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Aquaculture produces more than 50% of fish for human

consumption and, in spite of major improvements since

the adoption of injectable vaccines in the 1990s, bacterial

diseases still account for considerable losses, particularly

in tropical and warm temperate species. Streptococcosis,

caused predominantly by Streptococcus iniae and

S. agalactiae, manifests as a generalised septicaemia and

meningitis followed by rapid mortality. Vaccination against

streptococcal infections is difficult as a result of multiple,

poorly defined serotypes and consequent vaccine escape

(reinfection of previously vaccinated animals). However,

genomics applied to reverse vaccinology is providing novel

insights into diversity among these aquatic pathogens and

is identifying cross-serotype targets that may be exploited

for new generation streptococcal vaccines for aquaculture.

Aquaculture reached a significant milestone in 2013 as global

production for food use overtook beef production for the first time

and now accounts for more than 50% of the global seafood supply1.

Aquaculture has wrestled with social license throughout its rapid

growth in developed economies, including Australia, through the

1980s and 90s2,3. Objections have been raised around environmen-

tal issues such as eutrophication of marine sediments, escape of

domesticated fish into wild stocks and pressure on wild fisheries

for fishmeal for aquaculture diets. Disease transmission between

farmed and wild stock and high antibiotic use for controlling

bacterial infections in farmed fish have also attracted attention.

Granted, antibiotic use was high in salmonid aquaculture in the

1980s and early 90s, with aquaculture outstripping both human and

terrestrial animal use in Norway4. However, the widespread adop-

tion of oil-adjuvanted injectable vaccines in salmonid aquaculture

during themid-1990s all but eliminated antibioticuse fromsalmonid

production4,5. Nevertheless, most current and future expansion of

finfish aquaculture is occurring in warm temperate and tropical

regions where farmed species and the diseases fromwhich they are

at risk are not yet adequately controlled by vaccination.

Streptococcal infections occur in warm-temperate and tropical

waters wherever fish are farmed and occasionally cause wild fish

kills6. While there are a number of streptococcal species that cause

disease in fish, the most prevalent and damaging are S. iniae and

S. agalactiae. Infection of fish by either pathogen results in rapid

onset of generalised septicaemia, meningitis often associated with

bilateral exophthalmia (Figure 1a–d) and death with mortalities

often exceeding more than 70% within a few days of infection in

experimental models.

Streptococcus iniae was first isolated in 1972 from an abscess on a

captive Amazon freshwater dolphin Inia geoffrensis from which it

derives its name7. In aquaculture, the major species affected by

S. iniae are rainbow trout in Israel8, grouper in Taiwan9, tilapia,

catfish and hybrid bass in the USA10 and, in Australia, barramundi11.

Vaccination against S. iniae is accomplished using formalin

inactivated bacterins by intraperitoneal injection of fish under

general anaesthetic in tilapia12, trout13, grouper9 and barramundi

(Figure 1e, f)14. But such vaccines are serotype-specific14–16 and in

the absence of a robust serotyping scheme or typing antisera,

vaccine failures may occur13,14 where the prevalent strain does not

match the serotype of the vaccine used. Serotype is defined by the

polysaccharide capsule in S. iniae8,14,17,18 and antigenic changes

result from non-synonymous mutations in a limited repertoire of

the genes in the capsular operon that alter monomer composition,
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polymer chain length and quantity of the capsule14. When a vaccine

is deployed, new serotypes periodically arise through mutations in

variable capsular genes. These serotypes may be already present in

the pool of extant strains co-existing on the farm (serotype replace-

ment, adaptation through standing variation) or originate under

immune pressure (adaptation through de novo variation). Whole

genome sequencing coupled with fluctuation analysis (a statistical

method of measuring mutation rate in bacteria based on frequency

with which resistance to antibiotic occurs in highly replicated

laboratory experiments) suggests both are likely to occur, with a

role for hypermutators (variants with greatly elevated mutation

rates) facilitating adaptation to the immune host (Figure 2). To

overcome the inherent plasticity in the capsular structure, several

proteins have been proposed as potential vaccine immunogens

based on analysis of the first available genome sequences21, but

these have not been uniformly effective22–24. With the falling cost of

whole genome sequencing, using informatics to identify surface

associated and secreted proteins that are conserved across different

capsular serotypes has become a fast and cost-effective route to new

experimental vaccines that may be cross-protective across multiple

serotypes.

Streptococcus agalactiae is a Lancefield group B Streptococcus

(GBS). Most fish-pathogenic isolates fall into either (multilocus

sequence type) ST260 or ST261 with capsular serotypes Ia and Ib.

There have also been reports of fish disease caused by the broad

host range ST7 but these have been associated with environmental

contamination from terrestrial sources25,26. The ‘true’ fish patho-

gens are quite distinct from their terrestrial con-specifics, with

substantially reducedgenomes,depletedvirulence factor repertoire

and reduction of carbohydrate metabolic pathway genes26. Indeed,

fish pathogenic GBS was classified as a separate species,

S. ‘difficilis’, until these isolates were later assigned to the species

S. agalactiae based onwhole cell protein analysis in the late 1990s27

and confirmed by DNA :DNA hybridisation in 200528. Infection and

mortality caused by GBS is one of the most significant issues facing

tilapia culture globally. Injectable vaccines are effective but type-

specific29. Once again the potential for exploiting the falling costs of

whole genome sequencing for design of cross-serotype protective
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Figure 1. (a) Infection of the meninges shown by immunohistochemistry of infected brain section. Blue: DAPI stained tissue; red: rabbit anti-GBS
polysaccharide capsule ofS. agalactiae. (b) Exophthalmia and associatedmeningitis. (c) Corneal haemorrhage and (d) corneal opacity. Photographs
a–d fromacute infection of giant grouperEpinephelus lanceolatuswithS. agalactiaeST261 serotype 1b (Photos: Dr JeromeDelamare-Deboutteville).
(e, f) Vaccinationof barramundi againstS. iniaeby intraperitoneal injection. (e) Vaccination tablewithcentral anaestheticpool andflowing, oxygenated
water along the side channels to a recovery tank. Vaccines are contained in sterile blood-bags on ice in the buckets. (f ) Vaccines are delivereddirectly
into the peritoneal cavity of the fish under anaesthetic using a self-refilling syringe. Needles must be changed frequently and regularly de-scaled to
prevent injury of the fish, which can lead to infection of the injection pore. (Photos: Andy Barnes).
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vaccines is substantial and has been used to great effect in human

medicine30. A similar approach is ongoing for aquatic isolates, and

surface expressed proteins unique to aquatic isolates but conserved

across the ST260 and ST261 sequence types have been identified

and tested for efficacy in preliminary trials in tilapia.

Whilst large-scale whole genome sequencing is identifying antigens

conserved across themost important serotypes, there are a number

of further problems that must be resolved for viable streptococcal

vaccines for aquaculture. First, fish are a low value commodity and

even in salmon,which fetch a relatively highwholesale price,margin

per dose of vaccine is low relative to other animal vaccines, except

poultry. Consider that the farm gate price of most warm water

species is substantially lower than salmon, with tilapia valued at less

than one third of the lowest salmon price, and one can envisage that

the cost per dose of vaccine has to be very low indeed. Whilst there

is some margin in simple formalin-killed bacterins, recombinant

protein vaccines are not economically viable in this market. There-

fore, maximising expression of conserved antigens, identified

through genomics, in culture for improvement of killed bacterins

makes more commercial sense. The second problem relates to

adjuvants. The success of vaccination in cool water salmonid aqua-

culture was founded upon oil emulsions that enable a single

vaccination to protect for the complete farm lifecycle. This duration

of immunity in excess of two years necessitates very slow antigen

release from the emulsion. This works against warm water species

that are farmed for maybe 9–12 months in the case of tilapias,

particularly for streptococcal vaccines, where achieving an effective

antigen dose against non-carbohydrate antigens is already challeng-

ingdue to very lowgrowthdensitiesof aquatic streptococci. Thiswill

necessitate clever formulation of vaccines to enable initial fast

antigen release, but also sustained protection for several months,
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Figure 2. Evidence for role ofS. iniaemutators in reinfectionof vaccinatedbarramundi in Australia. A) Rootedmaximum likelihood tree (RAxMLv 8.1.3;
GTR+GAMMA model) of S. iniae isolates from vaccination cases in Australia based on alignment of core genome single nucleotide polymorphisms
(SNPs), filtered for regionsof recombination (usingGubbins19) andcorrected forascertainmentbias20.Greenarrows indicatestrainsused tovaccinate
the fish on the different farms whilst red arrows indicate strains subsequently isolated from vaccinated fish in which disease had reoccurred. The
capsular serotype, defined in most of these cases by mutations in cpsG, which controls glucose : galactose ratio in the surface polysaccharide,
is indicated by blue circles. The extended branch length supporting the cps defective isolates (white circles) from vaccinated fish in NSW and SA
is indicative of a much faster nucleotide substitution rate in these strains and evidence that they are likely mutators. This is supported in (B), which
showsexperimentally determinedmutation rates for these isolates (red) andother isolates from the same farm (blue). Taken together this is supportive
of adaptation by both standing and de novo variation with a role for mutators in the latter.
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and all at a price of a few cents per dose. This represents a substantial

challenge for the industry and the science.
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