate genes for the improvement
of reproductive stage abiotic stress tolerance are CBF/DREBI1
transcription factors that are affected by cold and drought
stress. Overexpression of CBF/DREBI transcription factors
under control of a strong constitutive promoter improves stress
tolerance, but they lead to stunted growth and there is an
adverse effect on yield (Oh et al. 2007; Morran et al. 2011).
The use of an inducible promoter such as the drought-inducible
rd294 promoter was shown to overcome the negative effect of
DREBI1A overexpression (Kasuga et al. 2004; Pellegrineschi
et al. 2004). CBF/DREBI transcription factors are normally
expressed in the vascular parenchyma cells (Endo et al. 2008)
and ectopic expression of these transcription factors may also
have negative effects on yield in cereals. Recently, ABA
levels were reduced by expressing the ABA catabolic gene
ABA §'-hydroxylase using a strong tapetum-specific promoter
in rice anthers. This resulted in reduced anther ABA levels,
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maintenance of sugar supply to the pollen and improved spikelet
fertility under cold conditions in rice (Jiet al. 2011). The choice of
an anther-specific promoter was essential, because ABA plays a
positive role in regulating water relationships and acclimation to
abiotic stresses (Larosa et al. 1985; Lu et al. 2009). A better
understanding of hormonal interactions involved in controlling
pollen fertility may lead to identification of other target genes for
transgenic approaches. Microarray studies have revealed that
response to abiotic stresses such as cold, drought and heat
shows a lot of similarity and many protective mechanisms are
shared by these stresses. Genetic manipulations in rice and maize
using the Escherichia coli cold shock proteins Csp4 and CspB
have resulted in significant improvements in growth and grain
yield under a variety of stress conditions (cold, drought and heat;
Castiglioni et al. 2008). The E. coli cold shock proteins act as
RNA chaperones and belong to a widespread class of proteins
with homologous genes in plants. This study has illustrated that
genetic manipulations can lead to crops with superior
performance under field conditions.

Selection of germplasm with reproductive drought-tolerance
has been based on grain yield-related traits, with selection
often being conducted under field conditions. Several QTL
with widely varying contribution to the grain yield phenotype
under drought conditions were identified in wheat and rice
(Kato et al. 2000; Lanceras et al. 2004; Wang et al. 2005;
Bernier et al. 2007; Kirigwi et al. 2007; Kumar et al. 2007;
Venuprasad et al. 2009). A major problem with drought tolerance
selection is interference with avoidance/escape mechanisms
(e.g. early flowering), especially under field conditions, where
occurrence, timing, severity and length of water stress conditions
cannot be controlled (Yue et al. 2006; Dolferus et al. 2011).
Osmotic stress under controlled environmental conditions has
been used as an alternative screening method to drought stress
(Lilley et al. 1996; Zhang et al. 2001); this method has not been
used at the reproductive stage to date. In maize, the anthesis-
silking interval (ASI) is negatively associated with grain yield
under drought conditions (Campos et al. 2004). By using marker
assisted selection (MAS) QTL have been introduced in order to
reduce the ASI (Boyer and Westgate 2004; Tuberosa and Salvi
2006). Despite the availability of tolerant germplasm, little
progress has been made in breeding cereals with reproductive
stage drought tolerance. Reliability of screening methods and
availability of relevant and precisely defined traits remains a
limitation.

Cold/frost tolerance in wheat and barley is a problem that
requires a better physiological and molecular understanding.
Flowering time and time of sowing can be exploited as
effective avoidance mechanisms; however, then breeding
will need to focus on germplasm that is better adapted to
heat and drought stress. Although winter wheat and barley
lines are able to survive cold and frost conditions at the
vegetative stage, a lot still has to be learned about varietal
differences in mounting an effective cold acclimation response
that protects against cold spells and frost periods that occur
during flowering in spring. Transgenic approaches using the
E. coli cold shock proteins have shown that this technology
can protect the reproductive structures (Castiglioni et al.
2008). In the case of cold-tolerance in rice breeding efforts
have focussed on improving seedling vigour, shortening the
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growth season, and improving cold-tolerance at the booting
stage (Andaya and Mackill 20034, 20035). Genetic variability
has been identified for reproductive stage cold tolerance and
this material has made it possible to identify cold-tolerance
QTL (Saito et al. 2004; Oliver et al. 2005; Kuroki et al. 2009;
Suh et al. 2010; Zhou et al. 2010). Two cold tolerance loci,
Ctb-1 and ¢CTB7, have been fine-mapped (Saito et al. 2004;
Zhou et al. 2010). Breeding for water-logging tolerance is
complicated and needs to focus mainly on survival of the
below-ground and vegetative plant parts, because the effects
on reproductive development are secondary.

In conclusion, improvement of reproductive-stage abiotic
stress tolerance in cereals is possible in the foreseeable future
using either breeding or transgenic approaches. Critical for
future achievements is defining the physiological and
molecular basis of well defined abiotic stress tolerance traits at
particular stages of reproductive development. This knowledge
base will then provide the basis for the design of high
throughput diagnostics to drive new advances in the selection
of abiotic stress tolerance in our major cereal food crops.
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