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An updated view on bacterial glycogen structure

Liang Wang and Michael J Wise

The authors advise that in Figure 1 of their published article (Microbiology Australia, Volume 40, Issue 4, pages 195–199,

doi:10.1071/MA19056) they linked GlgE directly with branched (glucosyl units)n. In fact, GlgE should work together with GlgB to

synthesise glycogen. In addition, although Rv3032 was initially postulated to have a possible role in glycogen metabolism, recent study

has shown no detectable evidence to support this postulation. The authors apologise for this error and state that this does not change

the scientific conclusions of the article in any way. The correct Figure 1 is shown below.
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TrehaloseMaltoseMaltose-1-P
TreSPep2

GlgB

GlgA
GlgE

Linear (glucosyl units)nBranched (glucosyl units)n

Maltotetraose
(α-1,4-glucosyl unit)4

GlgX

Figure 1. Schematic illustration of classical and non-classical glycogen metabolism pathways5. PTS, phosphotransferase system;
PGM, phosphoglucomutase; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; ADPG, ADP-glucose.
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Glycogen is a homogenous and multi-disperse polysaccha-

ride that is present in many clinically significant bacteria,

such as Escherichia coli, Vibrio cholera and Mycobacteri-

um tuberculosis. Its structure and metabolism have been

linked with environmental viability, intracellular growth,

pathogenicity and transmission capacity. However, due to

the harsh extraction conditions and also the inconsistent

methods for structure characterisation, understanding of

bacterial glycogen structure and its association with bacte-

rialmetabolismandphysiologyhasbeenhindered.Herewe

gave a concise overviewof bacterial glycogen structurewith

a focus on its recently discovered higher level organisation,

aparticle. Standardisedprocedures for glycogenextraction

and structure detection are also highlighted.

Glycogen metabolism

Glycogen is a widespread homogeneous polysaccharide and plays

important roles in bacterial energy reserves and carbon supplywith

little effect on cellular osmolarity1. Experimental studies have

linked glycogen to bacterial environmental survival, intracellular

growth, pathogenicity, transmission, etc., although controversial

observations exist2. Since glycogen plays a central role in bacterial

carbohydrate metabolism, its synthesis and degradation are highly

regulated.A systematic analysisof 1202bacterial speciesproteomes

confirmed that 402 of them harbour a complete set of enzymes in

the classical glycogenmetabolism pathway3. This pathway involves

five enzymes operating concurrently to promote glycogen synthe-

sis: glucose-1-phosphate adenylyltransferase (GlgC), glycogen

synthase (GlgA), glycogen branching enzyme (GlgB); and degra-

dation: glycogenphosphorylase (GlgP), and glycogen debranching

enzyme (GlgX)1. A second non-classical and widespread glycogen

synthesis pathway was unexpectedly found in Mycobacterium

tuberculosis, which involves trehalose synthase (TreS), maltoki-

nase (Mak1or Pep2) andmaltosyltransferase (GlgE)4. This pathway

established a solid connection among glucose, trehalose, maltose

and glycogen metabolism. Another branched a-glucan pathway

involves two paralogues, glycogen synthase (Rv3032) and glycogen

branching enzyme (Rv3031), which generates methyl-glucose

lipopolysaccharide and is associated with fatty acid metabolism

(Figure 1)4,5. However, its connection with cytosolic glycogen

metabolism is still under investigation. A comprehensive ge-

nome-wide screening of genes affecting glycogen accumulation,

basedon3985 single-geneknockoutmutantsof nonessential genes

in E. coli K-12 (Keio Collection), confirmed that 35 genes were

related with glycogen-excess phenotypes while 30 genes were

related with glycogen-deficient phenotypes6. Of the 65 gene pro-

ducts, their functions are mainly involved in direct glycogen syn-

thesis and/or degradation, energy production, amino acid

provision and cell envelope integrity6. Another systematic study

using E. coli gene expression library ASKA observed that upregula-

tion of 86 genes could influence glycogen accumulation7. The

genes fell into the functional categories of general stress and

stringent responses, aggregative and social behaviour, and intra-

cellular communication, etc.7. Thus, glycogen metabolism is a

highly interconnected process with a wide variety of cellular inter-

actions. Among those sophisticated interactions, glycogen break-

down plays an important role in the interactions between the host

and pathogenic bacteria, though the mechanisms and roles of

glycogen during infection are still not fully elucidated1.

Glycogen structure

Glycogen is characterised by a hyperbranched structure with a-1,

4-glycosidic linkages at the linear chains and a-1,6-glycosidic

linkages at the branching points1. As an efficient energy storage
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molecule, a good structure-function relationship should be

achieved for optimally providing energy and carbon source8.

Although multiple models have been proposed to describe glyco-

gen structure, such as the classical Whelan model, fractal structure

model, and thenewlyproposedMonte-Carlo simulation, there isno

settledmodel that accurately describes the polydisperse structures

of glycogen, including particle size and chain length distributions,

etc.3,9. Currently, three structural levels have been defined in

glycogen found in the liver of higher organisms, which are (1)

linear a-D-glucosyl chains through a-1,4-glycosidic bonds, (2)

highly branched b particles of around 20 nm in diameter, and

(3)b-particle-aggregated rosette-shapedaparticlesup to300nmin

diameter10. However, the molecular basis for the aggregation of

b particles into a particles is still under investigation. Glycogen

particles are also associated with a group of proteins (known as the

glycogen proteome) that regulate its biological functions11. Prote-

omic analysis of the rat, mouse and human liver inferred that a self-

glycosylating homodimer protein, glycogenin, is the binding agent

on the surface of b particles to form a particles12. Intriguingly, no

coding genes for glycogenin or its homologs have ever been

identified in bacterial genomes; it is glycogen synthase that is

involved in glucan initiation and elongation in bacteria13.

Until recently, onlybparticleswere reported inbacteria, containing

up to 55 000 glucosyl units with molecular mass of around 107–108

Daltons and varying in diameter from 20 to 50 nm1. The average

length of linear chains, gc, in b particles varies between 6.6 to

23.5 glucose units in a species-dependent manner3. Correlation

analysis between gc and bacterial environmental viability showed

that bacteria accumulating glycogen with short gc have greater

survival times in theexternal environment3. Itwas argued that short

gcglycogencould lead to the formationofmorecompactbparticles

with higher branching degrees3,14. These properties facilitate the

slow utilisation of glycogen by hindering its degradation14, enhanc-

ing bacterial survivability3. Although maintaining glycogen struc-

ture requires a coordinated action of enzymatic activities and

different structural proteins, GlgB plays a dominant role in chain

length distribution patterns and corresponding branching

degrees15. Recent analysis showed that domain organisation of

GlgB is conserved, which consists of an N-terminus, a central

(b/a)-barrel region and a C-terminus15. Based onN-terminal length

variation, two groups of glycogen branching enzymes (GBEs) were

initially identified: Group 1 with duplicated CBM48 domains

(N1 and N2 domains) and Group 2 with a single CBM48 domain

(N2 domains)16. A longer GBE N-terminus was further found to

contribute to the transfer of shorter side chains, leading to shorter

gc glycogen
17. A large comparison of 9387 bacterial GlgBs revealed

that there might exist a third group with a longer N-terminus (N0,

N1, andN2domains) than that inGroup 1GlgBs (Figure 2)15. Thus,

N-terminal diversity could be one of the determinant factors for the

polydispersity of glycogen structures leading to the heterogeneity

of degradation rates.However, experimental evidence is needed to

validate the hypothesis.

Glycogen extraction methods

A variety of extraction methods have been used for bacterial

glycogen isolation, such as the harsh boiling method with 30%

potassium hydroxide solution (KOH-HW)18 and the comparatively

mild trichloroacetic acid extractionmethodswith cold or hotwater

(TCA-CW or TCA-HW)19. Less commonly used reagents such as

sodium dodecyl sulfate (SDS), thymol or glycine for bacterial

Glucose G6P G1P ADPG

Linear (glucosyl units)nBranched (glucosyl units)n

Maltotetraose
(α-1,4-glucosyl unit)4

GlgX

PTS PGM GlgC

GlgA
(Rv3032?)

GlgB
(Rv3031?)

GlgP

TrehaloseMaltoseMaltose-1-P
TreSPep2

GlgE

UDPG

Figure 1. Schematic illustration of classical and non-classical glycogen metabolism pathways5. Rv3032 can use both ADPG and UDGP
as substrates. PTS, phosphotransferase system; PGM, phosphoglucomutase; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate;
ADPG, ADP-glucose; UDPG, UDP-glucose.
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glycogen extraction have also be used in sporadic studies20–22.

Harsh extraction procedures with alkali, acid, and/or heat can

degrade glycogen primary and tertiary structures23, which could

compromise experimental results and conclusions. On the other

hand, the use of diverse extraction methods makes it difficult to

compare glycogen structures due to the lack of uniform proce-

dures. This is particularly the case with the fragile glycogen-asso-

ciated proteins if one aims to investigate the functions of glycogen-

associated proteomes. In higher organisms, sucrose density gra-

dient ultracentrifugation with cold water (SDGU-CW) has been

confirmed as less- or non-degradativemethod and is regularly used

for glycogen extraction with the purpose of a particle study or

glycogen proteomic analysis23. SDGU-CW was previously used for

glycogen extraction in Selenomonas ruminantium and Fibrobac-

ter succinogenes20,24. Interestingly, glycogen morphology via

transmission electron microscopy (TEM) in both studies showed

the possible existence of rosette-shaped a particles in bacteria,

although thisphenomenondidnotgarnermuchattention20,24.Our

lab recently explored this issue by comparing different extraction

methods and confirmed the existence of bacterial glycogen a

particles extracted via the SDGU-CWmethod in E. coli (Figure 3)9.

Thus, we suggested that the mild SDGU-CW extraction method

shouldbeadoptedasa standardmethod inbacterial glycogenstudy

so as to reveal genuine comparative structural features. In addition,

the discovery of glycogen a particles in both prokaryotes and

eukaryotes indicates that any organism needing to store and then

releaseglucosemighthave similaraandbparticle structures: a type

of convergent evolution, regardless of the presence of glycogenin9.

Since a particles have been linked with release rate of glucose

during degradation stage, further exploration of the formation

mechanisms of glycogen a particles in bacteria would be essential

for better understanding its functions in bacterial physiology and

pathogenicity. Relevant questions to ask include whether under

certain circumstances more a particles will be synthesised while

b particles will be more preferred in other situations based on

the regulation of the activities and contents of a-particle forming

enzyme(s).

Glycogen structural characterisation

Glycogen structure canbemeasured fromdifferent aspects, suchas

morphology, branching degree (percentage of a-1, 6-glycosidic

central (β/α)8-barrel domain
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Figure 2. Three types of representative glycogen branching enzymes from Escherichia coli (Type 1GlgB),Bacillus subtilis (Type 2GlgB) and Frankia
casuarinae (Type 3 GlgB)15. The N-terminal 3D structures of GlgBs (a–c) and corresponding pair-wise superimpositions – (d) Escherichia coli (green)
andBacillussubtilis (red), (e)Escherichiacoli (green)andFrankiacasuarinae (red), (f)Bacillussubtilis (green)andFrankiacasuarinae (red)–arepresented
accordingly. Reprinted and modified with permission fromWang et al.15.
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Figure3. TEMimageofa typicalbacterialglycogenaparticleextracted
via the SDGU-CW method.

In Focus

MICROBIOLOGY AUSTRALIA * NOVEMBER 2019 197



linkages), branch length distribution, and particle size distribution,

etc. Glycogen morphology, such as a and b particles, can be most

easily characterisedusing TEM9.Distributions of glycogen sizes can

also be generated via histograms based on TEM images. How-

ever, with the latter method it is rather difficult to achieve

quantitative results and it cannot give genuine particle sizes.

Periodate oxidation is a commonly used method in the structural

study of non-ionic polysaccharides in carbohydrate chemistry.

The methods are done using sodium metaperiodate as the

oxidising agent, and the presence of a-1, 6-glycosidic linkages

can be confirmed by the free hydroxyl groups resulting from the

consumption of periodate ions during the periodate oxidation

reaction25. From this, glycogen branching degree can be calcu-

lated. In addition, methylation26, reducing end assay19, and

nuclear magnetic resonance (NMR)27 can also be used for mea-

suring glycogen branching degree. In terms of chain lengths,

iodine staining was originally used with the aid of spectropho-

tometry. It was shown that polysaccharide chains consisting of 8

to 12 glucose units stain a reddish colour at the wavelength of

520 nm, while at a length of 30 to 35 units, the stain appears blue,

with a peak at 600 nm, similar to amylose28. Although multiple

studies have used this method to infer glycogen branching

features, the method has mainly been applied to the analysis of

amylose and amylopectin due to the weak interaction of glyco-

gen with iodine29. On the other hand, fluorophore-assisted

capillary electrophoresis (FACE) is an advanced method for

accurately quantifying the chain-length distributions of isoamy-

lase-treated glycogen particles19. The average chain length of

glycogen can be calculated based on percentages of oligosac-

charides with specific degrees of polymerisation generated via

FACE3. Until recently, FACE has been the only method that can

give an accurate description of glycogen primary structure.

Size exclusion chromatography (SEC), together with a differential

refractive index (DRI) detector, separates glycogen solely on hy-

drodynamic volumes Vh or the corresponding radius Rh
30. With a

multiple-angle laser light scattering (MALLS) detector, weight-

average molecular weight (Mw) can be measured and molecular

density of glycogen particles calculated as r(Rh) = Mw(Rh) � 4/

3pRh3. Thus, this method gives a quantitative overview of glycogen

particle size distribution and should be preferred for glycogen

analysis. The method can also be used for detecting fragility and

stability of glycogen a particles. That is, fragile a particles are easily

degraded into b particles after treatment with hydrogen bond

disruptors like dimethyl sulfoxide (DMSO), which is reflected in

the shift of glycogenparticles toward smaller sizes on SECgraphs10.

Our recent study also shows that both fragile and stable a particles

exist in E. coli with unclear functions (Figure 4)9.

Summary and future perspectives

Glycogen is a central energy reserve in bacteria. Understanding the

interactions between glycogen structure and metabolism has ap-

parent clinical significance due to its associations with viability and

virulence of bacterial pathogens. Lack of standardised extraction

procedures and detection methods hinders the comprehensive

understanding of glycogen functions across bacterial species. The

pros and cons of various glycogen extraction procedures and

detection methods were compared in recent studies and the

SDGU-CW method is recommended for glycogen isolation due to

its comparatively mild extraction conditions. On the other hand,

SEC is suggested for measuring size, weight, and density of glyco-

gen particles. In addition, TEM is recommended for studying

glycogen morphology, while FACE is most suitable for dissecting

glycogen primary structure. Most importantly, the discovery of

fragile and stable glycogen a particles in bacteria creates a new

avenue in the bacterial glycogen research field, from where it

would be interesting for us to investigate how glucose concen-

tration in the culture influences bacterial glycogen a particles

formation, how glycogen a particles change in different stages of

bacterial life, and what proteins are responsible for the formation

and fragility of a particles in bacteria, etc. These studies might

lead us to a better understanding of how glycogen contributes

to bacterial environmental survival, intracellular growth, patho-

genicity and transmission.
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