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ABSTRACT 

Habitat selection behaviour is an effective strategy adopted by clonal plants in heterogeneous 
understorey light environments, and it is likely regulated by the parental environment's 
ultraviolet-B radiation levels (UV-B) due to the photomorphogenesis of UV-B and maternal 
effects. Here, parental ramets of Duchesnea indica were treated with two UV-B radiation levels 
[high (UV5 group) and low (UV10 group)], newborn offspring were grown under a heterogeneous 
light environment (ambient light vs shade habitat), and the growth and DNA methylation variations 
of parents and offspring were analysed. The results showed that parental UV-B affected not only the 
growth of the parent but also the offspring. The offspring of different UV-B-radiated parents showed 
different performances. Although these offspring all displayed a tendency to escape from light 
environments, such as entering shade habitats earlier, and allocating more biomass under shade 
(33.06% of control, 42.28% of UV5 and 72.73% of UV10), these were particularly obvious in 
offspring of the high UV-B parent. Improvements in epigenetic diversity (4.77 of control vs 4.83 
of UV10) and total DNA methylation levels (25.94% of control vs 27.15% of UV10) and the 
inhibition of shade avoidance syndrome (denser growth with shorter stolons and internodes) 
were only observed in offspring of high UV-B parents. This difference was related to the 
eustress and stress effects of low and high UV-B, respectively. Overall, the behaviour of D. indica 
under heterogeneous light conditions was regulated by the parental UV-B exposure. Moreover, 
certain performance improvements helped offspring pre-regulate growth to cope with future 
environments and were probably associated with the effects of maternal DNA methylation 
variations in UV-B-radiated parents. 

Keywords: clonal plants, DNA methylation, Duchesnea indica, foraging behavior, maternal effect, 
shade avoidance syndrome (SAS), UV-B radiation. 

Introduction 

Sunlight is of primary importance to sessile plants, both as an energy source to fuel 
photosynthesis and as an informational signal that influences their entire life cycle 
(Rizzini et al. 2011). Plants living in dense communities or underneath a leaf canopy 
experience a strong reduction in light intensity and changes in light quality because of 
light absorption and reflection by surrounding vegetation (Gommers et al. 2013). 
Furthermore, the light in these environments is extremely heterogeneous due to the 
influence of cloud cover, movement of leaves by wind, and composition of canopies 
(Küppers et al. 1996). These factors obviously increase the difficulty of accessing light 
resources for plants. 

As an intrinsic part of the solar spectrum, ultraviolet-B (UV-B, 280–315 nm) light has a 
major effect on plant growth and development, although it accounts for less than 1% of the 
total solar spectrum (Liu et al. 2015). For many plants underneath the canopy, their shade 
avoidance syndrome (SAS) response is strongly inhibited by UV-B radiation (Mazza and 
Ballaré 2015; Fraser et al. 2016, 2017). SAS responses are observed for many species 
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under the canopy because of the low red to far-red light ratios 
(R:FR), and they include rapid hypocotyl growth, internode 
and petiole elongation, upward leaf movement, and 
apical dominance, which help plants capture more light 
(Courbier and Pierik 2019; Ma and Li 2019). However, this 
SAS response is inhibited by UV-B radiation due to the 
inhibitory effect of UV-B on auxin and gibberellin 
biosynthesis (Hayes et al. 2014; Tavridou et al. 2020). 
Therefore, UV-B radiation greatly complicates the growth of 
plants in the understorey, especially under a background of 
increases in UV-B radiation with ozone depletion. 

Clonal plants are dominant species in many habitat 
types. In heterogeneous light environments, clonal plants 
preferentially colonise newborn ramets in patches with 
appropriate light resources, as has been reported in numerous 
studies (Luo and Dong 2001; Chen et al. 2004; Xiao et al. 
2006; Wang et al. 2016; Latzel and Münzbergová 2018). 
This selective placement of ramets is known as ‘foraging 
behaviour’ or ‘habitat selection’, which can not only maximise 
the plant’s resource acquisition but also balance the risk 
in heterogeneous environments, ultimately contributing to 
enhancing the competitiveness of clonal plants (Chen et al. 
2019). Thus, clarifying the regulatory mechanisms of habitat 
selection behaviour helps us understand the environmental 
adaptability of clonal plants. 

In addition to the present environment, the growth 
behaviour of plants is also regulated by the environment of 
their parents. The ‘maternal effects’ of the parental environ-
ment can persist across offspring generations and influence 
the phenotype and fitness of progeny (Galloway 2005; 
Louâpre et al. 2012; González Besteiro and Ulm 2013; 
González et al. 2017; Dong et al. 2018, 2019). Because 
of the asexual reproduction of clonal plants, they have 
a greater ability than nonclonal plants to ‘remember’ 
the environmental events of their parent (Zhang et al. 
2021). Therefore, maternal effects induced by the parental 
environment have been reported for several clonal plants in 
recent years. In these studies, the offspring ramets of stressed 
parents displayed adapted growth or increased fitness in the 
same environment as their parent (Herman and Sultan 2016; 
González et al. 2018; Baker et al. 2019; Dong et al. 2019). In 
the study of the environmental adaptability of clonal plants, 
the environment of the parent is a nonnegligible factor that 
plays an important role in regulating the growth behaviour 
of clonal plants. 

The effect of parental UV-B on the growth of offspring 
ramets in a heterogeneous UV-B environment was investi-
gated in our previous studies on Glechoma longituba (Quan 
et al. 2021; Zhang et al. 2021). The results suggested that 
parental UV-B exposure strongly influenced the growth 
and foraging behaviour of clonal offspring. By regulating 
epigenetic variation and phenotypical plasticity, the offspring 
of UV-B-stressed parents adopt an ‘escape strategy’ to avoid 
environments with UV-B radiation. Considering the effect of 
UV-B radiation on the photomorphogenesis of understorey 

species, the effect of parental UV-B radiation on the habitat 
selection behaviour of clonal plants in patchy light 
environments is an important question that remains to be 
resolved. 

In our study, the parental ramets of clonal Duchesnea 
indica (Andr.) Focke were grown under two different UV-B 
conditions (5 and 10 μW cm−2), and their newborn 
offspring ramets were subjected to a heterogeneous light 
environment (ambient light vs shade habitat). After 45 days 
of vegetative propagation, the growth and epigenetic 
variation of parent and offspring ramets were explored. The 
following questions were addressed: first, how does the 
parental UV-B environment influence the habitat selection 
of clonal offspring in a heterogeneous light environment? 
Second, do the selection results vary based on the parental 
UV-B intensity? Third, are the SAS responses of offspring 
ramets in shade habitat affected by the parental UV-B 
radiation? Finally, what is the role of parental epigenetic 
variations in the selection of habitat for clonal offspring? 

Materials and methods 

Plant material and propagation 

Duchesnea indica (Andr.) Focke is a perennial herb belonging 
to Rosaceae that produces long over-ground stolons with 
rooted ramets on its nodes, and it is commonly employed in 
clonal plant research due to its high phenotypic plasticity. 
Its clonal growth pattern is shown in Fig. 1. Additionally, as 
a clonal plant with a sympodial branching pattern, D. indica 
is a good material for habitat selection research (Quan et al. 
2018). The D. indica plants used in our experiment were 
collected from the campus of Northwest University in Xi’an 
(397 m a.s.l., 34.3°N, 108.9°E). To reduce the impact of the 
previous environment on plant materials, D. indica from the 
same genet were propagated for at least three generations 
in a greenhouse before this experiment. Then, ramets of equal 
genotype and similar size (0.56 ± 0.17 g) were selected as the 
parental ramets and transferred to square plastic containers 
for 45 days of growth. Vermiculite and loam (1:3, v/v) 
were mixed and utilised as the culture soil of D. indica. 

Fig. 1. Clonal growth pattern diagram of Duchesnea indica. 
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The greenhouse conditions were a 23/18°C day/night tempera-
ture cycle, a 12/12 h light/dark cycle, and 360 μmol m−2 s−1 

photosynthetic photoflux density (PPFD) during daytime 
hours. PPFD levels were measured with a Quantum Metre 
(LQS-QM, Apogee Instruments Inc., USA). The relative 
humidity of the greenhouse was maintained at 60%. Ramets 
were watered every 2 days to prevent water stress. 

Experimental design 

The experiment was conducted in the greenhouse of 
Northwest University from September 2, 2019, to October 
17, 2019. There were three treatments in our study: control, 
UV5 and UV10 (Table 1). We used a randomised block 
design. Each treatment was designed with six replicates. At 
the beginning of the experiment, 18 parental ramets were 
randomly assigned to one of the treatments and planted 

Table 1. Different treatments in the study. 

Treatments Interpretation 

Control Parental ramets received background light in a greenhouse 
for 45 days, there was little UV-B radiation in greenhouse 

UV5 Parental ramets were exposed to an additional 5 μW cm−2 

UV-B radiation for 45 days 

UV10 Parental ramets were exposed to an additional 10 μW cm−2 

UV-B radiation for 45 days 

in the centre of a square plastic container (100 cm 
long × 40 cm wide × 20 cm high). Two groups of parental 
ramets were separately exposed to different levels of UV-B 
radiation (5 and 10 μW cm−2). During the 45 days of the 
experiment, the newborn offspring ramets experienced a 
heterogeneous light environment, which means that one 
side of the growth container was the ambient light habitat 
and the other was a shade habitat. The shade habitat was 
achieved with a sunshade net, the nets were covered 0.6 m 
above the plant canopy, and approximately 30% of ambient 
light was transmitted and reached the canopy. Furthermore, 
during the experiment, to screen the offspring ramets from 
their parental UV-B light and avoid the interference from 
UV-B radiation on the offspring environment (ambient light 
or shade habitat), two transparent polyester films (0.3-mm, 
Dongguan Linuo Plastic Insulation Material Co. LTD, China) 
were placed vertically on both sides of parental ramets 
separately to ensure that the bottom of the films did not 
affect the growth of the offspring ramets (Fig. 2). 

UV-B radiation treatment 

The UV-B doses used in the experiment were set as follows: 
5 μW cm−2 UV-B radiation was added to the parental ramets 
of the UV5 group based on the ratio of visible to UV-B light at 
noon in the natural environment of our campus and according 
to the PPFD of our greenhouse; and 10 μW cm−2 was added to 
the parental ramets of the UV10 group as a stressed UV-B dose 

Fig. 2. Experimental layout and schematic representation of the three treatments. Each treatment was 
replicated six times, as shown in the layout to the right. 
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based on the stress effect of enhanced UV-B radiation 
demonstrated by our previous experience. 

UV-B radiation was provided by square-wave UV-B 
fluorescent lamps (central wavelength 313 nm, 36 W, 
Beijing Lighting Research Institute, Beijing, China) by the 
procedure described in Liu et al. (2015). The UV-B irradiation 
treatment was carried out for 8 h per day from 09:00 to 
17:00 h and continued for 45 days. For the UV-B radiation 
groups (UV5 and UV10 groups), a 0.13-mm cellulose 
acetate film (Grafix plastics, Cleveland, Ohio, transmission 
to 290 nm) was used to filter out a small amount of UV-C in 
the UV-B lamp spectrum. To avoid the effect of photodegrada-
tion of UV-B radiation on the film, the cellulose acetate film 
was replaced regularly every 5 days. The UV-B lamps were 
suspended directly above the parent ramets, and the two 
radiation levels (5 and 10 μW cm−2) were controlled by 
adjusting the distance between the top of the plant canopy 
and the lamps. The level of UV-B radiation was measured 
by a UV radiometer (Handy, Beijing, China) every other day. 

Measurement of growth parameters 

After 45 days of growth, some growth parameters of each 
group were recorded before harvest, such as the number of 
offspring ramets in different light habitats (ambient light or 
shade); in addition, the stolon length between the parental 
ramet and the offspring ramet that first bent to the shade 
was also measured to analyse the difference in the sequence 
of habitat selection in different groups. 

Then, the genets of different treatments were harvested 
carefully and the growth parameters of parental ramets, 
offspring ramets, and the whole genets were measured as 
follows: first, the leaf area, petiole length, petiole biomass, 
and biomass of parental ramets were measured; second, the 
length and biomass of the longest primary stolon, length of 
the internode, and total biomass of the ramets of the 
offspring ramets in different environments (ambient light or 
shade habitat) were measured; finally, the branching 
intensity, total number of offspring ramets, the biomass of 
over-ground parts (leaf and stolon) and total biomass of the 
whole clonal genet were recorded. 

The length of the stolons was measured with Vernier 
callipers, and the mean internode length (MIL) was 
calculated by the ratio of the stolon length to the number of 
internodes. The leaf area and petiole length were obtained 
as follows: fresh leaves were scanned with a scanner 
(EPSON Perfection V19, EPSON, China), the leaf area was 
calculated by Motic software (Motic Images Plus 2.0. Ink, 
Motic, China), and the petiole length was calculated by 
Image-Pro software (Image-Pro Plus 6.0, Image-Pro, China). 
Moreover, the leaf blade and petiole were dried separately 
at 75°C for 48 h to a constant weight and the dry mass was 
weighed using an electronic balance (Sartorius BT25S, 
Beijing, China). The specific petiole length (SPL) was 
calculated by the ratio of petiole length to petiole biomass. 

The ratio of stolon length to stolon biomass was calculated 
as the specific stolon length (SSL). Leaf biomass allocation 
(or stolon biomass allocation) of the genet was calculated 
by the ratio of the leaf biomass (or stolon biomass) to the 
total biomass of the genet. 

Analysis of DNA methylation variation 

DNA methylation variation in D. indica was detected using the 
methylation-sensitive amplification polymorphism method 
(MSAP). The leaf samples were scrubbed gently with 75% 
ethanol to minimise contamination by microorganisms and 
then dried in silica gel for the subsequent extraction of 
DNA. Total genomic DNA was extracted from the above 
30 mg dry leaves using a DNA Kit (BioTeKe, China). The 
DNA quality was examined by electrophoresis in agarose 
gel (1% w/v), and the DNA concentration and purity were 
examined spectrophotometrically using a nucleic acid protein 
detector (BioSpec-nano, Shimadzu, Japan). The concentra-
tion of DNA was adjusted to 100 ng μL−1 with eluent for 
subsequent experiments. 

A total of 500 ng genomic DNA was cut with 1 μL 
EcoRI (NEB, Ipswich, USA) and 1 μL of the frequent-cutting 
methylation sensitive restriction enzyme MspI (NEB, 
Ipswich, USA) or 1 μL HpaII (NEB, Ipswich, USA), 2 μL 
Cutsmart Buffer and 11 μL double distilled water in a 20 μL 
reaction (NEB, Ipswich, USA) at 37°C for 6 h. EcoRI + MspI 
enzymes were inactivated at 65°C for 20 min, and 
EcoRI + HpaII enzymes were inactivated at 80°C for 20 min. 
Next, 30 μL of ligation mixture was prepared, which 
containing 5 pM of EcoRI-related adapter and 50 pM of 
HpaII/MspI-related adapter, 3 μL 10  × T4 ligase buffer 
(NEB, Ipswich, USA) and 0.5 μL of T4 DNA ligase (NEB, 
Ipswich, USA), this ligation mixture was incubated at 16°C 
for 12 h. Preamplification was performed in a total volume 
of 25 μL, including 3 μL of ligated DNA, 17.5 μL 2  × Taq PCR 
master mix (Baosai, China), 0.5 μL of  EcoRI preselective 
primer (10 μM) and 0.5 μL H-M preselective primer 
(10 μM), and 8.5 μL double distilled water respectively. The 
preamplification conditions were as follows: initial denatura-
tion at 94°C for 2 min; followed by 20 cycles at 94°C for 30 s, 
56°C for 30 s and 72°C for 1 min; and a final elongation step at 
72°C for 10 min and 4°C to pause. The samples were then 
examined by electrophoresis in agarose gel (2% w/v). 

A selective amplification step was carried out with 10 
EcoRI/HpaII selective primer combinations: 5ʹ-AAC/TCT-3ʹ, 
5ʹ-ACT/TTG-3ʹ, 5ʹ-ACT/TAA-3ʹ, 5ʹ-AGC/TTG-3ʹ, 5ʹ-AGG/ 
TGA-3ʹ, 5ʹ-AGG/TCC-3ʹ, 5ʹ-AGG/TTG-3ʹ, 5ʹ-AGG/TTC-3ʹ, 
5ʹ-AGT/TTA-3ʹ, 5ʹ-AGT/TTG-3ʹ. The preamplification products 
were diluted 25 times as a selective amplification template. 
Selective amplification was performed in a total volume of 
50 μL, including 1 μL of preamplified DNA, 25 μL of 2  × Taq 
PCR master mix (Baosai, China), 1 μL of  EcoRI preselective 
primer (10 μM) and H-M preselective primer (10 μM), and 
22 μL of double distilled water. Selective amplification was 
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performed under the following conditions: initial denatura-
tion at 94°C for 2 min; followed by 10 cycles at 94°C for  
30 s; 65°C for 30 s and 72°C for 1 min (each cycle was 
decremented by 1°C); 23 cycles at 94°C for 30 s; 56°C for  
30 s and 72°C for 1 min; and a final elongation step at 72°C 
for 10 min and then 4°C on  pause.  The  samples were  then  
examined by electrophoresis in agarose gel (2% w/v). The 
product was separated by 10% denatured polyacrylamide 
gel electrophoresis at 260 V for 3.5 h, and the gel was 
dyed with silver. After that, rinsing, development, and 
photographing, and band statistical analysis were performed. 

Statistical analyses 

Growth parameters 
Considering the slight difference among the initial biomass 

of parental ramets, an analysis of covariance (ANCOVA) was 
performed in our experiment. Before the statistical analyses, 
to meet the assumptions of homoscedasticity and normality, 
some data were subjected to logarithmic transformation (leaf 
area and SPL of parent; offspring ramet number, stolon 
biomass allocation, and leaf biomass allocation of the whole 
genet; biomass, ramet number and MIL of offspring ramets in 
different habitats) or square root transformation (biomass of 
genets and SSL of offspring ramets). Then, to determine the 
effect of parental UV-B radiation levels (5 and 10 μW cm−2) 
on the growth of the parental ramets (biomass, leaf area, 
petiole length and SPL) and whole clonal genets (biomass, 
offspring ramet number, branching intensity, leaf biomass 
allocation, and stolon biomass allocation), one-way ANCOVA 
was used. Additionally, two-way ANCOVA was performed to 
analyse the effects of parental UV-B radiation levels and 
offspring light environments (ambient light vs shade) on 
the growth parameters of the offspring ramets (biomass, 
offspring ramet number, stolon length, MIL, SSL). Duncan’s 
test was chosen as the method of multiple comparisons 
to test the significance among different treatments, and 
the significance level was set at 0.05. Moreover, the Chi-
squared test was performed to analyse the difference in the 
stolon position when it bent towards the shade habitat in 
different treatments. All the growth traits were analysed 
with Statistic 10.0 software (StatSoft Inc, Tulsa, OK, USA). 

In addition, the regression relationship between the 
parental total DNA methylation level and growth parameters 
of the parent (biomass, leaf area, petiole length, and SPL) and 
genet (biomass, offspring ramet number, branching intensity, 
stolon and leaf biomass allocation) were analysed with Origin 
Pro 8.0 software (OriginLab, USA). All analytical mapping 
was performed with Origin Pro 8.0 software. 

DNA methylation variation 
Electrophoretic fragments from approximately 100–500 bp 

of MSAP were scored. The preliminary statistics on the 
fragment as present (1) or absent (0) were generated and 
recorded with Excel 2013 (Microsoft, WA, USA). The DNA 

methylation status of the restriction sites (5ʹ-CCGG target) 
was different: the presence of both EcoRI–HpaII and EcoRI– 
MspI fragments (1/1) denoted an unmethylated state; the 
presence of either EcoRI–HpaII (1/0) or EcoRI–MspI (0/1)  
fragments indicated methylated states (hemimethylated 
or internal C methylation); and the absence of both 
EcoRI–HpaII and EcoRI–MspI fragments (0/0) was considered 
an uninformative state (Schulz et al. 2013). The total 
methylation level (%) was calculated by the ratio of the 
MSAP bands representing the methylated 5ʹ-CCGG sites 
(differential presence/absence of restricted fragments in HpaII 
and MspI assays) to the total number of scored bands (Liu et al. 
2012). Additionally, Shannon’s diversity index was analysed 
with a binary matrix of methylation states via the vegan 
package of R software (RStudio, New Zealand) (Dixon 2003). 

Results 

DNA methylation level and growth of parental 
ramets 

To understand the DNA methylation variation of parental 
ramets, the epigenetic diversity (which was represented with 
Shannon’s diversity index) and the total DNA methylation 
level of parental ramets were analysed. The ANOVA results 
showed that parental epigenetic variation was influenced 
only by the parental UV-B environment (P < 0.05), and the 
offspring light environment had no effect on this variation 
(P > 0.05) (Supplementary material Table S1). Shannon’s 
diversity index and total DNA methylation level were signifi-
cantly improved by high UV-B radiation (10 μW cm−2) 
(P < 0.05). For instance, Shannon’s diversity index increased 
from 4.77 in the control group to 4.83 in the UV10 group, and 
the total DNA methylation level also improved from 25.94% 
to 27.15% (Table 2). 

The growth traits of parental ramets, such as biomass, leaf 
area, petiole length and SPL, were significantly influenced by 
direct UV-B radiation (P < 0.05) (Table S2). The leaf area and 

Table 2. Shannon’s diversity index and total DNA methylation level 
of parental ramets in different treatments. Different letters indicate 
significant differences among the treatments, and the same letter 
indicates no significant differences at the P = 0.05 level. Control, 
parental ramets received background greenhouse light with little 
UV-B radiation for 45 days; UV5, parental ramets were exposed to 
an additional 5 μW cm−2 UV-B radiation for 45 days; and UV10, 
parental ramets were exposed to an additional 10 μW cm−2 UV-B 
radiation for 45 days. 

Treatments Shannon’s diversity Total DNA methylation 
index level 

Control 4.77 ± 0.019b 25.94 ± 0.51%b 

UV5 4.79 ± 0.009b 26.55 ± 0.24%b 

UV10 4.83 ± 0.001a 27.15 ± 0.47%a 
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petiole length of the parental ramets were significantly 
decreased by UV-B radiation, and the decrease was 
increased with improved radiation, but the biomass and 
SPL of parental ramets were only increased under high 
radiation or low radiation (Fig. 3). 

Habitat selection of D. indica 

To analyse the effect of parental UV-B radiation on the habitat 
selection behaviour of D. indica, we compared the growth 
of offspring ramets before and after habitat selection among 
different treatments. For the clonal D. indica, once the 
stolon began to bend, the habitat that the newborn ramet 
entered was determined. We analysed the length of stolons 
between the parent and offspring ramets that first bent to 
shade in different treatments, and it was obvious that the 
length was shortened significantly in the UV10 group 
(P < 0.05) (Fig. 4a). Moreover, the position of the stolon 
when it bent towards the shade habitat was also displayed. 
In all treatments, most bends occurred between the first 
and second offspring ramets (O1–O2) (50.0% of control, 
62.5% of UV5 and 40% of UV10) (P = 0.868) (Fig. 4b). 

At the end of the experiment, the growth of offspring 
ramets in different habitats was examined. There were 

significant effects of parental UV-B radiation on the growth 
of the offspring ramets (biomass, ramet number, stolon 
length, MIL and SSL) (P < 0.001). Additionally, except for 
the ramet number (P = 0.746), the growth of offspring 
ramets was affected by their environment, with the 
biomass, stolon length, MIL and SSL of the offspring ramets 
affected by the interaction effect of parent and offspring 
environments (P < 0.05) (Table S3). 

The growth of offspring ramets in different habitats 
(ambient light and shade) is shown in Table 3. In the 
control, the offspring ramets settled in ambient light habitat 
had more biomass (66.94%), although this allocation in 
ambient light was significantly decreased in the UV5 
(57.72%) and UV10 (27.27%) groups. Moreover, increases 
of parental radiation intensity corresponded to less biomass 
in the ambient light environment, especially in the UV10 
group, where most of biomass was distributed to shade 
habitat (72.73%). Furthermore, regardless of the parental 
environment, a greater number of ramets settled in the 
ambient light environment. In addition, the stolon length of 
G. indica in the ambient light habitat in the control was 
similar to that in the shade habitat (72.20 cm in ambient 
light vs 72.45 cm in shade; P > 0.05), although in the UV5 
group, the stolon length in ambient light was increased 

Fig. 3. Growth of parental ramets in different treatments. (a) Biomass; (b) leaf area; (c) petiole 
length; (d) specific petiole length (SPL). Control, parental ramets received background 
greenhouse light for 45 days, and there was little UV-B radiation in the greenhouse; UV5, 
parental ramets were exposed to an additional 5 μW cm−2 UV-B radiation for 45 days; 
UV10, parental ramets were exposed to an additional 10 μW cm−2 UV-B radiation for 
45 days. The different letters are significantly different among the treatments, and the same 
letter indicates no significant differences at the P = 0.05 level with Duncan’s multiple range 
test. Error bars show s.e. 
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Fig. 4. Stolon length and frequency distribution of the stolon position when it bends towards the shade habitat 
in different treatments. (a) Stolon length between the parent and offspring ramets that first bend towards the 
shade habitat. (b) The frequency distribution of the stolon position when it bends towards the shade habitat. 
Control, parental ramets received background greenhouse light for 45 days, and there was little UV-B 
radiation in the greenhouse; UV5, parental ramets were exposed to an additional 5 μW cm−2 UV-B radiation 
for 45 days; UV10, parental ramets were exposed to an additional 10 μW cm−2 UV-B radiation for 45 days. 
P–O1: bend occurs between the parental and first offspring ramets; O1–O2: bend occurs between the first 
and second offspring ramets; O2–O3: bend occurs between the second and third offspring ramets; O3–O4: 
bend occurs between the third and fourth offspring ramets; O4–O5: bend occurs between the fourth and 
fifth offspring ramets. The different letters in Fig. 4a are significantly different among the treatments, and the 
same letter indicates no significant differences at the P = 0.05 level with Duncan’s multiple range test. Error 
bars show the s.e. 

Table 3. Effect of UV-B environment of the parent (5 and 10 μWcm−2) and light environment of the offspring ramet (ambient light vs shade) on the 
growth of offspring ramets. 

Environment of offspring Treatments Biomass (%) Ramets number (%) Stolon length (cm) MIL (cm) SSL (cm g−1) 

Ambient light 

Control 66.94 ± 3.34aA 64.40 ± 3.37abA 72.20 ± 8.04bA 9.39 ± 0.81aA 656.86 ± 46.35bB 

UV5 57.72 ± 3.17bA 52.40 ± 0.23bcA 103.35 ± 8.55aA 9.40 ± 0.08aA 775.77 ± 72.17bA 

UV10 27.27 ± 7.65cB 67.13 ± 5.59aA 58.62 ± 12.92bA 6.94 ± 0.59bA 1141.62 ± 107.12aB 

Shade 

Control 33.06 ± 3.34cB 35.60 ± 3.37bcB 74.25 ± 13.00aA 9.37 ± 0.97bA 799.00 ± 58.48bA 

UV5 42.28 ± 3.17bB 47.60 ± 0.23abB 77.82 ± 16.94aB 10.47 ± 0.84aA 790.70 ± 50.83bA 

UV10 72.73 ± 7.65aA 32.87 ± 5.59cB 20.14 ± 9.25bB 4.27 ± 0.66cB 1563.12 ± 107.56aA 

Different letters indicate significant differences among the treatments, and the same letter indicates no significant differences at the P = 0.05 level with Duncan’s multiple 
range test. Different lowercase letters indicate significant differences in offspring ramets in the same habitat among different treatments (0, 5 and 10 μW cm−2); and 
different uppercase letters indicate significant differences in offspring ramets in the same treatment between different habitats (ambient light vs shade). 
Control, parental ramets received background greenhouse light with little UV-B radiation for 45 days; UV5, parental ramets were exposed to an additional 5 μWcm−2 

UV-B radiation for 45 days; and UV10, parental ramets were exposed to an additional 10 μWcm−2 UV-B radiation for 45 days; MIL, mean internode length; SSL, specific 
stolon length. 

(103.35 cm), while in the UV10 group, the length in shade 
was clearly decreased (20.14 cm). In the ambient light 
habitat, reduced MIL (6.94 cm vs 9.39 cm of control) and 
increased SSL (1141.62 cm g−1 vs 656.86 cm g−1 of control) of 
offspring ramets were observed in the UV10 group, although 
significant differences were not observed in these two traits 

between the control and UV5 groups (P > 0.05). In shade 
habitat, the MIL value of offspring in the control group was 
9.37 cm, which was significantly improved in the UV5 group 
(10.47 cm) but decreased in the UV10 group (4.27 cm); 
moreover, the SSL of offspring ramets was also increased in 
UV10 (1553.12 cm g−1 vs. 799.00 cm g−1of control). 
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The growth of the whole clonal genets was significantly 
influenced by parental radiation (Table S4). Except for the 
increase in leaf biomass, other growth traits (biomass, 
branching intensity, offspring ramet number and stolon 
biomass allocation) were all decreased by parental UV-B 
radiation. Moreover, with the increase in parental radiation 
intensity, the total leaf biomass improved while the 
stolon biomass and total biomass of the genets were 
reduced (Fig. 5). 

Relationship of parental DNA methylation 
variation and growth parameters 

The regression relationships between the DNA methylation 
level of parental ramets and their growth traits (biomass, 
leaf area, petiole length and SPL) are displayed in Fig. 6. 
Except for the biomass, the leaf area, petiole length, and 
SPL of the parental ramets all displayed a significant 
regression relationship with their DNA methylation level. 
Moreover, some growth parameters of genets (e.g. biomass, 
branching intensity, stolon, and leaf biomass allocation) 

displayed regression relationships with the parental DNA 
methylation levels (Fig. 7). 

Discussion 

Effects of parental UV-B radiation on the growth 
of D. indica 

In our study, the growth of parental ramets was significantly 
influenced by direct UV-B radiation, as no surprise. 
Regardless of radiation intensity, the leaf area and petiole 
length of the parent were decreased by UV-B radiation, and 
this decrease increased with the enhancement of radiation 
intensity. The smallest leaf area and the shortest and 
thinnest petiole appeared under high UV-B radiation 
conditions (10 μW cm−2). This inhibitory effect on growth 
was related to the restriction of UV-B radiation on cell 
division, which inhibited the expansion of the leaf blade 
and petiole (Wargent et al. 2009). Although leaf growth 
was inhibited, from another perspective, a reduction in leaf 

Fig. 5. Growth of clonal genets in different treatments. (a) Biomass; (b) offspring ramets; 
(c) branching intensity; (d) stolon and leaf biomass allocation. Control, parental ramets 
received background greenhouse light for 45 days, and there was little UV-B radiation in 
the greenhouse; UV5, parental ramets were exposed to an additional 5 μW cm−2 UV-B 
radiation for 45 days; UV10, parental ramets were exposed to an additional 10 μW cm−2 

UV-B radiation for 45 days. Different letters indicate significant differences among the 
treatments, and the same letter indicates no significant differences at the P = 0.05 level with 
Duncan’s multiple range test. In Fig. 5d, different lowercase letters represent the difference 
in leaf biomass allocation of genets among different treatments (Control, UV5 and UV10), 
while different uppercase letters represent the difference in stolon biomass allocation of 
genets among different treatments (Control, UV5 and UV10). Error bars show the s.e. 
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Fig. 6. Regression relationship between parental total DNA methylation level and their growth traits in 
different treatments. (a) Biomass; (b) leaf area; (c) petiole length; (d) specific petiole length (SPL). 

area can reduce the absorption of environmental UV-B 
radiation and thus can avoid UV-B damage, which can be 
considered a protection strategy for plants in adverse 
light environments (Mazza et al. 2013; Vyšniauskienė and 
Rančelienė 2014; Chen et al. 2016; Roro et al. 2017; Yang 
et al. 2018). At the end of the experiment, the biomass 
of parental ramets was improved by low UV-B radiation 
(5 μW cm−2), which was related to the eustress effects of 
low-dose UV-B stress. Eustress is an activating, stimulating 
stress that is a positive element in plant development; when 
a plant experiences eustress, its metabolism is adjusted, and 
the plant acclimates to the new environment (Zhang et al. 
2021); thus, the parental biomass was increased by this 
mild, elastic UV-B radiation. 

Furthermore, although only parental ramets were exposed 
to UV-B radiation, the growth of the parent as well as the 
genets was influenced. Regardless of the dose, UV-B radiation 
had a negative effect on the growth of offspring ramets, and 
those genets with radiated parents had less total biomass, 
fewer ramets and lower branching intensity. With the 
increase of parental UV-B radiation intensity, the biomass 
allocated to leaves of offspring ramets was increased but 
that to stolons was decreased; thus, this kind of biomass 
distribution between the leaf and stolon was disadvantageous 
for genets to resist UV-B stress. Therefore, a decrease in the 

total biomass was observed, and the decrease in the genet 
biomass was more pronounced in genets with highly 
radiated parents. 

Effect of parental UV-B radiation on the habitat 
selection of clonal offspring 

In heterogeneous patchy environments, the bending of 
stolons is a key step in the habitat selection behaviour of 
clonal plants, and the direction of bending determines 
which patch newborn ramets will enter. Here, we analysed 
the situation of the stolon that began bending to the shade 
habitat, and the results showed that more offspring ramets 
of the highly radiated parent bent to the shade habitat 
earlier than those of the control group. In addition to the 
beginning of habitat selection (bend occurrence) of offspring 
ramets being changed by parental radiation, the results of 
selection were also influenced. For instance, in the control, 
more ramets and more biomass settled in the ambient light 
habitat, which was beneficial for capturing more light under 
a patchy light environment. Our result was consistent with 
studies on habitat selection of clonal plants in heterogeneous 
light environments (Wang et al. 2012; Zhao et al. 2013; 
Ye et al. 2015; Latzel and Münzbergová 2018). However, 
the radiation experience of parental ramets significantly 
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Fig. 7. Regression relationship between parental total DNA methylation level and growth traits of the 
genets in different treatments. (a) Biomass; (b) offspring ramet number; (c) branching intensity; (d) stolon/ 
leaf biomass allocation. 

modified this arrangement, and the genets with radiated 
parents distributed more biomass to shade habitats, 
especially with highly radiated parents. 

Moreover, in the control, the growth pattern (based on 
stolon length and MIL) of D. indica was not significantly 
different in the ambient light and shade habitats, while that 
of the genets with the highly radiated parent showed a 
denser growth pattern, with shorter and thinner stolons 
(short stolon length and MIL and larger SSL) in the shade 
habitat. For the genets with the low-radiated parent, the 
offspring ramets in shade had shorter stolon lengths, while 
those in the ambient light habitat displayed extended 
growth patterns with longer and thinner stolons. 

Overall, these results showed that offspring ramets seemed 
to feel the parental environment and adjust their growth 
in a timely manner. For example, the D. indica with a 
high-radiated parent bent their stolon to the shade habitat 
earlier and allocated more biomass to the shade habitat. 
These offspring ramets appear to demonstrate their parental 
memory of UV-B stress entered the shade environment as a 
strategy to avoid adverse UV-B radiation. This phenomenon 
was most likely related to ‘maternal effects’ and ‘transgen-
erational effect’, and it will be discussed below. 

Role of parental epigenetic memory in the 
habitat selection of D. indica 

Increasing research has proven that the phenotypes of plants 
are also determined by epigenetic variations induced by the 
environment; in addition, parental epigenetic variations, 
such as DNA methylation, can be inherited transgenera-
tionally by offspring and then influence the performance of 
offspring ramets (Schwaegerle et al. 2000; Latzel and 
Klimešová 2010; Latzel et al. 2016; Auge et al. 2017; Latzel 
and Münzbergová 2018). In this study, parental UV-B 
radiation induced an improvement in their total DNA 
methylation level and this epigenetic variation was related 
to the phenotypic variation of the parent, which was 
accompanied by a decrease in petiole length and leaf area. 
These phenotypic changes can reduce the adverse effects of 
UV-B and enhance the resistance of plants to UV-B radiation. 
Furthermore, parental epigenetic variations were also 
connected to the growth of the whole genet, which was 
associated with decreases in biomass, branching intensity 
and stolon/leaf biomass. 

Through maternal effects, offspring ramets can perceive 
the parental environment and adjust their growth behaviour 
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according to the parental environment (Schwaegerle et al. 
2000; Latzel and Klimešová 2010, 2018; Latzel et al. 2016; 
Auge et al. 2017). For example, in this study, the growth 
of offspring ramets in the shade habitat was changed 
by parental exposure to UV-B radiation. Usually, under 
shade conditions, many species exhibit SAS by inducing an 
exaggerated elongation of stems and petioles to capture 
light (Fritz et al. 2018; Ma and Li 2019), while the SAS 
response can be inhibited by UV-B radiation by antagonising 
the phytohormones auxin and gibberellin (Hayes et al. 2014; 
Yang et al. 2018; Sharma et al. 2019; Tavridou et al. 2020). 
For clonal plants, the extension of internodes and stolons in 
shade can be considered a process of searching for light 
resources. In the present study, different intensities of 
parental radiation induced different reactions of offspring 
ramets in a heterogeneous light environment. For instance, 
the extension of stolons and internodes in shade habitats 
was depressed by high UV-B experienced by parental 
ramets. The clone displayed denser growth with shorter 
stolons, while the clone with low-radiated parents displayed 
a more extended growth pattern in ambient light habitats. 

Similar effects of the paternal environment on offspring 
traits have also been found in many studies; for instance, 
drought stress of parents triggered epigenetic changes in 
clonal Trifolium repens, and most of the induced epigenetic 
changes were maintained, observed across multiple clonal 
offspring generations (González et al. 2018). Additionally, 
drought-stressed parents of Polygonum persicaria produced 
drought-adapted offspring, and demethylation treatment 
of parents removed these adaptive developmental effects 
(Herman and Sultan 2016). Furthermore, parental shading 
effects of Alternanthera philoxeroides could be transmitted 
via clonal generation and decreased growth and modified 
morphology of offspring. These offspring responses were 
also influenced by DNA methylation levels of parents (Dong 
et al. 2019). Moreover, shaded parents of P. persicaria 
produced offspring with increased fitness in shade as well 
as a greater competitive impact on plant neighbours (Baker 
et al. 2019). Our previous study also suggested that the 
parental ramets of clonal G. longituba could record their 
UV-B radiation experience and form epigenetic memory 
via a decrease in DNA methylation levels, the growth of 
offspring and genets was clearly affected by parental 
experience (Zhang et al. 2021). 

Conclusion 

Our results suggested that although only parents were exposed 
to UV-B radiation, not only the growth and epigenetics of 
the parent but also the habitat selection behaviour of their 
offspring ramets and the growth of the whole genet were 
affected by the parental UV-B environment. In addition, some 
of these growth traits were controlled by parental epigenetic 

variation. Interestingly, it appears that offspring ramets were 
able to sense the high UV-B environment of the parents and 
then avoid the UV-B environment, as observed by the earlier 
bending of their stolons to the shade habitat and greater 
allocation of biomass to the shade habitat. These behaviours 
could be regarded as a preregulation of clonal offspring to 
future UV-B stress. Moreover, the performance of offspring 
differed according to the different radiation intensities 
of their parents. For instance, with a high UV-B stressed 
parent, the SAS responses of offspring in shade habitat was 
inhibited, and they displayed more dense growth with shorter 
stolons and internodes, while clones with a low-radiated parent 
showed extensive longer internode lengths in shade. The 
difference was related to the eustress and stress effects of 
low and high UV-B radiation, respectively. In conclusion, our 
results showed that parental environmental information was 
important to the performance of offspring ramets, which 
was related to the maternal effect of parental ramets via 
epigenetic variation. UV-B radiation was a nonnegligible 
factor in regulating the habitat selection of clonal plants in 
heterogeneous light environments. Our results will help to 
understand the strategies and mechanisms of clonal plants in 
response to complex light environmental information in 
natural ecosystems. 

Supplementary material 

Supplementary material is available online. 
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