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ABSTRACT 

The challenge of limiting global warming to below 1.5°C requires all industries to implement new 
technologies and change practices immediately. The aviation industry contributes 2% of human- 
induced CO2 emissions and 12% of all transport emissions. Decarbonising the aviation industry, 
which relies heavily on high-density liquid fuels, has been difficult to achieve. The problems are 
compounded by the continued reliance on so-called sustainable aviation fuels, which use first- 
generation agricultural feedstocks, creating a trade-off between biomass for food and feed and its 
use as a feedstock for energy generation. Decarbonising aviation is also challenging because of 
problems in developing electric aircraft. Alternative feedstocks already exist that provide a more 
feasible path towards decelerating climate change. One such alternative is to use gas fermentation 
to convert greenhouse gases (e.g. from food production and food waste) into fuels using 
microbial acetogens. Acetogens are anaerobic microorganisms capable of producing alcohols 
from gaseous CO, CO2 and H2. Australia offers feedstock resources for gas fermentation with 
abundant H2 and CO2 production in proximity to each other. In this review, we put forward the 
principles, approaches and opportunities offered by gas fermentation technologies to replace our 
dependency on fossil fuels for aviation fuel production in Australia.  

Keywords: acetogens, aviation fuel, carbon footprint, Clostridium autoethanogenum, gas 
fermentation, greenhouse gases emissions, isobutanol, sustainable aviation fuel. 

Background 

Tackling the climate crisis is a defining challenge of our times. The Intergovernmental Panel on 
Climate Change (IPCC) has warned that climate change is occurring faster than previous 
modelling had anticipated. This calls for large step change driven by technological develop
ments, requiring adoption at scale through substantially changed practices, particularly by 
industry, to meet this existential threat. As we recover from the COVID-19 pandemic, exacer
bated by the geopolitical disturbances wrought by the Russia–Ukraine war, preliminary data 
suggest that global CO2 emissions from fossil fuels have just set a new record of 36.6 billion 
tonnes in 2022, an increase of 1% compared to 2021. This increase is because of the demand for 
crude oil growth, especially in the aviation sector as demand for air travel increases.1 

Among transportation, aviation is considered the fastest-growing industry.2 Aviation 
fuel consumption by commercial airlines reached 57 billion gallons (~215 × 109 L) in 
2021 while transporting 2.3 million passengers globally.3,4 The International Air 
Transport Association (IATA) forecasts global air passengers to reach 4.0 billion in 
2024, exceeding pre-COVID-19 levels.5 Although international air travel was almost 
non-existent in the Asia-Pacific due to COVID-19 outbreaks and strict travel restrictions 
in 2021, solid growth in the region was observed in October 2022, when passenger traffic 
increased by 440.4% compared to October 2021.6 In Australia, for the 12 months between 
September 2021 and August 2022, 84.7 million passengers travelled to domestic and 
international destinations from local airports, an increase of 86% from the previous year.7 

In general, the demand for global commercial aviation is increasing rapidly. As a 
result, the aviation industry already accounts for 2% of global CO2 emissions and is 
responsible for many other pollutants, including large solid waste generated during 
commercial flights.8 In alignment with the Paris Agreement’s ambitious goal to decarbonise 
the aviation industry, the IATA have set objectives to achieve net-zero emissions by 
2050, indicating that ~21.2 billion tonnes of CO2 must be abated.9 Batteries are often 
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held up as a transport solution to emissions. Electrification 
indeed presents a pathway for many industries to decarbonise, 
in which electricity generation relies on renewable or carbon- 
neutral processes. Although advances in battery technology 
have introduced the concept of electric aviation, its industrial 
feasibility remains unclear. Batteries are likely to be feasible 
for larger road and rail vehicles, and even small aircraft within 
a decade; however, the weight and range of batteries will 
preclude their feasibility for large, long-haul transport (pri
marily commercial and military aviation) without a currently 
unforeseen technological disruption. To underscore the point, 
an Airbus A380 has a fuel capacity of 320 000 L of energy- 
dense, non-oxygenated, hydrocarbon-based liquid fuel.8,10 

In a recent calculation of flying an electric Airbus A320, 
improvements in battery energy density would have to 
reach up to 800 Wh kg−1, compared to 100–265 Wh kg−1 

currently available in electric vehicle batteries.11,12 As such, 
a realistic strategy to reach net-zero aviation emissions will 
include an initial switch to sustainable aviation fuels (SAFs), 
followed by a transition to carbon-neutral energy sources, 
such as electric power, to propel larger aircraft. Hence, for 
the foreseeable future, in terms of a transition from fossil fuels 
to electrification, improving the economics of SAF production 
remains a viable path to cut CO2 emissions. However, the 
current SAF supply is limited and highly expensive due to 
infrastructure challenges and the stringent policy framework 
regulating the production and use of SAFs in current aircraft 
engines.13 

Current methods for sustainable aviation fuel 
production 

Unlike petroleum-based fuels, SAFs are alternative fuels pro
duced from renewable sources such as biomass and waste 
products and therefore have a smaller carbon footprint.8 Novel 
methods for producing SAFs include alcohol-to-jet (ATJ), 

a technically feasible process that supplies commercial-scale 
aviation biofuels. It involves several catalytic steps such as 
dehydration, oligomerisation, hydrogenation and fractionation 
of C2–C5 alcohols produced through biochemical fermentation 
processes, ultimately producing paraffinic kerosene hydro
carbons used as jet fuel products.14 Isobutanol and ethanol 
are the only ATJ alcohols certified for commercial use in the 
US by the ASTM D7566 Standard Specification for Aviation 
Turbine Fuels Containing Synthesised Hydrocarbon in 2016 
and 2018, with up to a maximum blending ratio of 50%.14,15 

Isobutanol is superior to ethanol as jet fuel due to its chemical 
structure and higher energy density of 33 MJ kg−1, as well as 
lower vapour pressure, hygroscopicity and flammability.16 

Moreover, the upgrading process from alcohol intermediate 
to the final hydrocarbon jet fuel in ATJ processes has a 34% 
lower conversion cost when using isobutanol instead of 
ethanol.15 Therefore, a recent industrial shift to ethanol-free 
biofuels has been observed. For example, Gevo, Inc.’s bio
refinery in Texas has been producing renewable isobutanol for 
commercial jet fuel using ATJ processes since 201117 (Fig. 1). 
Their production technology, named Gevo Integrated fermenta
tion technology (GIFT), relies on corn waste biomass fermenta
tion using a yeast strain engineered to produce high-yield 
isobutanol. The bioprocess is coupled to a product recovery 
system, continuously removing isobutanol as it forms.15,17 

Current microbial isobutanol production uses yeast strains, 
in particular Saccharomyces cerevisiae. Yeast offers numerous 
advantages such as its native alcohol production, ease of 
engineering, low contamination risk and innate tolerance to 
short-chain alcohols.18,19 Small concentrations of isobutanol 
are natively produced in S. cerevisiae as a by-product of 
valine degradation by the Ehrlich pathway. In the last 
steps of this pathway, 2-ketoisovalerate (KIV) is converted 
to isobutyraldehyde by 2-keto-acid decarboxylases (Kdc)19 

(Fig. 2b). However, isobutanol production in yeast is limited 
by the spatial separation of two different cell compartments 
as KIV is synthesised from pyruvate in the mitochondria and 
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Fig. 1. Biofuel production using engi
neered microorganisms. Current etha
nol and isobutanol production methods 
using engineered microorganisms such 
as yeast involve biomass and sugar feed
stocks, which compete with food and 
use of arable land. More sustainable bio
fuel production methods include using 
renewable or waste sources, leading 
to carbon-neutral or carbon-negative 
processes. Our work aims to explore 
biofuel production alternatives using 
the acetogen Clostridium autoethanogenum 
to produce isobutanol from waste 
CO/CO2 + H2 gases.    
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then needs to be transported to the cytosol for its conversion 
to isobutanol.20 Furthermore, the availability of NADPH and 
NADH combined with the channelling of pyruvate towards 
other compounds might also limit the native productivity 
towards isobutanol. Importantly, yeast uses sugars, starch, 
or lignocellulosic biomass-renewable feedstocks from arable 
land that may compete with food production. Therefore, 
research focusing on other technologies to produce SAF pre
cursors, for instance from non-biomass feedstocks, are needed 
to minimise environmental, social and economic aspects. 

Gas fermentation is a novel approach to SAF 
production 

An alternative to sugar and biomass-based production 
of alcohols for ATJ is gas fermentation. Gas fermentation 

is a cost-competitive technology that uses low-carbon feed
stocks (C1), including waste gases derived from steel mills, 
biomass, and agricultural or municipal waste.21 Microorganisms 
known as acetogens can use CO, CO2 and H2 to generate 
biomass and SAF intermediates. As such, acetogens are con
sidered attractive microbial platforms for industrial gas fer
mentation. Acetogens grow in anaerobic conditions and fix 
gaseous, inorganic carbon into valuable compounds such as 
ethanol, 2,3-butanediol (2,3-BDO) and acetate.22 Acetogens 
from the genus Clostridium use the Wood–Ljungdahl path
way to reduce CO or CO2 and H2 into acetyl-CoA and other 
products by fixing CO or CO2 into cell biomass23 (Fig. 2b). 
LanzaTech has commercialised large-scale ethanol produc
tion from waste gas fermentation and is currently producing 
acetone and isopropanol at pilot industrial scale.24 The 
carbon-negative-produced ethanol is converted into ATJ in 
a process optimised by LanzaJet, a sister company near to 
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Fig. 2. Microbial isobutanol production 
from pyruvate. THF, tetrahydrofolate; 
coA, coenzyme A; 2,3-BDO, 2,3- 
butanediol; Fdox, Ferrodoxin oxidised; 
Fdred, Ferrodoxin reduced; ALAC, 
2-acetolactate; DIV, 2,3-dihydroxyiso- 
valerate; KIV, 2-ketoisovalerate. Including 
ATPase, NFN and RNF complex. 
(a) Native isobutanol production from 
glucose in yeast. Isobutanol synthesis 
results from valine degradation by the 
Ehrlich pathway in the cytosol, whereas 
valine is formed from pyruvate in the 
mitochondria. This compartment separation 
is one the main limiting factors for high-yield 
isobutanol production. (b) Isobutanol syn
thetic pathway design for Clostridium auto
ethanogenum. Similarly to yeast isobutanol 
production, isobutanol synthesis derives 
from pyruvate by the Ehrlich pathway. 
However, metabolic engineering is 
needed to catalyse the reaction from 
2-ketoisovalerate to isobutyraldehyde by 
2-keto-acid decarboxylases (Kdc).    
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completing their both commercial facility in Georgia, USA, 
and the first ATJ production plant in Europe in partnership 
with SkyNRG.25 However, expanding the product portfolio 
of acetogens to more valuable compounds, such as isobuta
nol, requires metabolic engineering.26 

The process currently employed by Lanzatech to produce 
ethanol relies on CO-rich gases from industrial and 
solid waste. However, to ferment CO2, acetogens need H2. 
H2 has historically come from methane steam reforming, a 
process with inherent carbon emissions. Considerable effort 
is currently underway to reduce the cost of renewable hydro
gen generation.27 For instance, large-scale green hydrogen 
production capacity should be developed in Queensland, 
Australia by 2025. In collaboration with the Queensland 
Government and Orica, a mining and infrastructure services 
provider, the H2-Hub Gladstone complex will produce green 
hydrogen by water electrolysis using renewable energy from 
solar and wind.28 In Gladstone, there are numerous CO2 
sources from refining natural gas. The availability of CO2 
in proximity to the new H2-Hub offers an excellent opportu
nity for gas fermentation and, thus, the production of net- 
zero biofuels made in Australia, where the reliance on a 
steady supply of imported aviation fuel is a concern for 
national sovereignty. Australia is uniquely positioned to 
develop a thriving gas fermentation industry to produce 
sustainable hydrocarbons using renewable gas feedstocks. 

Since recombinant isobutanol production in acetogenic 
Clostridium may overcome the challenges of pathway com
partmentalisation and energy cofactor limitations we, in 
collaboration with LanzaTech, are currently developing a 
C. autoethanogenum strain to produce isobutanol (Fig. 2b). 
Although the Wood–Ljungdahl pathway from acetogens is 
net neutral in ATP production, it is the most efficient, most 
straightforward and only known linear pathway for synthe
sising acetyl-CoA from CO2, involving several enzymatic 
complexes generating redox cofactors that could be utilised 
for reactions involving isobutanol biosynthesis29 (Fig. 2b). 
Compared to yeast glucose metabolism, C. autoethanogenum 
can generate NADPH from the Nfn transhydrogenase com
plex and NADH from the membrane-bound, oxidoreductase 
Rnf complex.30 Hence, our research aims to explore net-zero 
isobutanol production in acetogens that could potentially 
use Australian renewable feedstocks and eventually contrib
ute to sustainable aviation fuel production in Australia. 

Conclusion 

Australia currently imports most of its jet fuel, which is 
derived from fossil fuels and harms the environment. As the 
demand for aviation increases, alternatives to develop SAFs at 
industrial scale are needed. Implementing an Australian jet 
fuel infrastructure for manufacturing sustainable aviation fuel 
and establishing a reliable supply chain is not easy, but 
implementing such capability is in the national interest. The 
delivery of a new Australian SAF infrastructure will require 
support and approvals by the government and the aviation 
industry at all levels. Using acetogenic Clostridium as catalysts, 
gas fermentation offers a unique opportunity to overcome 
current bio-isobutanol production methods using yeast. 

The emergence of the H2 industry and the production of 
waste gases from the national energy industry can provide 
feedstocks for gas fermentation and position Australia at the 
forefront of SAF production. 
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