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Whooping cough (pertussis) is a highly contagious vaccine

preventable respiratory disease caused by the Gram-nega-

tive bacterium Bordetella pertussis. Despite high level

vaccination coverage over the past 20 years, Australia has

one of the highest per capita burdens of pertussis globally.

Oneof theprimaryfactorsassociatedwiththere-emergence

of pertussis is pathogen adaptation of B. pertussis to the

currentacellular vaccinesused.This articlewill focusonthe

genomic and proteomic changes that have occurred in the

AustralianB. pertussis population, the significance of these

adaptive changes on fitness in a vaccinated environment

and what we can do to reduce the significant burden of

pertussis in the future.

The rising incidence of B. pertussis in Australia

Pertussis vaccinations were first introduced in Australia in 1953

using a whole cell vaccine (WCV), which contained dead

B. pertussis cells. This led to a dramatic reduction in the number

of pertussis notifications from 767 cases per 100 000 in the 1930s
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to one case per 100 000 by the late 1970s1. Despite the

success of WCVs in reducing pertussis, reports of possible

severe side-effects reduced public confidence in the vaccine and

led to the replacement of the WCV with a new acellular vaccine

(ACV)2.

ACV was introduced into Australia in 1997, initially as a booster,

and by 2000 it was used for all immunisations2. There are two ACVs

used in Australia, the three component-ACV and the less widely

used five-component ACV. The three-component ACV targets

three virulence factors; pertussis toxin (Ptx), pertactin (Prn) and

filamentous haemagglutinin (Fha), while the five-component

vaccine targets two additional fimbriae (Fim2 and Fim3). Since the

late 1990s, there has been a steady increase in pertussis notifica-

tions observed inAustralia and in 2008–2012, Australia experienced

a prolonged pertussis epidemic (Figure 1). At the height of the

epidemic in 2011, 174 cases per 100 000were recorded, the highest

number documented since the introduction of pertussis vaccina-

tion2. This was followed by a smaller yet still significant epidemic

from 2014-2017 with a peak of 95 cases per 100 000 in 20153

(Figure 1). Similar trends in increased notification rates have been

noted in other countries that switched to the ACV4–6.

The changing population structure of Australian

B. pertussis in different vaccine eras

To determine how B. pertussis is adapting to vaccine selection

pressure, molecular epidemiology typing studies were performed

to define the population structure and trace the evolution of

B. pertussis in Australia from the pre-vaccination and WCV era to

the ACV era.

A previous single nucleotide polymorphism (SNP) typing study

separated the global pertussis population into 6 SNP clusters (I-VI)

based on 65 SNPs7. Australian B. pertussis isolates were mostly

found in SNP clusters I-IV with SNP cluster V being a minor

Australian cluster and SNP cluster VI containing vaccine and pre-

vaccine strains. In the WCV period, SNP cluster II was the predom-

inant cluster and was comprised of 33% of strains typed. After the

switch to theACV, the frequencyof SNPcluster II isolatesdecreased

to 11% andwas replacedwith SNP cluster I, which increased to 31%

after it emerged during theWCV/ACV transition period7 (Figure 2).

Since the 2008–2012 epidemic, the majority (>90%) of circulating

strains in Australia belong to SNP cluster I3,8. Most current

circulating strains in other ACV countries typed as ptxP3 strains

are equivalent to SNP cluster I9.

Genetic changes in ACV antigen genes of the

circulating Australian B. pertussis population

The replacement of the WCV with ACV in Australia reduced the

number of antigens targeted from hundreds to 3-5 (Figure 2). This

has placed greater selection pressure on genes encoding ACV

antigens to change and allow for vaccine escape variants to emerge
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Figure 1. Number of pertussis notifications in Australia from 1991-
2018. Introduction of theACVas abooster in 1997 (!) and exclusive use
of ACV for all vaccinations after 2000 (!) are indicated. Data from the
Department of Health, 2019.
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Figure 2. The changing population structure and adaptation of B. pertussis in Australia over three different vaccine periods. The circulating
SNP clusters are displayed from the most predominant (at the top) to the least (bottom). AIncludes the vaccine strain Tohama I used to manufacture
the WCV and ACV. BRelative to SNP cluster II.
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in Australia. There are two major evolutionary changes observed

due to increased vaccine selection pressure: ACV allelic divergence

and inactivation of ACV antigen expression (Figure 2).

The greatest ACV allelic divergence is seen in ptxA and prn alleles.

SNP cluster I carries the prn2 and ptxA1 alleles which encode

antigenic variants that differ from the prn1 and ptxA2 alleles in

Tohama I, the strain used to produce theWCV and ACV. The ptxA1

allele emergedprior to the introduction ofWCVbut only expanded

after WCVs were used4 and is present in all cluster I-IV strains.

Similarly the prn2 allele emerged during the WCV period in SNP

cluster I but expanded after the introduction of ACV4. These

mutations in ptxA1 and prn2 alter amino acid residues in known

B/T immune epitopes thereby altering recognition from ACV-

generated immunity4,10. A double allelic exchange mutant of ACV

alleles prn1 and ptxA2 with non-ACV alleles prn2 and ptxA1

conferred a greater survival rate in ACV immunised mice than the

wild type strain demonstrating the selective advantage of antigen

mismatch in a highly vaccinated environment11.

Besidesmismatches in ACV antigens, the current predominance of

SNP cluster I is also associated with carrying the ptxP3 allele which

encodes a variant pertussis toxin promoter12. This newpromoter is

associated with increased pertussis toxin production, and possibly

virulence and disease severity compared with strains carrying the

original ptxP1 allele13,14. Increased pertussis toxin production is

thought to provide a selective advantage by delaying neutrophil

recruitment and modulating the immune response15. Using a

mixed-infection mouse model, SNP cluster I strains outcompeted

SNP cluster II strains (carrying ptxP1, prn3 and ptxA1) in a vacci-

nated environment16. This demonstrates that these genomic

changes have increased the overall fitness of the circulating pop-

ulation of B. pertussis and contribute to the predominance of SNP

cluster I in an ACV environment.

Recently, strains which do not express ACV antigens have emerged

in many developed countries, most notably the Prn deficient

strains5,6,17. In Australia, Prn deficient strains are primarily found

in SNP cluster I and were first detected at the start of the 2008

epidemic, making up 5% of strains isolated18. However, within a

decade this increased to 90% by 2017, the highest proportion of

Prn deficient strains in the world3. Over 20 independent mechan-

isms for Prn inactivation have been documented5,6,18. This di-

versity of inactivation suggests a beneficial selection pressure for

convergent evolution and that Prn deficient strains emerged

independently from multiple different clones19. Findings from

multiple mouse studies support increased fitness for losing

pertactin in an ACV environment with higher survival of

Prn deficient strains compared to Prn producing strains in

ACV-vaccinated mouse20,21. Prn deficient strains also displayed

no differences in disease severity compared to Prn producing

strains but have a higher likelihood to cause disease and persist

longer in ACV vaccinated individuals14,22. Furthermore, in a

mixed infection mouse model, Prn deficient strains had poorer

survival in unvaccinated mice compared to Prn producing

strains therefore providing evidence that Prn inactivation is an

ACV-driven phenomenon. Finally, inactivation of Fha has also

been detected in Australia3 while Ptx inactivation has been

reported in other countries17. However, these mutant strains

are rare, and it remains to be seen whether the loss of these

virulence factors increases the fitness of B. pertussis in an ACV

environment.

Proteomic changes and broadening the view of

pathogen adaptation to vaccination

In addition to increased fitness in an ACV environment, it was

shown that SNP cluster I also outcompetes SNP cluster II in an

unvaccinated environment16. This suggests that there are other

changes between the two clusters that contribute to the current

predominance of SNP cluster I in Australia. In proteomic studies,

our laboratory identified increased expression of previously un-

known adaptations in SNP cluster I of reduced expression of

immunogenic proteins such as the type III secretion system and

upregulation of amino acid and metal ion transport proteins and

adhesins23,24 (Figure 2). Some of these proteomic differenceswere

associated with genetic mutations which are also found in other

global pertussis strains23. Additionally, several other transcriptomic

studies have reported gene expression differences associated with

the current epidemic pertussis strains25,26. Together, these studies

have broadened our understanding of how B. pertussis is evolving

and identified additional pathogen factors important for the re-

emergence of pertussis.

Future strategies to reduce the burden of

pertussis

The ongoing evolution of B. pertussis in response to vaccine

selection requires continued long-term epidemiological surveil-

lance inAustralia tomonitor vaccine escape strains and thepossible

introduction of emerging antibiotic resistant B. pertussis strains

from other countries27. Although B. pertussis is adapting to the

ACV, the current ACV remains effective in preventing pertussis

disease in fully immunised individuals28. Additionally, maternal

immunisation and cocooning are also effective strategies at pro-

tecting the most vulnerable newborns from pertussis29,30. How-

ever, for long termprevention andprotection, an improved vaccine

is required in the future. Current proposed strategies to alter
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vaccine alleles to better match SNP cluster I will improve our ability

to target these strains but will not be sufficient to combat Prn

deficient strains. Therefore, a future pertussis vaccine should

broaden the number of antigens targeted and ensure that these

antigens are essential to B. pertussis survival so as to limit further

pathogen adaptation. To do this, further research is required to

better understand fundamental aspects of pertussis biology and

adaptation as well as the processes behind vaccine and host-

induced immunity.
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