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in treatment and shorter hospital stays. Methods should be 

selected according to the goals, function and resources of each 

individual laboratory.
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New approaches to enterovirus identification

The human enteroviruses (HEVs) are members of the 
Picornaviridae family and cause a diverse range of diseases 
from respiratory illness to paralysis. Historically, HEVs 
were isolated in cell culture and subtype identification 
was by neutralisation using specific antisera. Currently, 
diagnostic virology laboratories use nucleic-acid-based 

tests to detect and identify HEVs in clinical specimens.

Human enteroviruses
The human enteroviruses (HEVs) are single-stranded, positive-

sense RNA viruses in the Picornaviridae family. The International 

Committee for the Taxonomy of Viruses (ICTV) has classified 

the HEVs into four species A–D (Figure 1). HEVs are highly 

infectious, typically transmitted via the faecal-oral route, and 

cause a wide range of clinical symptoms that can be fatal, 

including respiratory illness, fever, diarrhoea, meningitis, acute 

haemorrhagic conjunctivitis, hand-foot-and-mouth disease, 

poliomyelitis, rash and paralysis. HEVs are also associated with 

chronic disease and there is mounting evidence for a causal role 

in the onset of type 1 diabetes 1. As the symptoms and signs of 

enteroviral infections are not pathognomonic, prompt laboratory 
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diagnosis is important for patient management and control of 
possible outbreaks 2.

Virus culture – limitations
The historical classification of HEVs into coxsackievirus types A 
and B, echovirus and poliovirus was based on biological activity 
and disease presentation in patients and laboratory-infected 
mice3. During the early period of coxsackievirus characterisation, 
respiratory and faecal specimens were inoculated into suckling 
mice. HEVs may produce a cytopathic effect when clinical 
specimens are inoculated onto mammalian cell lines, which 
can be confirmed by immunofluorescent-labelled anti-pan-HEV 
antibodies and the specific serotype identified by antisera 
neutralisation 3. However, this approach has not provided 
consistent results and includes the following limitations: (i) it 

requires the judicious use of a number of cell lines susceptible 

to infection by a range of HEVs; (ii) some HEVs do not grow in 

cell culture; (iii) many HEVs cannot be typed by the antisera 

commonly available; (iv) the supply of antisera is limited; (vi) 

it can take up to two weeks to issue a negative report; (vi) it is 

expensive to maintain routine passages of cell lines and (vii) the 

interpretation of the cytopathic effect is subjective (Figure 2).

The use of eight intersecting specific antisera pools (Lim 

Benyesh-Melnick; LBM) has been the mainstay for enterovirus 

serotyping prior to nucleic acid sequence analysis. The limited 

availability of the LBM antisera pools and requirement for virus 

neutralisation and cell culture facilities have restricted enteroviral 

subtyping to reference laboratories.

Figure 1. Phylogenetic analysis 
of HEV VP1 nucleic acid 
sequence data (1000 bootstrap 
pseudoreplicates). ClustalW 
alignment, tree constructed using 
the DNA distance algorithm 
with neighbour-joining (phylip 
phylogenetic package version 
3.63) Scale bar represents 
nucleotide substitutions per site.
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Human enterovirus identification by PCR
Since the early 1990s, many diagnostic laboratories have replaced 
cell culture with reverse-transcription PCR (RT-PCR) as the 
principal means of detecting HEVs in clinical specimens 4,5. An 
indication of the shift from conventional culture methods to 
PCR is the availability of an Enterovirus Molecular Diagnostic 
quality assurance panel from the Royal College of Pathologists of 
Australasia. The relatively low cost of RT-PCR screening for HEVs 
compared to the routine maintenance of numerous cell lines is 
an attractive option, with a faster turnaround time (6–48 hours) 
and the capability of high-throughput analysis. Syndrome-based 
screening based on PCR multiplex assays have been designed for 
respiratory, central nervous system and congenital infections6. 
More recently, diagnostic laboratories have introduced real-
time RT-PCR (qRT-PCR) detection systems 7, which have further 
reduced reporting times to less than six hours when combined 
with automated nucleic acid extraction. The rapid detection of 
HEVs in clinical specimens is important for patient care 8.

One of the limitations of PCR technology is the requirement 
that the oligonucleotide primers have a high degree of target 
specificity. Pan-HEV RT-PCR primers are directed to highly 
conserved sequence within the 5′ non-translated region (5′NTR) 
(Figure 3). This assay can detect all known HEVs but may also 
cross-react with closely related members of the picornavirus 
family, specifically rhinoviruses (Jason Roberts, Bruce Thorley 
unpublished observation), resulting in the detection of false 
positives. This can be resolved by sequencing the RT-PCR 
amplicon but may not be feasible in a diagnostic laboratory. 
Another consideration is to ensure the absence of PCR inhibition, 
which is a particular problem with faecal and CSF specimens 9. 
PCR inhibition can be detected by the inclusion of an internal 
PCR amplification system, a process recommended by the 
National Pathology Accreditation Advisory Council (NPAAC) 10.

Enteroviral genomic sequence characterisation
The non-enveloped capsid of HEVs consists of four proteins, 
VP1-4, with major antigenic determinants located within VP1-3 
while VP4 is not exposed on the exterior of the virion. An 
electron micrograph and visual representations illustrating the 
molecular topography of virus capsid proteins are available as 
Supplementary Figures 1–6. The use of genetic sequencing to 
characterise the HEVs led to their reclassification into species A–D 
and the identification of new types numbered sequentially from 
enterovirus 73 to, currently, 109 11. Molecular characterisation 
methods also enabled the reclassification of a number of HEVs 
such as echovirus 22 and 23 as parechovirus, enterovirus 72 as 
hepatovirus and echovirus 10 as a reovirus (Refer to the ICTV 
website, www.ictvdb.org).

The identification of HEVs based on the sequence of VP1, VP2 
and VP4 capsid regions is possible 12,13 but the adoption of a 
standard target region enables phylogenetic comparison of HEVs 
detected in clinical specimens. The identification of HEVs based 
on the VP1 sequence was found to correlate with the traditional 
antisera serotype classification enabling the continuation of the 
existing HEV prototype nomenclature, although the usage of the 
term genotype rather than serotype has not been resolved 14. If 
difficulties are encountered identifying the HEV type from capsid 
sequence, primers directed to the 3′NTR can classify the virus to 
the level of HEV species 15.

The dominant region of interest in VP1 is the BC loop, illustrated 
in Figure 4, which is a neutralising antibody binding site and a 
major antigenic determinant 14. A fragment of the VP1 nucleic acid 
sequence, including the BC loop, can be amplified directly from 
clinical specimens using highly degenerate primers containing 
deoxy-inosine, a method termed consensus degenerate hybrid 
oligonucleotide primer (CODEHOP) 16. HEV sequence and 
subsequent HEV serotype identification can be reported within 
48 hours of receiving a specimen using the CODEHOP method. 
The availability of cognate HEV sequences via internet-based 
repository systems such as GenBank provides the laboratory with 
sequence data to infer phylogeny. The provision of sequence 
data is useful in outbreak investigations, such as a wild poliovirus 
importation 17, the identification of specific genogroups of 
public health significance, such as enterovirus 71 genogroup C4 
that has been associated with serious neurological sequelae 
and mortality18,19 and establishing the epidemiology of HEV 
infections 20.

Derivation of DNA sequence based on Sanger dideoxynucleotide 
chain termination sequencing may be limited in a diagnostic 
laboratory by time constraints and cost-effectiveness. While 
the development of sequence-by-synthesis methods are 
currently cost-prohibitive for routine diagnostic testing, the 
ability to screen clinical specimens for microbes by sequence-

Figure 2. Photomicrograph showing typical enterovirus cytopathic 
effect (A) uninfected Buffalo Green Monkey Kidney cells (BGMK) and 
(B) infected BGMK cells. Image courtesy of TW Kok and A Gaeguta, 
Institute of Medical and Veterinary Science.

Figure 3. Simplified schematic diagram of a typical enterovirus genome, identifying targets for RT-PCR amplification.
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independent methods is a great advance 21. The availability 
of microarray detection and pyrosequencing allows rapid 
serotype identification of enteroviruses based on the capsid 
region 22,23. The PyroMark MD™ pyrosequencing system enables 
laboratories to sequence biotinylated RT-PCR products within 
an hour at a significantly reduced cost compared to standard 
dideoxynucleotide sequencing. Such a system may prove useful 
for the rapid investigation of HEV outbreaks. The larger 454 
Genome Sequencer FLX™ system enabled a metagenomic 
analysis of patient specimens 24, with the ability to provide full 
genome sequence data theoretically from all non-host genetic 
information present in the sample. The storage and analysis 
of potentially huge amounts of data needs refinement before 
the next-generation sequencing methods become routine 25. 
Caution is also needed before assigning causality to any microbe 
identified from a clinical specimen by these methods, especially 
for HEV given that most infections in humans are asymptomatic. 
Despite these limitations, over the coming years this may be the 

test of choice for pathogens in general.
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