Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A molecular phylogeny of the circum-Antarctic Opiliones family Neopilionidae

Gonzalo Giribet https://orcid.org/0000-0002-5467-8429 A G , Kate Sheridan https://orcid.org/0000-0001-5065-3956 A , Caitlin M. Baker https://orcid.org/0000-0002-9782-4959 A F , Christina J. Painting https://orcid.org/0000-0003-0701-2648 B , Gregory I. Holwell https://orcid.org/0000-0002-6059-6032 C , Phil J. Sirvid https://orcid.org/0000-0003-1501-6534 D and Gustavo Hormiga https://orcid.org/0000-0002-0046-1822 E
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

B Te Aka Mātuatua School of Science, University of Waikato, Hamilton 3261, New Zealand.

C Te Kura Mātauranga Koiora | School of Biological Sciences, Te Whare Wānanga o Tāmaki Makaurau | University of Auckland, Auckland 1010, New Zealand

D Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand.

E Department of Biology, Bell Hall, 2029 G Street NW, The George Washington University, Washington, DC 20052, USA.

F Present address: Department of Integrative Biology, University of Madison—Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA.

G Corresponding author. Email: ggiribet@g.harvard.edu

Invertebrate Systematics 35(8) 827-849 https://doi.org/10.1071/IS21012
Submitted: 23 February 2021  Accepted: 27 April 2021   Published: 5 November 2021

Abstract

The Opiliones family Neopilionidae is restricted to the terranes of the former temperate Gondwana: South America, Africa, Australia, New Caledonia and New Zealand. Despite decades of morphological study of this unique fauna, it has been difficult reconciling the classic species of the group (some described over a century ago) with recent cladistic morphological work and previous molecular work. Here we attempted to investigate the pattern and timing of diversification of Neopilionidae by sampling across the distribution range of the family and sequencing three markers commonly used in Sanger-based approaches (18S rRNA, 28S rRNA and cytochrome-c oxidase subunit I). We recovered a well-supported and stable clade including Ballarra (an Australian ballarrine) and the Enantiobuninae from South America, Australia, New Caledonia and New Zealand, but excluding Vibone (a ballarrine from South Africa). We further found a division between West and East Gondwana, with the South American Thrasychirus/Thrasychiroides always being sister group to an Australian–Zealandian (i.e. Australia + New Zealand + New Caledonia) clade. Resolution of the Australian–Zealandian taxa was analysis-dependent, but some analyses found Martensopsalis, from New Caledonia, as the sister group to an Australian–New Zealand clade. Likewise, the species from New Zealand formed a clade in some analyses, but Mangatangi often came out as a separate lineage from the remaining species. However, the Australian taxa never constituted a monophyletic group, with Ballarra always segregating from the remaining Australian species, which in turn constituted 1–3 clades, depending on the analysis. Our results identify several generic inconsistencies, including the possibility of Thrasychiroides nested within Thrasychirus, Forsteropsalis being paraphyletic with respect to Pantopsalis, and multiple lineages of Megalopsalis in Australia. In addition, the New Zealand Megalopsalis need generic reassignment: Megalopsalis triascuta will require its own genus and M. turneri is here transferred to Forsteropsalis, as Forsteropsalis turneri (Marples, 1944), comb. nov.

Keywords: Australia, biogeography, Enantiobuninae, Eupnoi, Gondwana, New Caledonia, New Zealand, Oligocene drowning, South America, vicariance, Zealandia.


References

Ali, J. R., and Aitchison, J. C. (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews 88, 145–166.
Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma).Crossref | GoogleScholarGoogle Scholar |

Baker, C. M., Boyer, S. L., and Giribet, G. (2020a). A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance. Journal of Biogeography 47, 1345–1361.
A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance.Crossref | GoogleScholarGoogle Scholar |

Baker, C. M., Sheridan, K., Derkarabetian, S., Pérez-González, A., Vélez, S., and Giribet, G. (2020b). Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones: Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal. Invertebrate Systematics 34, 637–660.
Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones: Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R. R., and Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17, 42.
bModelTest: Bayesian phylogenetic site model averaging and model comparison.Crossref | GoogleScholarGoogle Scholar | 28166715PubMed |

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchene, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M. A., Wu, C. H., Xie, D., Zhang, C., Stadler, T., and Drummond, A. J. (2019). BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15, e1006650.
BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 30958812PubMed |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Chernomor, O., von Haeseler, A., and Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997–1008.
Terrace aware data structure for phylogenomic inference from supermatrices.Crossref | GoogleScholarGoogle Scholar | 27121966PubMed |

Cokendolpher, J. C. (2007). Neopilionidae Lawrence, 1931. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 121–123. (Harvard University Press: Cambridge, MA, USA.)

Cokendolpher, J. C., and Lanfranco, L. D. (1985). Opiliones from the Cape Horn Archipelago: new southern records for harvestmen. The Journal of Arachnology 13, 311–319.

Cokendolpher, J. C., and Taylor, C. K. (2007). Monoscutidae Forster, 1948. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 118–121. (Harvard University Press: Cambridge, MA, USA.)

Cooper, A., and Cooper, R. A. (1995). The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis. Proceedings of the Royal Society of London – B. Biological Sciences 261, 293–302.
The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis.Crossref | GoogleScholarGoogle Scholar |

Crawford, R. L. (1992). Catalogue of the genera and type species of the harvestmen Superfamily Phalangioidea (Arachnida). Burke Museum Contributions in Anthropology and Natural History 8, 1–60.

Derkarabetian, S., Benavides, L. R., and Giribet, G. (2019). Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault. Molecular Ecology Resources 19, 1531–1544.
Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault.Crossref | GoogleScholarGoogle Scholar | 31448547PubMed |

Derkarabetian, S., Baker, C. M., and Giribet, G. (2021a). Complex patterns of Gondwanan biogeography revealed in a dispersal-limited arachnid (Opiliones: Triaenonychidae). Journal of Biogeography 48, 1336–1352.
Complex patterns of Gondwanan biogeography revealed in a dispersal-limited arachnid (Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S., Baker, C. M., Hedin, M., Prieto, C. E., and Giribet, G. (2021b). Phylogenomic re-evaluation of Triaenonychoidea (Opiliones: Laniatores), and systematics of Triaenonychidae, including new families, genera and species. Invertebrate Systematics 35, 133–157.

Dunlop, J. A., and Anderson, L. I. (2005). A fossil harvestman (Arachnida, Opiliones) from the Mississippian of East Kirkton, Scotland. The Journal of Arachnology 33, 482–489.
A fossil harvestman (Arachnida, Opiliones) from the Mississippian of East Kirkton, Scotland.Crossref | GoogleScholarGoogle Scholar |

Dunlop, J. A., Anderson, L. I., Kerp, H., and Hass, H. (2004). A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh. Earth Sciences 94, 341–354.
A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland.Crossref | GoogleScholarGoogle Scholar |

Edgecombe, G. D., and Giribet, G. (2006). A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda). Invertebrate Systematics 20, 503–525.
A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda).Crossref | GoogleScholarGoogle Scholar |

Elsaka, M., Mitov, P. G., and Dunlop, J. A. (2019). New fossil harvestmen (Arachnida: Opiliones) in the Hoffeins amber collection. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 292, 155–169.
New fossil harvestmen (Arachnida: Opiliones) in the Hoffeins amber collection.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Vélez, S., and Giribet, G. (2014). Linking genetic diversity and morphological disparity: biodiversity assessment of a highly unexplored family of harvestmen (Arachnida: Opiliones: Neopilionidae) in New Zealand. Invertebrate Systematics 28, 590–604.
Linking genetic diversity and morphological disparity: biodiversity assessment of a highly unexplored family of harvestmen (Arachnida: Opiliones: Neopilionidae) in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Sharma, P. P., Tourinho, A. L., and Giribet, G. (2017). The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proceedings of the Royal Society of London – B. Biological Sciences 284, 20162340.
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Forster, R. R. (1944). The genus Megalopsalis Roewer in New Zealand with keys to the New Zealand genera of Opiliones. Records of the Dominion Museum 1, 183–192.

Forster, R. R. (1948). A new sub-family and species of New Zealand Opiliones. Records of the Auckland Institute and Museum 3, 313–318.

Forster, R. R. (1964). The Araneae and Opiliones of the sub-Antarctic islands of New Zealand. Pacific Insects Monograph 7, 58–115.

Garwood, R. J., Dunlop, J. A., Giribet, G., and Sutton, M. D. (2011). Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nature Communications 2, 444.
Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones.Crossref | GoogleScholarGoogle Scholar | 21863011PubMed |

Garwood, R. J., Sharma, P. P., Dunlop, J. A., and Giribet, G. (2014). A new stem-group Palaeozoic harvestman revealed through integration of phylogenetics and development. Current Biology 24, 1017–1023.
A new stem-group Palaeozoic harvestman revealed through integration of phylogenetics and development.Crossref | GoogleScholarGoogle Scholar | 24726154PubMed |

Giribet, G., and Baker, C. M. (2019). Further discussion on the Eocene drowning of New Caledonia: discordances from the point of view of zoology. Journal of Biogeography 46, 1912–1918.
Further discussion on the Eocene drowning of New Caledonia: discordances from the point of view of zoology.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Boyer, S. L. (2010). ‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both? Invertebrate Systematics 24, 1–8.
‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both?Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Shear, W. A. (2010). The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species. Bulletin of the Museum of Comparative Zoology 160, 1–33.
The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 8583909PubMed |

Giribet, G., Vogt, L., Pérez González, A., Sharma, P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.
A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Sharma, P. P., Benavides, L. R., Boyer, S. L., Clouse, R. M., de Bivort, B. L., Dimitrov, D., Kawauchi, G. Y., Murienne, J. Y., and Schwendinger, P. J. (2012). Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biological Journal of the Linnean Society. Linnean Society of London 105, 92–130.
Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Fernández, R., and Boyer, S. L. (2014). On four poorly known harvestmen from New Zealand (Arachnida, Opiliones: Cyphophthalmi, Eupnoi, Dyspnoi, Laniatores). New Zealand Journal of Zoology 41, 223–233.
On four poorly known harvestmen from New Zealand (Arachnida, Opiliones: Cyphophthalmi, Eupnoi, Dyspnoi, Laniatores).Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Boyer, S. L., Baker, C., Fernández, R., Sharma, P. P., de Bivort, B. L., Daniels, S. R., Harvey, M. S., and Griswold, C. E. (2016). A molecular phylogeny of the temperate Gondwanan family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) with biogeographic and taxonomic implications. Zoological Journal of the Linnean Society 178, 523–545.
A molecular phylogeny of the temperate Gondwanan family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) with biogeographic and taxonomic implications.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Buckman-Young, R. S., Sampaio Costa, C., Baker, C. M., Benavides, L. R., Branstetter, M. G., Daniels, S. R., and Pinto-da-Rocha, R. (2018). The ‘Peripatos’ in Eurogondwana? Lack of evidence that south-east Asian onychophorans walked through Europe. Invertebrate Systematics 32, 842–865.
The ‘Peripatos’ in Eurogondwana? Lack of evidence that south-east Asian onychophorans walked through Europe.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Baker, C. M., and Brouste, D. (2021a). Martensopsalis, a new genus of Neopilionidae from New Caledonia (Opiliones: Eupnoi). Zootaxa 4984, 98–107.
Martensopsalis, a new genus of Neopilionidae from New Caledonia (Opiliones: Eupnoi).Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Baker, C. M., and Sharma, P. P. (2021b). A revised phylogeny of the New Caledonian endemic genus Troglosiro (Opiliones: Cyphophthalmi: Troglosironidae) with the description of four new species. Invertebrate Systematics 35, 59–89.

Grandcolas, P., Murienne, J., Robillard, T., DeSutter-Grandcolas, L., Jourdan, H., and Guilbert, E. (2008). New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3309–3317.
New Caledonia: a very old Darwinian island?Crossref | GoogleScholarGoogle Scholar | 18765357PubMed |

Groh, S., and Giribet, G. (2015). Polyphyly of Caddoidea, reinstatement of the family Acropsopilionidae in Dyspnoi, and a revised classification system of Palpatores (Arachnida, Opiliones). Cladistics 31, 277–290.
Polyphyly of Caddoidea, reinstatement of the family Acropsopilionidae in Dyspnoi, and a revised classification system of Palpatores (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar |

Hedin, M., Tsurusaki, N., Macías-Ordóñez, R., and Shultz, J. W. (2012). Molecular systematics of sclerosomatid harvestmen (Opiliones, Phalangioidea, Sclerosomatidae): geography is better than taxonomy in predicting phylogeny. Molecular Phylogenetics and Evolution 62, 224–236.
Molecular systematics of sclerosomatid harvestmen (Opiliones, Phalangioidea, Sclerosomatidae): geography is better than taxonomy in predicting phylogeny.Crossref | GoogleScholarGoogle Scholar | 22001211PubMed |

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the Ultrafast Bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the Ultrafast Bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Hunt, G. S., and Cokendolpher, J. C. (1991). Ballarrinae, a new subfamily of harvestmen from the southern hemisphere (Arachnida, Opiliones, Neopilionidae). Records of the Australian Museum 43, 131–169.
Ballarrinae, a new subfamily of harvestmen from the southern hemisphere (Arachnida, Opiliones, Neopilionidae).Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Katoh, K., and Standley, D. M. (2014). MAFFT: iterative refinement and additional methods. In ‘Multiple Sequence Alignment Methods’. (Ed. D. J. Russell.) pp. 131–146. (Humana Press: Totowa, NJ, USA.)

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166.
MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.Crossref | GoogleScholarGoogle Scholar | 28968734PubMed |

Kury, A. B. (2013). Order Opiliones Sundevall, 1833. Zootaxa 3703, 27–33.
Order Opiliones Sundevall, 1833.Crossref | GoogleScholarGoogle Scholar |

Kury, A. B., and Cokendolpher, J. C. (2020). Chapter 9. A new family from the New World (Eupnoi: Phalangioidea). In ‘WCO-Lite: Online World Catalogue of Harvestmen (Arachnida, Opiliones). Version 1.0 – Checklist of all Valid Nomina in Opiliones with Authors and Dates of Publication up to 2018’. (Eds A. B. Kury, A. C. Mendes, L. Cardoso, M. S. Kury, and A. A. Granado.) pp. 52–54. (Rio de Janeiro.) https://doi.org/

Kury, A. B., Mendes, A. C., Cardoso, L., Kury, M. S., Granado, A. A., Giribet, G., Cruz-López, J. A., and Longhorn, S. J. (2021). World catalogue of Opiliones (version 2021-03-23). In ‘Catalogue of Life’. (Eds Y. Roskov, G. Ower, T. Orrell, D. Nicolson, N. Bailly, P. M. Kirk, T. Bourgoin, R. E. DeWalt, W. Decock, E. J. van Nieukerken, and L. Penev.) (Naturalis: Leiden, Netherlands.) Available at https://www.catalogueoflife.org/data/dataset/2256 [Verified 18 May 2021].

Lopez, P., Casane, D., and Philippe, H. (2002). Heterotachy, an important process of protein evolution. Molecular Biology and Evolution 19, 1–7.
Heterotachy, an important process of protein evolution.Crossref | GoogleScholarGoogle Scholar | 11752184PubMed |

Marples, B. J. (1944). A new species of harvestman of the genus Megalopsalis. Transactions of the Royal Society of New Zealand 73, 313–314.

McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271–300.
The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism.Crossref | GoogleScholarGoogle Scholar |

Minh, B. Q., Nguyen, M. A. T., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar | 23418397PubMed |

Mitov, P. G., Dunlop, J. A., and Penney, D. (2014). A new species of Lacinius in amber (Arachnida: Opiliones). Fossil Record 18, 37–42.
A new species of Lacinius in amber (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar |

Mortimer, N., Campbell, H. J., Tulloch, A. J., King, P. R., Stagpoole, V. M., Wood, R. A., Rattenbury, M. S., Sutherland, R., Adams, C. J., Collot, J., and Seton, M. (2017). Zealandia: Earth’s hidden continent. GSA Today 27, 27–35.
Zealandia: Earth’s hidden continent.Crossref | GoogleScholarGoogle Scholar |

Nattier, R., Pellens, R., Robillard, T., Jourdan, H., Legendre, F., Caesar, M., Nel, A., and Grandcolas, P. (2017). Updating the phylogenetic dating of New Caledonian biodiversity with a meta-analysis of the available evidence. Scientific Reports 7, 3705.
Updating the phylogenetic dating of New Caledonian biodiversity with a meta-analysis of the available evidence.Crossref | GoogleScholarGoogle Scholar | 28623347PubMed |

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Oberski, J. T., Sharma, P. P., Jay, K. R., Coblens, M. J., Lemon, K. A., Johnson, J. E., and Boyer, S. L. (2018). A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics. Molecular Phylogenetics and Evolution 127, 813–822.
A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar | 29935300PubMed |

Painting, C. J., Probert, A. F., Townsend, D. J., and Holwell, G. I. (2015). Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen. Scientific Reports 5, 16368.
Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen.Crossref | GoogleScholarGoogle Scholar | 26542456PubMed |

Pinto-da-Rocha, R., and Giribet, G. (2007). Taxonomy. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 88–246. (Harvard University Press: Cambridge, MA, USA.)

Pinto-da-Rocha, R., Bragagnolo, C., and Tourinho, A. L. (2014). Three new species of Thrasychiroides Soares & Soares, 1947 from Brazilian mountains (Opiliones, Eupnoi, Neopilionidae). Zootaxa 3869, 469–482.
Three new species of Thrasychiroides Soares & Soares, 1947 from Brazilian mountains (Opiliones, Eupnoi, Neopilionidae).Crossref | GoogleScholarGoogle Scholar | 25283931PubMed |

Pocock, R. I. (1903a). Fifteen new species and two new genera of tropical and southern Opiliones. Annals and Magazine of Natural History, Series 7 11, 433–450.
Fifteen new species and two new genera of tropical and southern Opiliones.Crossref | GoogleScholarGoogle Scholar |

Pocock, R. I. (1903b). On some new harvest-spiders of the order Opiliones from the southern continents. Proceedings of the Zoological Society of London 1902, 392–413.

Powell, E. C., Painting, C. J., Hickey, A. J., and Holwell, G. I. (2020). Defining an intrasexual male weapon polymorphism in a New Zealand harvestman (Opiliones: Neopilionidae) using traditional and geometric morphometrics. Biological Journal of the Linnean Society. Linnean Society of London 130, 395–409.
Defining an intrasexual male weapon polymorphism in a New Zealand harvestman (Opiliones: Neopilionidae) using traditional and geometric morphometrics.Crossref | GoogleScholarGoogle Scholar |

Prendini, L., Weygoldt, P., and Wheeler, W. C. (2005). Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Organisms, Diversity & Evolution 5, 203–236.
Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA.Crossref | GoogleScholarGoogle Scholar |

Ringuelet, R. A. (1959). Los Arácnidos argentinos del orden Opiliones. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia 5, 127–439.

Ritchie, A. M., Lo, N., and Ho, S. Y. W. (2017). The impact of the tree prior on molecular dating of data sets containing a mixture of inter- and intraspecies sampling. Systematic Biology 66, 413–425.
| 27798404PubMed |

Schwendinger, P. J., and Giribet, G. (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19, 297–323.
The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae).Crossref | GoogleScholarGoogle Scholar |

Sharma, P., and Giribet, G. (2009). A relict in New Caledonia: phylogenetic relationships of the family Troglosironidae (Opiliones: Cyphophthalmi). Cladistics 25, 279–294.
A relict in New Caledonia: phylogenetic relationships of the family Troglosironidae (Opiliones: Cyphophthalmi).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2012). Out of the Neotropics: late Cretaceous colonization of Australasia by American arthropods. Proceedings of the Royal Society of London – B. Biological Sciences 279, 3501–3509.
Out of the Neotropics: late Cretaceous colonization of Australasia by American arthropods.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., Baker, C. M., Cosgrove, J. G., Johnson, J. E., Oberski, J. T., Raven, R. J., Harvey, M. S., Boyer, S. L., and Giribet, G. (2018). A revised dated phylogeny of scorpions: phylogenomic support for ancient divergence of the temperate Gondwanan family Bothriuridae. Molecular Phylogenetics and Evolution 122, 37–45.
A revised dated phylogeny of scorpions: phylogenomic support for ancient divergence of the temperate Gondwanan family Bothriuridae.Crossref | GoogleScholarGoogle Scholar | 29366829PubMed |

Shear, W. A. (1996). Hesperopilio mainae, a new genus and species of harvestman from Western Australia (Opiliones: Caddidae: Acropsopilioninae). Records of the Western Australian Museum 17, 455–460.

Shultz, J. W., and Cekalovic, T. (2006). First species of Hesperopilio (Opiliones, Caddoidea, Caddidae) from South America. The Journal of Arachnology 34, 46–50.
First species of Hesperopilio (Opiliones, Caddoidea, Caddidae) from South America.Crossref | GoogleScholarGoogle Scholar |

Šilhavý, V. (1970). Nouvelles recherches sur la famille des Neopilionidae Lawrence. Bulletin du Muséum National d’Histoire Naturelle (2e Série) 41, 171–175.

Soares, B. A. M., and Soares, H. E. M. (1947). Alótipos e formas novas de Opiliões Paranaenses (Opiliones – Gonyleptidae, Phalangiidae). Papéis avulsos do Departamento de Zoologia 8, 63–84.

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |

Taylor, C. K. (2004). New Zealand harvestmen of the subfamily Megalopsalidinae (Opiliones: Monoscutidae) – the genus Pantopsalis. Tuhinga 15, 53–76.

Taylor, C. K. (2008). A new species of Monoscutidae (Arachnida, Opiliones) from the wheatbelt of Western Australia. Records of the Western Australian Museum 24, 375–380.
A new species of Monoscutidae (Arachnida, Opiliones) from the wheatbelt of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K. (2009). Australiscutum, a new genus of Monoscutidae (Arachnida: Opiliones) from eastern Australia, with the first record of asymmetrical chelicerae in Opiliones. Insect Systematics & Evolution 40, 319–332.
Australiscutum, a new genus of Monoscutidae (Arachnida: Opiliones) from eastern Australia, with the first record of asymmetrical chelicerae in Opiliones.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K. (2011). Revision of the genus Megalopsalis (Arachnida: Opiliones: Phalangioidea) in Australia and New Zealand and implications for phalangioid classification. Zootaxa 2773, 1–65.
Revision of the genus Megalopsalis (Arachnida: Opiliones: Phalangioidea) in Australia and New Zealand and implications for phalangioid classification.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K. (2013a). Further revision of the genus Megalopsalis (Opiliones, Neopilionidae), with the description of seven new species. ZooKeys 328, 59–117.
Further revision of the genus Megalopsalis (Opiliones, Neopilionidae), with the description of seven new species.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K. (2013b). Further notes on New Zealand Enantiobuninae (Opiliones, Neopilionidae), with the description of a new genus and two new species. ZooKeys 263, 59–73.
Further notes on New Zealand Enantiobuninae (Opiliones, Neopilionidae), with the description of a new genus and two new species.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K. (2016). First record of a representative of Ballarrinae (Opiliones: Neopilionidae), Americovibone remota sp. nov., from New Zealand. The Journal of Arachnology 44, 194–198.
First record of a representative of Ballarrinae (Opiliones: Neopilionidae), Americovibone remota sp. nov., from New Zealand.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K., and Hunt, G. S. (2009). New genus of Megalopsalidinae (Arachnida: Opiliones: Monoscutidae) from north-eastern Australia. Zootaxa 2130, 41–59.
New genus of Megalopsalidinae (Arachnida: Opiliones: Monoscutidae) from north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K., and Probert, A. (2014). Two new species of harvestmen (Opiliones, Eupnoi, Neopilionidae) from Waitomo, New Zealand. ZooKeys 434, 37–45.
Two new species of harvestmen (Opiliones, Eupnoi, Neopilionidae) from Waitomo, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., and Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232–W235.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.Crossref | GoogleScholarGoogle Scholar | 27084950PubMed |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Vélez, S., Fernández, R., and Giribet, G. (2014). A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones: Eupnoi: Neopilionidae). Invertebrate Systematics 28, 565–589.
A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones: Eupnoi: Neopilionidae).Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 11975347PubMed |

Wolff, J. O., Schönhofer, A. L., Martens, J., Wijnhoven, H., Taylor, C. K., and Gorb, S. N. (2016). The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida, Opiliones). Zoological Journal of the Linnean Society 177, 558–601.
The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar |