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Engineering biodegradable coatings for sustainable fertilisers 
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ABSTRACT 

With the pressures of a changing global climate and ever-growing population, the need for sustainable 
agricultural practices that increase crop yields while decreasing greenhouse gas emissions are critical. 
Currently used practices to increase yields can often be problematic due to low nitrogen use efficiency 
or a potential overreliance on agrichemicals that can alter the community composition of a given 
ecosystem, although this is typically system and situation dependent. As such, the next generation of 
enhanced efficiency fertilisers that combine chemical, materials engineering and biological components 
are likely to be a game changer. Integral to their success is a better understanding of how plant–soil 
microbiomes interact with the new enhanced efficiency fertilisers, and how we can best tailor the 
fertilisers to suit different plant–soil combinations. In particular, the biodegradation properties of new 
fertiliser coatings must be given careful consideration so as to not further burden agricultural soils 
with microplastics or cause ecotoxicity problems. This perspective proposes novel, interdisciplinary 
strategies to generate highly efficient, biodegradable fertiliser coatings for use in the agricultural sector.  
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The challenges of feeding the world on finite agricultural land 

With global populations set to reach 10 billion by 2050,1 there is increasing pressure to match 
food production within existing agricultural lands in the face of a changing global climate. 
Integral to global food security is an increasing reliance on synthetic fertilisers to improve 
crop yields,2 while simultaneously reducing their negative environmental impacts.3 Though 
there have been recent shifts towards designing fertilisers with enhanced efficiency1,4,5 

including those that have been coated with a polymeric substance such as metal–phenolic 
networks,6,7 these have not been widely adopted by the global agricultural industry. In 
addition, strategies to further increase crop yields, such as the deployment of pesticides, 
herbicides and enzymatic inhibitors,8,9 may also lead to disruptions in the balanced plant 
holobiont (i.e. the collection of microorganisms such as bacteria, fungi, archaea and protists, 
that form close associations with the plant host).10,11 Thus, the design of new generation 
fertilisers must take into consideration sustained and tailorable release profiles, the degrada-
tion of coatings and ecotoxicity potential, as well as the potential benefits of incorporating 
probiotic microorganisms into engineered coatings to enhance plant performance. 

Among the major design challenges for the development of new fertilisers is the compo-
sition of coatings that cannot only slow the release of the internal nitrogenous compound, but 
also can be completely biodegraded by indigenous soil microorganisms. This remains an 
understudied challenge within both the fertiliser and agricultural industry, as the microorgan-
isms that comprise plant holobionts are often host or soil specific,12 and may not be shared 
among different crop types.13,14 As such, innovative microbial solutions are required to ensure 
that newly developed biopolymeric fertiliser coatings can be degraded by a wide range of 
microorganisms native to different soil types and plant species. In addition, ensuring that the 
polymers are completely degraded and do not generate microplastics15–17 is paramount to 
ensure that ecosystems are not further burdened. We thus outline a cross-disciplinary strategy 
combining materials engineering and plant–soil microbiology approaches to generate inno-
vative hybrid chemical–biological fertilisers for use in Australian agricultural systems. 

Current state of agricultural practices and potential innovation 
strategies 

Current practices within the agricultural industry are heavily weighted towards the usage of 
conventional fertilisers that are typically applied in liquid form or as uncoated granules.4 
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As Australia possesses one of the highest nitrogen footprints in 
the world (~47 kg of nitrogen per capita per year), with food 
production comprising the largest component,18 it is of great 
importance to develop new products to reduce the environ-
mental and socioeconomic impacts of fertiliser use.1 It is well 
established that intensive and improper use of nitrogen-based 
fertilisers can lead to numerous undesirable effects including 
mining of soil nitrogen in low-rainfall cropping areas,18 

nitrate leaching into waterways causing eutrophication,19 

and nitrous oxide and ammonia emissions into the atmo-
sphere, contributing to global warming.20 With the current 
cost of developing, producing and deploying enhanced effi-
ciency fertilisers up to 10 times higher than that of commer-
cial fertilisers within the agricultural sector,5,21 the use of 
these commercial fertilisers will continue to be widespread 
and are unlikely to decrease unless next-generation fertilisers 
are comparably priced and are higher efficiency. 

Within the agricultural sector, three major approaches are 
currently used to mitigate excess nitrogen loss within cropping 
lands as well as increase crop nitrogen use efficiencies: 
(1) addition of chemical urease and nitrification inhibi-
tors4,10,11; (2) utilisation of the 4R Nutrient Stewardship con-
cept (right source of nutrients, at the right rate, at the right 
time and in the right place)22; and (3) use of physical barriers 
to slow the release of fertilisers.7,23 Although the benefits of 
urease and nitrification inhibitors have been well documen-
ted,5,11 the use of polymer-coated fertilisers has been compar-
atively less studied. The effectiveness of polymer-coated 
fertilisers specifically was demonstrated to have negative to 
negligible positive effects on drylands and grasslands, and 
was highly influenced by soil pH.5 This is a concerning phe-
nomenon for translation into the Australian agricultural sec-
tor, which is predominantly grasslands and drylands.24,25 

Additionally, the type of polymer used in the coating needs 
to be carefully selected to ensure that it is capable of natural 
degradation, meets national biodegradability standards and 
by-products do not have ecotoxicological effects. It is impor-
tant to note that currently there are no global standards govern-
ing the biodegradation parameters of fertiliser coatings. More 
work is required to understand the effects of additives on 
polymer degradation by microorganisms, as numerous reports 
have highlighted deleterious effects of microplastics on soil 
organisms and functions.26 Subsequently, the question remains, 
can enhanced-efficiency polymer-coated fertilisers be gener-
ated for use within the Australian agricultural industry, taking 
into consideration the unique properties of Australian soils? 

Upcoming multidisciplinary approaches to 
engineering biodegradable fertiliser coatings 

The effectiveness of controlled release fertilisers could 
potentially be improved by the incorporation of biological 
additives, such as plant-growth promoting bacteria (PGPB) 
as well as polymer-degrading microorganisms (PDMs). 
Biofertilisers, or microbial inoculants, can be split into two 
major classes, rhizobia-based inoculants that are primarily 
applied to legumes, and non-rhizobia based inoculants to 
non-legumous crops. Non-rhizobia biofertilisers in the form 
of peat or liquid supplements have been demonstrated to 

increase the yield of numerous crops including soybeans, 
maize and rice, though positive effects can vary greatly 
across different applications.27,28 Although biofertilisers 
have been implemented for decades,28 they are scarcely 
used within the Australian agricultural sector aside from 
in forage legumes.27 In particular, the uptake of these bio-
fertilisers has been sporadic in wheat-producing nations and 
has had inconsistent results between countries, indicating 
that species-specific interactions between plant subtypes 
and microbial inoculants might be critical to consider.27 

Similarly, the discovery and characterisation of PDMs is 
rapidly growing in response to the overuse of plastics world-
wide, though their efficiencies in different ecosystems 
remains understudied.16 A recent review by Gambarini 
et al. determined that, although the degradation capacity 
for microorganisms is taxonomically widespread, experi-
mental evidence of this has been minimal so far.29 Some 
of the better-characterised PDMs include Ideonella sakaien-
sis, which has been shown to degrade polyethylene tereph-
thalate, numerous species within the order Bacillales, which 
are capable of polypropylene and polystyrene degradation, 
and species from the Amycolatopsis genus, which have been 
shown to degrade polylactic acid polymers.29 In particular, 
the conditions within which polymers are partially or com-
pletely degraded can differ extensively between different 
polymer types, with synthetic polymers derived from fossil 
fuels (e.g. polyethylene terephthalate, polypropylene and 
polystyrene) typically only degraded by microorganisms 
under specific conditions.15,29 Conversely, coatings developed 
from biopolymers, polymers that are made from renewable 
resources (e.g. polyhydroxybutyrate) would likely be better 
candidates as they have a greater biodegradation potential 
than synthetic polymers.29 Thus, careful consideration of poly-
mer type as well as the in situ degradation capacity of the 
agricultural soil tested must be at the forefront of the 
generation of fertiliser coatings. Soil properties, such as 
pH and organic carbon content, in conjunction with the 
plant species grown must also be considered as these can 
drastically alter the composition of microorganisms within 
the rhizosphere.12 As such, the testing of multiple soil types 
and incubation conditions on the same polymer type must 
be carried out to assess the generalisability of degradation 
across different agricultural systems. It is likely that multi-
ple polymer and microbial combinations need to be gener-
ated for each plant–soil combination due to specific nature 
of plant–soil–microbiome interactions.13 Thus, an ongoing 
challenge is finding microbial combinations that will pro-
mote the growth of crops, remain in the soil long term and 
are able to be incorporated into existing fertiliser delivery 
strategies such as coatings. 

Our strategy for developing next-generation smart fertili-
sers is to use a multidisciplinary approach, combining compli-
mentary microbiological, chemical and materials engineering 
strategies. As demonstrated by the schematic in Fig. 1, 
we aim to combine culture-independent and culture- 
dependent microbiological techniques with materials engi-
neering to develop economically viable smart fertilisers 
capable of increasing yields and reducing nitrogen losses. 
Determination of soil physicochemical properties as well as 
overall microbial community structure could potentially 
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enable genome-informed cultivation strategies to target both 
PGPB and PDMs specific to each major Australian crop 
species–soil combination (Fig. 1b).30 In situ biodegradation 
studies, assayed by gas chromatography (GC) of CO2 pro-
duction and scanning electron microscopy (SEM), using 
biodegradable polymer candidates will also inform down-
stream coating design, with candidates able to be degraded 
by multiple soil types and in multiple conditions prioritised 
(Fig. 1a). The direct measurement of degradation by GC and 
SEM will be accompanied by additional, complementary 
analytical techniques, such as complete soil physiochemical 
analysis and Fourier-transform infrared spectroscopy. 
Partially degraded polymers will then be used as the start-
ing inoculum for PDM isolation using minimal media with 
fresh polymer as the sole carbon source (Fig. 1b). Isolates 
will then be phenotyped to determine the mechanism by which 
polymer degradation was occurring, with the potential to purify 
degradation enzymes. Within a coating, it is theoretically pos-
sible to include urease and nitrification inhibitors1 as well as a 
microbial cocktail of lyophilised PGPB and PDM or purified 
enzyme (Fig. 1c). This would allow for controlled release of 
the encapsulated chemical fertiliser (e.g. urea) because of 
the degradation effects of the PDM, the inhibition of major 
enzymatic pathways leading to nitrogen losses and the delivery 
of PGPB directly to the rhizosphere (Fig. 1d). 

Concluding remarks 

With an increasing global population and a changing 
global climate, addressing food scarcity through innovative 
microorganism-forward agriculture is paramount. Only 
through a deep understanding of plant–soil–microbiome 
interactions and using multi-disciplinary approaches can 
new biodegradable polymer coatings for chemical fertilisers 
be generated. This new generation of enhanced efficiency 
fertilisers should be tailored to specific plant–soil combina-
tions to obtain the best yields and nitrogen use efficiencies 
while also being a viable economic alternative to currently 
used chemical fertilisers. 
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