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Abstract. Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the
semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop
simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics,
canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common
post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield
were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest
positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in
leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield
under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development
response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer
dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of
water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased
water availability after anthesis and caused a delay in leaf senescence and led to a ‘stay-green’ phenotype. In conclusion, we
showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on
drought frequency. Maximum potential could be explored by specific combinations of traits.
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Introduction

Post-rainy (rabi) sorghum (Sorghum bicolor (L.) Moench)
production is the staple source of livelihood for millions of
food-insecure households in semiarid tropical regions of the
Indian subcontinent (Murty et al. 2007) but its production is
often limited by water availability, resulting in a high risk of
crop failure (Kholová et al. 2013). Sorghum is also important
for the subsistence economy of many households across the
semiarid tropics of Africa, where it also faces water stress.
Therefore, finding innovative and faster ways for improving
sorghum productivity and resilience under water-limited
conditions is a must.

The ‘stay-green’ phenotype has been described as the best
characterised trait contributing to drought adaptation in sorghum
(e.g. Borrell and Hammer 2000; Borrell et al. 2001; Jordan et al.

2003; Harris et al. 2007; Kassahun et al. 2010). The potential
of stay-green technology could be fully explored for crop
improvement only if the physiological mechanisms underlying
this phenomenon were properly understood. Aside from
‘cosmetic’ stay-green (retention of nonfunctional chlorophyll;
see reviews (e.g. Thomas and Howarth 2000; Cha et al. 2002)),
there are basically two parallel streams of hypotheses explaining
the maintenance of green leaves under water stress, one of which
deals with the enhanced use of available N (Rajcan and Tollenaar
1999; Borrell and Hammer 2000; Borrell et al. 2001; Bertheloot
et al.2008; vanOosterom et al. 2010b) and another one favouring
an improved plant water use status (van Oosterom et al. 2010b;
Vadez et al. 2011, 2014). Several quantitative trait loci (QTLs)
contributing to stay-green phenotype expression under drought
(Stages 1–4, StagesA andB) have been validated across different
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research groups (Tuinstra et al. 1996, 1997, 1998; Crasta et al.
1999; Subudhi et al. 2000; Tao et al. 2000; Xu et al. 2000;
Kebede et al. 2001; Sanchez et al. 2002; Haussmann et al. 2002;
Hash et al. 2003; Harris et al. 2007). Introgressing stay-green
QTLs into two senescent parental lines (R16, S35) from the stay-
green donor B35 produced lines showing differences in several
traits related to the plant water budget (e.g. transpiration
efficiency (TE), water extraction, leaf area) (Vadez et al.
2011). Here, we test the effect of several possible mechanisms
affecting the plant water budget on stay-green expression, and
grain and stover yield.

Breeding for improved varieties for water-limited
environments has been slow, especially in developing
countries, mostly because of the highly unpredictable drought
environments. To tackle the season-to-season environmental
variation, we have already classified and quantified five
different stress scenarios across the rabi sorghum tract using
the sorghum crop model in the APSIM software platform
(Hammer et al. 2010; Keating et al. 2003). Environment types
ranged from very severe (an average grain yield of ~100 kg ha–1)
to no stress conditions (an average grain yield of ~1500 kg ha–1)
and divided the rabi sorghum tract into four zones with similar
environmental conditions (Kholová et al. 2013). This follows
similar efforts in sorghum in Australia ((Chapman et al. 2000a,
2000b, 2000c), wheat (Triticum aestivum L.) (Chenu et al. 2011,
2013), maize (Zea mays L.) (Chauhan et al. 2013) or chickpea
(Cicer arietinum L.) (Chauhan et al. 2008)). For the rabi
sorghum region, which is the object of the current study, we
also found that for the recommended management practices,
the crop suffered severe water limitations causing substantial
yield losses (typically more than half of the yield is lost during
severe droughts) in around one-third of the seasons in the core
production zone. Given these large variations in stress
conditions, it is very likely that potential beneficial traits may
not have similar effects in all scenarios, as noted by van
Oosterom et al. (2001), Bidinger et al. (2007), Chapman et al.
(2000a, 2000b, 2000c) and Tardieu (2012). Therefore, we have
tested the effect of several traits involved in the plant water
budget on grain and stover yield across the different stress
scenarios that were previously identified.

Hence, the main aims of this study were to: (i) assess the
genetic variation in the mechanisms and traits putatively related
to the plant water budget in a series of introgression lines (ILs)
developed into two genetic backgrounds (S35, R16); and (ii) use
these ranges of genetic variation to model their putative effect on
grain and stover yield across five different stress scenarios, using
the most common rabi sorghum genotype (M35–1) as an in
silico recipient of these traits; and (iii) assess the value of several
mechanisms and traits in eventually conferring a stay-green
phenotype and for crop improvement programs.

Materials and methods
Plant material

Two senescent recurrent parental lines (R16, S35) were
introgressed with six individual stay-green QTLs (from the
donor parent B35; the development of ILs has been described
in Kassahun et al. 2010 and Vadez et al. 2011).These ILs were
used to explore the variation in several mechanisms involved in

the plant water budget, and were expected to eventually lead to
yield improvement under water stress and stay-green phenotype
expression, which was further tested with the crop model (see
below). Both of the senescent recipient lines as well as the stay-
green QTL donor parent are considered to be limited-tillering
materials. The stay-green donor was B35 (BT� 642) in both
cases; B35 is a triple dwarf genotype.

Crop simulation approach – traits related to plant water
budget and trait simulation

The sorghum (Sorghum bicolor (L.) Moench) model in APSIM
(ver. 7.3; http://www.apsim.info/Products/Downloads.aspx;
Keating et al. 2003; Hammer et al. 2010) and the original
parameters developed for the common rabi-grown genotype
M35–1 (Maldandi type; Ravi Kumar et al. 2009) were used to
conduct simulations for the key locations within the five clusters
of stress scenarios previously identified across the main rabi
sorghum production tract (the simulations set is based on
404 years of historical weather records across 19 locations; the
details are given in Kholová et al. 2013). These five stress
scenarios were: (i) pre-flowering, (ii) flowering, (iii) post-
flowering stress; (iv) stress relieved after flowering, and (v) no
stress. Crop water demand is largely determined by the canopy
size, the canopy conductance response to environmental stimuli
(high evaporative demand of the air, soil water deficit) and the
ability to extract water from the soil. Keeping how APSIM is
structured in mind, our efforts focussed on the assessment of
genetic variation in the set of stay-green QTL ILs in the R16 and
S35 backgrounds for the production component traits related
to (i) canopy development, (ii) capacity of the canopy and root
to conduct water, and (iii) the canopy development response to
water stress. The range of IL variations was then used to
individually alter the crop parameters of the rabi-adapted
sorghum variety M35–1 (as a ‘virtual introgression’ of
individual traits), in a similar magnitude to that identified
within the population of stay-green IL (i.e. original
coefficient�% variationmax). These were used to simulate
their effects on stover and grain yield across the sorghum
production tract with APSIM. Consequently, these virtual trait
introgressions were compared with the original stover and grain
yield simulations that were carried out with M35–1 parameters
only (Kholová et al. 2013). The virtual crop growth was then
analysed in more detail in seasons facing severe water limitations
at a representative production site (Solapur) to visualise how the
traits affected the stress patterns and the expression of the stay-
green phenotype. Finally, several trait combinations and their
effects on crop production, resilience and economic importance
were investigated.

Leaf area growth dynamics and its simulation

Observed variation in canopy parameters
The growth of ILs was assessed under field conditions

following standard methods for APSIM genotype
parameterisation (Birch et al. 1990). This method builds on
dynamic observations of plant phenological phases, leaf
appearance during the season and leaf size distribution in
plants grown under optimal conditions. The combination of
these three parameters defined the canopy development as a
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function of thermal time and allow the estimation of APSIM
coefficients to reflect the genotypic variability. Data were
collected in field conditions during three seasons: 2010–11 (16
November to 20 March), 2011–12 (13 October to 10 February)
and 2012–13 (8 November to 12 March). Field management
and organisation were very similar to that of Kassahun et al.
2010. The analysis of 3 years of these field trials provided us
with a range of variation in the corresponding parameters
characterising crop canopy development in APSIM 7.3 within
the population of ILs. The maximum observed variation in IL
parameters (see below, Table 1 and Figs 1–3) was applied to
change M35–1 coefficients in a similar range: g � 5%
(2.82� 0.141); b� 10% (0.66� 0.066); a� 10% (0.011�
0.0011); Leaf Appearance Rate 1� 10% (45.5� 4.55); Leaf
Appearance Rate 2� 10% (20� 2) (see below and Figs 1–3).

Simulation of canopy development
Canopy development is simulated on a whole-plant basis

through a relationship between total plant leaf area (TPLA)
and thermal time. TPLA integrates the number of fully
expanded leaves, their individual size and tiller number, and
includes an adjustment for the area of expanding leaves, as
calculated by Eqns 1 and 2 (Hammer et al. 1993):

TPLA ¼ TPLAmax

1þ e�aðTT�bÞ ; ð1Þ

TPLAmax ¼ ð1þ FTNÞ0:66 � TLN g ; ð2Þ
where TPLAmax is the maximum value of TPLA; TT was
calculated from daily maximum and minimum temperatures
as per Hammer and Muchow (1994); a, b and g are fitted
coefficients; FTN is fertile tiller number and TLN is total leaf
(node) number. The value of b is usually set at 66%of the thermal
time from emergence to flag leaf full expansion (Hammer et al.
1993). Variation in TPLAmax is associated with differences in
TLN or g (i.e. leaf size), resulting in the crop type attaining smaller
or larger TPLA throughout the crop’s life cycle (Fig. 1a).

Variation of the other coefficients in the TPLA function
Variation of the other coefficients in the TPLA function

(a and b, the TPLA production coefficient and the TPLA
inflection ratio coefficient in APSIM, respectively) can be used
to separate and mimic the effect of faster canopy development at

earlier growth phases combined with slower canopy
development in the later phases (plants with high ‘early
vigour’) or vice versa, with initial slower and later increased
canopy developmental rates (low ‘early vigour’). Both of these
plant types (early or late vigour) would ultimately develop
similar total leaf area at booting (given the same TPLAmax

attributes) under optimal conditions (Fig. 2a), although with a
different dynamic through the vegetative phase of the crop cycle.
There are four hypothetical combinations shown on Fig. 2a but
only two combinations were used for modelling – bold curves).

Simulation of leaf appearance rate
The number of fully expanded leaves is the product of thermal

time elapsed since emergence and the leaf appearance rate. The
rate of leaf appearance is characterised by a constant thermal time
per leaf or phyllochron (Leaf Appearance Rate 1), except for the
top3.5 leaves,whichappear at amore rapid rate (LeafAppearance
Rate 2). Although any change in phyllochron does not affect total
leaf number, it does affect crop phenology, as the type with an
extended (or reduced) phyllochron interval reaches full flag leaf
expansion and thus flowering, later (or sooner) (Fig. 3a).
Affecting the phyllochron parameters thus leads to changes in
flowering time (short or long crop duration) while keeping the
same canopy size attributes via TPLAmax and TPLA attributes.

Limited maximum transpiration rate under high
vapour pressure deficit, soil water extraction
rate and their simulation

Observed variation in maximum transpiration rate
The transpiration rate (TR, g H2O transpired cm–2 h–1) of well

watered plants subjected to a range of vapour pressure deficit
(VPD) regimes was measured in controlled environment growth
chambers according to previous work (Kholová et al. 2010).
The VPD regimes used in the assay represent the range of VPD
conditions that plants usually face during rabi season cultivation.
Ten ILs in both the R16 and S35 genetic backgrounds were
assessed. There was limited variation in the S35 background but
significant variation in the R16 background, which was further
modelled (Fig. 3b).

Simulation of limits on maximum transpiration rate
The variation in this trait was simulated through APSIM by

imposing a restriction on transpiration at the time of the day

Table 1. The range of variability in crop characteristics assessed in stay-green isogenic lines (ILs) of sorghum, the
corresponding APSIM coefficients and the variability virtually introgressed in M35–1 (a Maldandi rabi cultivar)

Simulation APSIM coefficient(s)
altered

Variability
modelled

Original M35–1
coefficients ± range

of variability

Phyllochron leaf_app_rate1 ±10% 45.4 ± 4.54
leaf_app_rate2 ±10% 20 ± 2

Plant vigour c_tpla_inflection_ratio ±10% 0.66 ± 0.066
-p_tpla_prod_coef ±10% 0.011 ± 0.0011

Canopy size mainStemCoef ±5% 2.82 ± 0.141
Maximum transpiration rate max TR ±10% 0.8 ± 0.1
Root water extraction capacity kl ±10% 0.7 ± 0.1
Responsiveness of leaf expansion to soil drying sw_def_leaf ±20% <0.1; 1 ± 0.2.>
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when potential crop water use is the highest. To do so,
APSIM was adapted to calculate crop growth on an hourly
basis, instead of a daily basis as in the standard model. This

incorporated procedures to generate hourly weather variables
from daily values (Hammer and Wright 1994; Glassy and
Running 1994). A restriction on crop TR was then imposed in
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Fig. 1. Effects of canopy size in sorghum. (a) Maximum total plant leaf area (TPLAmax) function in APSIM which is illustrated by the example of variable
growth dynamics of plants with different leaf numbers (different line styles) and reflects (b) the observed variability in total plant leaf area (TPLA) in introgressed
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a manner similar to that of Sinclair et al. (2005) (Fig. 4a). The
limit on the maximum TR was imposed at 0.8 (mm H2O m–2 of
leaf area (LA) h–1]� 0.1 (�10%), which reflected the variation

in stay-green ILs (Table 1). Additionally, simulations of
the limited maximum TR in combination with other traits
investigated in this study were evaluated and are summarised
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in Table S1, available as Supplementary Material to this paper,
but are not discussed in details.

Observed variability in soil water extraction rates
Recent research indicates that the restriction of transpiration

under high VPD conditions could be of a hydraulic nature and

linked to the extraction capacity of roots, for instance in barley
(Hordeum vulgare L.), wheat (Triticum aestivum L.) or pearl
millet (Pennisetum glaucum (L.) R. Br.) (Manschadi et al. 2006;
Bramley et al. 2009; J. Kholová,M. Tharanya, S. Sakhti, unpubl.
data). This possibility was then approached through an alteration
of the kl coefficient in APSIM, which determines the soil water
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extraction rate (Robertson et al. 1993; Meinke et al. 1993). The
differences in soil water extraction dynamics for various soil
water levelswere re-analysed fromearlier data (Vadez et al. 2011)

and different types of water use dynamic patterns were found
among R16 ILs and S35 ILs. In R16 ILs, the total amount of
water extracted from lysimeters differed little; however, there
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was variation in the dynamic of water extraction following
irrigation withdrawal, suggesting variability in root hydraulics
in ILs in the R16 background (Fig. 5b; the actual lysimeter

weight is normalised by the field capacity lysimeter weight
during the intervals after stress exposure). In S35 ILs, the total
amount of water extracted from lysimeters differed among lines
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(Vadez et al. 2011), suggesting the involvement of different
mechanisms in these S35 ILs and these were not investigated
further here.

Simulation of soil water extraction rates
The APSIM kl constant determines the rate of soil water

extraction as a function of soil moisture (Fig. 5a). It is an
empirically derived coefficient representing a combination of
soil–root hydraulic properties (k) and root length density (l)
(Passioura 1983). Hence, it captures hydraulic limitation to
water absorption by the crop. Apart from kl representing
consequence of crop variability in root hydraulic conductance
(Bramley et al. 2009; Sadok 2013; J. Kholová, M. Tharanya,
S. Sakhti, unpubl. data), it can also reflect variations in root
architecture (Manschadi et al. 2006). Kl and soil water content
determine the potential supply of water to the crop for
transpiration. This determines the crop water status via the
transpiration supply : demand ratio, which drives the plant
response factors that affect crop phenology, biomass
production and LA development (Chapman et al. 1993;
Hammer et al. 2010). Therefore, altering the kl coefficient
simulates changes in the timing of water stress limitations on
the crop. It was used here to mimic a possible change in root
hydraulic conductance. The data on water extraction as a
function of soil moisture from the ILs were fitted to changes in
the kl coefficient (kl= 0.07� 0.01 (~10%); Fig. 5; Table 1).

Canopy sensitivity to declining soil water and its simulation

Observed variability in responsiveness
of leaf expansion to stress
A decline in leaf expansion at high soil moisture levels would

save water and would potentially be an important plant feature
for drought adaptation, although it would also restrict the plant
leaf area and eventually light interception and biomass
accumulation (Chenu et al. 2008, 2009). Here, the different
ILs were grown in lysimeters during two seasons (2010–11
and 2011–12) and exposed to terminal drought as described
earlier (Vadez et al. 2011). Several times during the advancing
water stress, the canopy leaf area was nondestructively assessed
(LA was equal to leaf length�width� 0.69). The genotypic
variability in the response of leaf area development to soil
drying was expressed by measuring the LA difference from a
fully irrigated control after cessation of watering (Fig. 6b).

Simulation of responsiveness of leaf expansion to stress
The differences in the sensitivity of leaf expansion to

drought were approached through alterations in the stress
response coefficients (sw_def_leaf) of APSIM. The sw_def_leaf
coefficients quantify the range of crop water status via the
transpiration supply : demand ratio over which reduction in
leaf growth is imposed. Therefore, a higher upper limit of this
supply–demand window (<0.1; 1.2>), instead of the standard
window (<0.1, 1.0>), would slow down leaf growth sooner (e.g.
at higher soil moisture). This range in the sw_def_leaf
coefficients was assessed from the ILs measured behaviour
and its variation estimated (<0.1; 1� 0.2> (�20%); Fig. 6).

Statistical analysis
Transpiration rate response to VPD was analysed via a broken
linear model using GENSTAT (VSN International, Hemel
Hempstead, UK) and visualised using GraphPrismPad ver. 6.1
(GraphPad Software, San Diego, CA, USA). Canopy
development parameters (i.e. leaf size and leaf appearance)
were analysed using a two-way randomised block ANOVA
(with leaf numbers and weekly leaf counts as blocks; Table 2)
across seasons and genotypes to illustrate the influence of season,
genotype and genotype� season interactions. We further used a
one-way block ANOVA to analyse the genotypic differences
of leaf appearance within the season and the effect of season
within genotype (Tables 3, 4).

Simulation outputs were analysed within the stress scenarios
defined by Kholová et al. (2013). This work is intended to assist
sorghum breeding programs in which the final economic value of
the trait is of central importance. Therefore, a preliminary attempt
was made to estimate the economic value of each mechanism
for each stress pattern, in order to explore economic trade-offs,
knowing that the usual stover price is around one-third (worst
quality) to half (best quality) of the grain price. In this study, we
used an average fixed price of 15 per kg for grain and 5 per kg
for stover (Directorate of Marketing & Inspection 2014). These
results are summarised in Table S1 but are not discussed in detail.

Results

Leaf area growth dynamics and its simulation

Observed variation in canopy parameters

The two-way ANOVA of three seasons of field data showed
a significant effect of season and genotype on leaf size and a
significant genotype� season interaction effect (Tables 2, 3).
Significant differences in the rates of leaf appearance between
genotypes were also found (Table 4, Fig. 3b) and were
accompanied by variation in flowering time (� ~5 days, data
not shown). This variability was reflected in the derivation
of APSIM coefficients.

Simulation of TPLAmax

A simulated smaller canopy size is predicted to improve yield
in all water stress environments of the rabi tract except for the
limited stress or unstressed scenarios (Table S1, Fig. 1c). At the
same time, less canopy development decreased the expected
stover yield across all stress scenarios (Table S1, Fig. 1d).
Simulation of larger canopy size had the opposite effect on
predictions of grain and stover production (Table S1). A
smaller canopy size delayed the onset of stress in terminal
stress scenarios (Fig. 1e). It also led to a grain yield advantage,
which was caused by a delay in water exhaustion during the
season. This shift in water usage also delayed leaf senescence and
led to an expression of a virtual stay-green phenotype (Fig. 1f).

Simulation of plant vigour (TPLA coefficients a and b)
Simulation of plants with high early vigour showed a grain

yield penalty in all environments except in the unstressed
scenario, but it led to higher stover production across all
scenarios (Table S1). On the contrary, plants with low early
vigour led to a mild grain yield production increase in all stress
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scenarios, except the unstress scenario, accompanied by a mild
loss in stover production in all environments (Table S1; Fig. 2c,
d). This also led to water conservation, as in the case discussed
above (Fig. 2 e, f). Overall, altering the TPLA inflection
coefficient and the production ratio had only mild effects on
the evolution of the stress patterns (Fig. 2e, f), and very small
effect on grain and stover yield (Fig. 2c, d), although it appeared
to increase yield stability (Table S1).

Simulation of phyllochron (Leaf Appearance Rate 1 and 2)

Simulations of longer crop duration via longer phyllochron
intervals decreased grain yield in all stress scenarios, although it

Table 2. Overall evaluation of genotypic, seasonal and genotype�
season effects on average leaf size of two senescent sorghum genotypes
(R16 and S35) and stay-green QTL introgressed lines descended from

R16 (i.e. K359w) and S35 (i.e. 7001)
The table shows the significance of the differences among the seasons across
genotypes, significance of differences between genotypes across the seasons
and significance of season� genotype interactions. ***means the significant

at P< 0.001

Genotype Effect of
season

Effect of
genotype

Effect of season
� genotype

R16 and K359w (2010–13) *** *** ***
S35 and 7001 (2010–13) *** *** ***

Table 3. Evaluation of genotypic and seasonal effects on average leaf size of two senescent sorghum genotypes (R16 and S35) and stay-green QTL
introgressed lines descended from R16 and S35

Lines 7001, 6008, 6026 and 6040 originated fromS35; linesK359w,K260,K648 andK606 originated fromR16. The table shows the average leaf size for each of
three seasons (2010–2012), total LA in brackets and the significance of the differences among the seasons and genotypes. Different letters mean significant
differences according to the Tukey–Kramer test; the respective LSD values are also displayed. LA, leaf area; NE, not estimated; ***, significant at P< 0.001

Genotype Effect of Average leaf size (total LA, cm2) Difference among seasons Difference among genotypes
season 2010–11 2011–12 2012–13 2010–11 2011–12 2012–13 LSD for

season
2010–11 2011–12 2012–13

S35 *** 118 (1291) 200 (2453) 180 (1955) c a b 8.0 a b b
7001 *** 110 (1190) 207 (2349) 152 (1551) c a b 8.0 b b cd
6008 *** – 202 (2136) 162 (1622) – a b 7.0 – b c
6026 *** – 237 (2728) 197 (2134) – a b 8.0 – a a
6016 NE – – 142 (1579) – – – – – – d
6040 NE – – 125 (1367) – – – – – – e
LSD for genotype – – – – – – – – 5.0 6.3 8.7
R16 *** 175 (1770) 218 (2530) 148 (1537) b a c 8.0 a a b
K359w *** 166 (1807) 219 (2559) 173 (1818) b a b 8.3 b a a
K260 NE – 205 (2528) – – – – – – b –

K648 NE – – 140 (1446) – – – – – – C
K606 NE – 188 (2165) – – – – – – c –

LSD for genotype – – – – – – – – 5.9 6.6 7.4

Table 4. Evaluation of genotypic effects on average leaf number of two senescent sorghum genotypes (R16 and S35) and stay-
green QTL introgressed lines descended from R16 and S35

Lines 7001, 6008, 6026 and 6040 originated from S35; lines K359w, K260, K648 and K606 originated from R16. The table shows the
average leaf number for each of three seasons (2010–2012), total leaf number in brackets and the significance of the differences among
the genotypes. Different letters mean significant differences according to the Tukey–Kramer test; the respective LSD values are also

displayed. LA, leaf area; NE, not estimated

Genotype Average number of expanded leaves
(maximum leaf no.)

Difference between genotypes

2010–11 2011–12 2012–13 2010–11 2011–12 2012–13

S35 8.1 (14) 9.3 (16) 9.9 (14) b b b
7001 8.4 (14) 9.4 (16) 9 (14) a b d
6008 – 9.4 (15) 10.2 (14) – b a
6026 – 9.7 (16) 9.6 (14) – a bc
6016 – – 9.5 (14) – – c
6040 – – 9.4 (14) – – c
LSD for genotype – – – 0.18 0.19 0.21
R16 8.8 (14) 10.3 (14) 9.3 (14) b a b
K359w 9.1 (14) 9.8 (16) 9.8 (14) a b a
K260 – 9.7 (16) – – b –

K648 – – 9.2 (14) – – b
K606 – 10 (16) – – b –

LSD for genotype – – – 0.14 0.21 0.18
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increased stover yield to a similar magnitude except for in the
preflowering stress scenario (Table S1). Shortening the
phyllochron interval and therefore crop duration substantially
increased the predicted grain yield, although it decreased stover
production (Fig. 4c, d; Table S1). Here, the estimated decrease
in stover yield (in kg ha–1) was of a smaller magnitude than the
gain in grain yield. In the most severe stress scenarios, the
shorter duration crop exhausted water resources faster.
However, it improved water use after anthesis in less severe
stress scenarios (Fig. 3e). Under severe stress, the crops with
shorter phyllochron intervals had a larger part of their
preflowering phase taking place under no stress conditions,
compared with the crop with a longer phyllochron (Fig. 3f).
The crops with a short phyllochron has grown the LA earlier
and also exhausted the available water and senesced before the
crops with a longer phyllochron. Thus, in this specific case, the
differences relate to avoiding water limitation at critical stages
rather than water conservation.

Limited maximum TR and soil water extraction rate,
and their simulation

Observed variation in limits on maximum TR

The rates of transpiration upon exposure to a range of VPD
conditions varied between the senescent parental lines and the
ILs especially within the ILs in the R16 background, with either
higher or lower TR than R16 (Fig. 4b). There was little variation
among ILs in the S35 background (data not shown) and
therefore the variation within R16 ILs was used to guide the
modelling of these effects.

Simulation of limits on maximum TR

Setting the limits on the TR by ~10% in M35–1-generated
crops with a high probability of increasing both the grain and
stover yields across all stress scenarios (Fig. 4c, d). This implies
that, in contrast to all the other traits tested in this paper, the
limited transpiration trait did not involve production trade-offs
between grain and stover but increased overall water productivity
(TE). The lowest yield gains were predicted within the
unstressed scenario. Limiting the maximum TR in the severe
stress scenarios restored yield due to improved water use after
anthesis, in several cases where there was otherwise a crop
failure. However, the delay in the onset of stress due to the
limited TR was small compared with other traits (Fig. 4e) but
was sufficient for expression of the stay-green phenotype
(Fig. 4f).

Observed variability in the soil water extraction rate

Reanalysis of data fromVadez et al. (2011) showed substantial
genetic variability in the rates of water extraction especially in
R16-derived ILs (Fig. 5b). This variability was estimated to be in
the range of� ~10% from the reference senescent parental line
(R16) and justified further simulation analysis.

Simulation of soil water extraction rate

The virtual M35–1 crop with lower water extracting capacity
at declining soil moisture (lower kl) realised a modest increase
in stover yield in most of the stress scenarios but maintained

similar grain yield levels (Table S1; Fig. 5c, d). However, there
was large variability in the kl effect under particular stress
scenarios (Fig. 5c, d). The plants with a lower kl entered the
water stress slightly earlier but were able to extend the duration
of water availability (due to a simultaneous slow-down in
biomass accumulation). This was especially notable in the
scenarios of stress imposed after flowering and relieved stress
after flowering (Figs 4, 5). Also, in the severe stress situation,
the low-kl crop had slightly improved TE by limiting supply to
the crop. So, although limitations in root extraction generated
slightly early stress onset, they resulted in an extended period
for which growth was maintained, which would contribute to
the improved crop resilience and potential for stay-green
expression (Fig. 5f).

Canopy sensitivity to declining soil water and its simulation

Observed variability in responsiveness of leaf
expansion to stress

Upon stopping irrigation at 5 weeks after sowing, most of the
ILs restricted their leaf expansion upon exposure to soil drying,
whereas their respective senescent parents developed similar
LA as they did in the fully-irrigated treatment (Fig. 6b shows
variability in S35 ILs, although there was a similar range of
variability in R16 ILs).

Simulation of responsiveness of leaf expansion to stress

The simulated slow-down of leaf expansion in drier soil
(broadening the sw-leaf-def interval) had little effect on yield
across all environments, whereas it increased stover productivity
across all environments (Table S1; Fig. 6c, d). Generally, a crop
with a decline in leaf expansion in wetter soil slightly postponed
the onset of stress and improved water extraction during the
grain filling stage, especially in the case of the intermittent
stress scenario (Fig. 6e). Furthermore, the crops restricting leaf
expansion in wetter soil, under severe water stress, had a higher
grain yield than crops with a decline in leaf expansion decline in
drier soil (Fig. 6c–f). The failure of the crop with decreased leaf
expansion in drier soil could be explained by its enhanced
biomass accumulation during the early stages of growth and
larger leaf area development followed by a restricted period of
water use after anthesis which can therefore also lead to earlier
senescence (Fig. 6f). In any case, different sensitivities of leaf
expansion to stress had only small effects on grain and stover
yield.

Economic value of traits

The proportion of various stress scenarios differs within the
rabi sorghum production zones (defined in Kholová et al.
2013); therefore, the importance of the traits for use in
breeding programs should be weighted accordingly. Initial
insights into the putative breeding value of the investigated
traits (and some of their combinations) within production
zones are shown in Table S1 but the data are not discussed.

Discussion

In this work, we have built up on previous modelling that
characterises of stress environments across major rabi
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sorghum production zones (details in Kholová et al. 2013) to
assess the effect of traits related to the plant water budget on
grain and stover yield. Several traits postponed the onset of stress
and increased water use after anthesis, which is phenotypically
expressed as delayed leaf senescence and led to a virtual stay-
green phenotype, although other traits also affected TE.
Maintenance of green leaf area generally led to improved grain
productivity, although, in most scenarios, an increase in grain
productivity was counterbalanced by a decrease in stover
productivity and vice versa. The improvement of both grain
and stover productivity was possible only through improvement
of plant water productivity (TE) and was a result of simulating
a restricted crop TR under high VPD. From a breeding point of
view, a decreased TR under high VPD would be the most
worthwhile strategy for crop drought adaptation improvement.
Apart from a reduced TR, any other way of improving stover
productivity would increase the risk of grain yield failure and
vice versa; an increase in grain productivity was feasible only in
crops with supressed stover production. In short, we identified a
set of physiological processes leading to the expression of the
stay-green phenotype across the rabi sorghum belt that could
improve grain and stover yield and their stability under current
management practices. This knowledge allows us to construct
crop ideotypes for particular locations, according to the
proportion of stress scenarios and according to farmers’
specific demands (for either stover or grain).

Observed variability in traits affecting plant water use

Introgression of stay-green QTLs led to either lower or higher
canopy size in ILs. However, significant genotype� season
interactions, especially between earlier (October 2011–12) and
later plantings (November 2010–11 and 2012–13), indicated
that variability in photoperiod or temperature sensitivity could
have affected canopy development (e.g. Bos and Neuteboom
1998; Kim et al. 2010a, 2010b; van Oosterom et al. 2011). Leaf
expansion is also known to be sensitive to VPD (e.g. Reymond
et al. 2003; Welcker et al. 2007) and VPD differences across
season could have also affected the canopy development.
Therefore, more work is needed to more thoroughly assess
how VPD could have altered the leaf development coefficient,
and also to develop the necessary loops in APSIM to reflect
genetic differences in these effects. In addition, various ILs
from both backgrounds (R16 and S35) limited leaf expansion
upon soil drying, pointing to a genetic mean of modulating leaf
area if drought prevails during the vegetative stages. Additional
work is therefore needed to properly characterise how VPD and
soil moisture affect the leaf canopy development across the
different stay-green QTL introgressions.

There is much research describing the genotypic variability
in canopy conductance under high VPD, related, in some cases,
to the hydraulic properties of plant tissues (e.g. Fletcher et al.
2008; Bramley et al. 2009; Devi et al. 2010; Kholová et al.
2010a, 2010b; Gholipoor et al. 2010) and resulting in
differences in crop water use (e.g. Vadez et al. 2014). There
are also modelling exercises predicting benefits of limited crop
hydraulics in water-limited environments (Sinclair and Hammer
et al. 2005; Manschadi et al. 2006; Sinclair et al. 2010). Here,
we have documented that QTL introgressions indeed influence

plant canopy water conductivity and reduced or enhanced TR,
especially under high VPD, although this was specific to the R16
background.This observation confirms that a given physiological
mechanism may not be simply transferable to all genetic
backgrounds and may depend on the genetic context of the
recurrent parent (similarly in Vadez et al. 2011). In addition to
these, differences in soil water absorption capacity were found
among the ILs. Whether these were related to the differences in
TR is unknown. In other studies, differences in TR were, in fact,
linked to the difference in soil water absorption capacity (e.g.
Bramley et al. 2009; Sadok 2013). In any case, our observations
showed that stay-green QTLs could alter the rate of water loss by
the canopy, or the rate of water absorption by the roots.

Traits affecting plant water use can lead to water saving
and the stay-green phenotype

Alterating of the canopy development parameters in APSIM
altered stress patterns and led to the expression of a stay-green
phenotype. Grain yield improvement in thewater stress scenarios
came from constitutive water conservation during vegetative
growth via reduced canopy size during the entire growth
period or particular phases of growth. An exception was the
alteration of the phyllochron, resulting in different crop durations.
In this case, in the severe stress scenario, the short-duration crop
senesced and exhausted the water earlier but also escaped
drought with a larger portion of its preanthesis period taking
place under unstressed conditions. Thus, in this particular case
the stay-green expression was linked to a long-duration genotype
with less grain yield produced at the end of the season. This shows
clearly that the stay-green phenotype under drought and plant
canopy development are closely linked and the current APSIM
model is adequate to mimic these relationships. Surprisingly,
these relations between canopy development and stay-green
were not seriously explored until quite recently (Hammer
2006; van Oosterom et al. 2011; Borrell 2013; Vadez et al.
2014). In fact, only a few reports on sorghum experimentally
documented similar effects of canopy development (phyllochron,
tillering) on crop production (van Oosterom et al. 2010a, 2010b;
Borrell 2013).

Lower canopy TR under high VPD conditions and low rates
of soil water extraction also led to stay-green expression in the
severewater limited environments. In these two cases, stay-green
expression in the crops also appeared to be linked to saving the
water in the soil profile but to a lesser extent compared with crops
with altered canopy growth (see above). In the case of lowTR, the
amount of water saved depended on the VPD throughout the day
and the benefit mostly came from an increased TE rather than
from a shift in water use before and after anthesis.

Canopy growth traits resulted in grain–stover production
trade-offs

Alteration in the plant canopy traits saved water and increased
yield, especially in the severe scenarios, but it resulted in trade-
offs between grain and stover productivity, depending on the
stress scenario. Also, increased soil water extraction rates (high
kl) of the crop improved stover accumulation but resulted in
a trade-off with grain production, similar to the case of
manipulating the canopy parameters. To use these traits in
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breeding, the crop grain and stover production benefits from
canopy-related mechanisms would need to be weighted by the
frequencies of a particular stress scenario in the target location so
as to maximise the economic gains (as shown in Table S1). Our
results indicate that particularly large economic gains (large gains
in grain yield comparedwithminute stover yield losses) can come
from shortening the crop duration (short phyllochron intervals)
or from developing a smaller canopy size. The easiest and most
effective breeding target should be the optimisation of crop
duration within the production zones, upon which other traits
can be further built. We also showed that generally, crops with
higher stover productivity increase their chances of grain yield
failure in severe stress environments. Therefore, our findings can
be used not only to weight the production benefits but also
leave the choice to the farmers themselves. If the current
demand requires farmers to produce more biomass (e.g. as
cattle fodder) with marginal interest in grain or vice versa, we
could tailor or recommend the crop type that fits these particular
needs. Additionally, the differences in canopy growth and
development may also impact the grain and stover yield
quality, which would affect the grain and stover prices
(Blümmel and Rao 2006) but this variability has not yet been
characterised sufficiently.

Restriction of TR under high VPD and lower
soil water extraction rate improve TE,
and grain and stover production

In contrast to canopy growth traits, which always led to trade-offs
between grain and stover productivity, lower TR improved
stover and grain production at the same time across most of
the stress scenarios and so is expected to have high economic
potential. This was possible only because the low TR crop had
enhanced TE. The benefit for grain yield did not come only from
a mere shifting in plant water use from before to after anthesis.

Decreased soil water extraction capacity (through kl)
generated crops with a high variability in production benefits
or losses within the particular stress scenario and had no major
effect on the average crop production. Nevertheless, crops with
lower soil water extraction capacity have the potential to enhance
TE, which seems to improve the crops’ resilience under severe
stress scenarios. This is because reducing the roots’ kl coefficient
mimics a plant that enters more quickly into water stress but can
maintain growth for longer (with increased TE at low soil
moisture levels). Here again, the alteration of the kl coefficient
was chosen as a means of altering root hydraulic conductance.
However, the APSIM structure is such that altering the kl
coefficient has other ‘pleiotropic’ effects on other plant
development aspects and we would suggest that further work
is needed in APSIM to improve the water capture loops in order
to sensibly reproduce the crop variability presented here.

Conclusions

In this work, we demonstrated in silico that the variability in
the traits and processes related to plant water use (canopy
development, capacity of the canopy and root to conduct water
and the canopy development response to water stress) improved
grain yield and led to stay-green expression as a consequence
of increased water availability after anthesis. Improvements in

grain yield showed negative stover production trade-offs but
improved crop production stability across years. Simultaneous
improvement of grain and stover yield along with crop resilience
was possible only through enhancing water productivity (TE)
and was the result of imposing limits on canopy transpiration
under high VPD (TR). Therefore, this study provides a range of
tools for constructing of zone- and demand-specific crop
ideotypes that may be considered in breeding schemes. More
work is underway to assess how alteration in management
practices could affect stay-green expression, water use patterns
and crop production. The present work provides a solid base to
investigate these genotype�management interactions further.
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