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Bacterial diseases in horticultural settings or infestation of

fresh produce with human pathogenic bacteria can consti-

tute a serious public health risk. To control horticultural

bacterial diseases, chemical control strategies have tradi-

tionally been used, such as the application of bactericides

andcopper-basedproducts,which resulted indevelopment

of resistance in bacteria against these agents.Moreover, the

use of such chemical preventative measures on fresh pro-

ducecandetrimentallyaffecthuman,animalandecosystem

health. Bacteriophages have been used to control patho-

genicbacteriasince the1920sduetotheirspecificityagainst

host bacteria, as well as their ability to survive and infect

their host without detrimental effects to the surrounding

environments. As a result, their targeted host specific appli-

cations inhorticultural settingscanbeof interest togrowers

as well as to the consumers. In this laboratory report, the

efficacy of a bacteriophage cocktail when applied to fresh

herbs inoculated with Escherichia coli was determined.

Significant (P� 0.001) reductions in E. coli colony forming

units were observed in phage treated herb samples com-

pared to counts in the control. These findings suggest that

bacteriophage present as an alternative biocontrol for

E. coli in horticulture.

Xanthomonascampesterispvcampesteris, thecauseofblack rot in

brassicas, was one of the first bacteria to be challenged by a phage

battery in 19241,2, followed in 1925 by isolation of phage active

against Pectobacterium carotovarum subsp atrosepticum1,3 that

resulted in the prevention of potato tuber rot. Field trials date back

to the mid-1930s when corn seeds were treated with bacterio-

phages specific to Pantoea stewartia that resulted in significant

reduction in Stewart’s wilt disease incidence1,4. In the late 1960s a

laboratory trial demonstrated that the use of bacteriophage signif-

icantly reduced bacterial spot infection in the leaves of peach

seedlings caused by Xanthomonas pruni1,5. More recently, Kurt-

böke et al.6 demonstrated effective elimination of human patho-

genic Enterobacteriaceae species contaminating strawberries

post-harvest using bacteriophage suspensions containing multiple

polyvalent phages targeting themembers of this bacterial family. In

another study jointly conducted by Terragen Biotech Pty Ltd and

the University of the Sunshine Coast (USC) in Queensland, Aus-

tralia, Ashfield-Crook et al.7 investigated the control of potato scab

causing streptomycetesusingstreptophages.Again, another recent

study conducted at the USC targeted the control of E. coli test

strainsusing locally grownherbs.This laboratory reportwill present

some of the preliminary findings of this study.

E. coli is a facultatively anaerobic bacterium that can surviveoutside

of the host in fecalmatter and soil8. Althoughmost strains of E. coli

are harmless, a few pathogenic strains such as serotype O157:H7

can cause serious infections in humans such as haemorrhagic

enteritis9, with some rare cases leading to bowel necrosis,
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septicemia and haemolytic uraemic syndrome10. Many strains of

E. coli can contaminate fresh produce including herbs11, lettuce12,

spinach10, vegetables13,14, and herbs like coriander that has been

reported to be contaminated by E. coli 0157:H715. To control such

pathogenic bacteria, antimicrobial treatments have traditionally

been used16. However, due to the rise in antibiotic resistance

among human pathogenic bacteria17, alternative biocontrol agents

and strategies are needed.

Bacteriophages canbeeffectivelyusedas a controlmethodon fresh

produce contaminated with pathogenic bacteria including

E. coli6,18 and as their application is less destructive to the natural

habitat they can also be used on edible food16,19. Examples include

Listeria monocytogenes specific phage (P100) that has been rated

as GRAS by the US FDA, the EU EFSA and Australian FSANZ, and

commercially available as ListexTM to control this pathogen in RTE

foods20.

The objective of this study was to use a bacteriophage cocktail

composed of eight different phages as a biocontrol agent against

E. coli (JM109), usedunder laboratory settings todeliberately infect

five different locally grown herb samples. Additionally, the effec-

tiveness of the phage cocktail against the sameE. coliunder natural

settings was tested using pot parsley plants.

Eight different bacteriophages were obtained from the Microbial

Library of the USC and their characteristics were previously de-

scribed6. Each phage sample was propagated on E. coli (JM109)

(https://www.atcc.org/Products/All/69905.aspx) with a titer of

~1010pfu/mL. A bacteriophage cocktail was then prepared using

each individual phage sample in equal volumes and used to treat

herbs contaminated with the test strain.

Herb samples; parsley, coriander, mint, Vietnamese mint and

rosemary were obtained from a local supplier and were surface

sterilised6 to ensure removal of any microbial contaminants that

mightbeoriginating fromtheenvironment. Eachherb leafwas then

inoculated with JM109 and left to stand for 10 minutes to allow

absorption of the bacterium into the plant tissue. Serial dilutions of

the infected leaf samples were performed and from selected dilu-

tions inoculationsweremadeontoTryptic SoyAgar (TSA) (OXOID,

Australia) in triplicate. The phage-treated group of leaf samples

were submerged into the bacteriophage cocktail solution for

1 hour. The phage treated herb leaves were then subjected to

10-fold serial dilutions andplatedout in the sameway as the control

samples.

In the second phase of the study, potted parsley plants were

obtained from a local supplier and they were divided into four

different treatment groups: (1) a control with neither E. coli nor

phage cocktail; (2) a control treated with E. coli only; (3) a

treatment group exposed to both E. coli and phage cocktail; and

(4) a third control treated with phage cocktail only.

In contrast to the two different controls (one with no JM109 or

phage cocktail exposure, the other one exposed to phage cocktail

only), two of the potted parsley plants were deliberately infected

with ~5 mL of JM109 by gently rubbing the strain onto the plant

using sterile gloves. The two pots containing infected parsley

samples were first incubated at room temperature for 10 min.

Parsley samples from one of the JM109 treated pot plants were cut

and soaked in sterile distilled water. The samples from the second

potwerefirst exposed to thephage cocktail for 1 h and then cut and

soaked in sterile distilled water. The first potted parsley plant

servedas a controlwithout any JM109orphagecocktail application.

All parsley samples from all of the treatments were shaken on an

orbital shaker for 15 min at 110 rpm in 378C and subsequently

subjected to serial dilutions. Aliquots (200 mL) from selected dilu-

tions for all potted parsley samples were finally inoculated in

triplicate onto both TSA plates for general bacterial counts and

MacConkey (OXOID, Australia) for its selectivity toward E. coli.

Results were analysed using Student’s t-test21.

Useof thebacteriophage cocktail reduced the JM109 colony counts

on all of the tested herbs with a high degree of significance

(P� 0.001), resulting in complete lysis. An example of full plate

clearance is illustrated in Figure 1.

When aliquots were taken frompotted parsley sample suspensions

and inoculatedontoeither theTSAor the selectiveMacConkeyagar

plates, JM109numberswere again found tobe significantly reduced

if the parsley samples were treated with the phage cocktail com-

pared to the untreated control treatments (P � 0.001) (Figure 2).

The phage cocktail did not demonstrate lytic activity against the

residentmicroflora present on the parsley prior to inoculationwith

JM109 (Figure 2, bottom plates).

The bacteriophage cocktail successfully reduced the numbers of

JM109 on each different surface-sterilised herb indicating that

surface structure or chemical compositions of the herb plant did

not display significantly different interference with the phage

activity. Moreover, bacteriophage activity was also persistent on

non-surface-sterilised potted parsley samples when they were

deliberately contaminated with the E. coli. Since the JM109 is a

highly engineered strain of E. coli, the technique was also tested

using other E. coli species (ATCC 25922 and ATCC BAA-196: ESBL

+ve, as well as using local isolates listed in Kurtböke et al.6 using

only parsley as the test herb. Again, significant reduction in

the numbers of the tested different E. coli strains were achieved
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(P� 0.001) (_I Kurtböke, 2015, unpublisheddata). All thesefindings

were in line with other studies where successful bacteriophage

applications were reported6,18 and suggest that bacteriophage

biocontrol strategies might be an alternative to chemical controls

used in horticultural settings. However, as stated by Jones et al.1,

a number of factors should be considered during phyllospheric

applications of the phages such as establishment of high-density

phage populations in close proximity to the pathogen targeted for

control at critical times in its disease cycle. Environmental factors

may impact phage survival and persistence; such as inactivation by

UV22 that would impact phage survival and persistence. Accord-

ingly, the design of phage protective delivery methods is of impor-

tance as well as carefulmonitoring of the phages during field use to

minimise development of resistance by the targeted host bacteria.

Recently, Ashfield-Crook et al.7 also demonstrated that polyvalent

phages might also have unintended consequences in field

applications by simultaneously removing beneficial microflora

and resulting in increased risk of secondary infections. Although

bacteriophages have significant potential to be utilised as biocon-

trol agents in agricultural and horticultural settings, the generation

Figure 1. Phage treatment of E. coli (JM109) inoculated on mint resulted in the absence of growth following incubation on TSA (left). Plates without
the phage treatment resulted in confluent growth of E. coli (right).

Figure 2. A reduction of the colony forming units of E. coli inoculated parsley samples treated with and without phage was observed (top plates).
The phage cocktail had no lytic activity against the parsley’s resident microflora (bottom plates).
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of further data and careful observations in the field have critical

importance for their acceptance as reliable disease control agents.
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