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VERTICAL TRANSMISSION 
https://doi.org/10.1071/MA22015 

Vertical Transmission  

Dena Lyras 
President of ASM  

This will be my last communication to you as President of 
the ASM, after serving in this role for the past 4 years. 

I never expected that I would hold the role of President of 
our Society and, in truth, I was nervous about taking on such 
an important task. What I can say now, at the end of my 
tenure, is that it has been a deeply fulfilling time, which has 
allowed me to connect with so many of you – I am very 
lucky to have so many new friends and colleagues in our 
community of microbiologists. More than that, it has been a 
tremendous privilege to serve you as the ASM President. I 
hope that I can use the knowledge I have gained to continue 
to serve the Society in other ways in the future. 

One of the most wonderful aspects of my presidency has 
been the time I have spent working with our ASM Executive. 
These people are profoundly committed to the Society and 
our members, and it has been an honour to spend time with 
them. I would like to take this opportunity to thank Roy 
Robins-Browne, Kate Seib, Anthony Baker, Cheryl Power, 
Rebecca LeBard, our President Elect, Mark Schembri, and 

Priscilla Johanesen, who attends every executive meeting in 
her role as Chair of the Professional Development Committee; 
you are such a talented and passionate group of people and I 
am privileged to now call you friends. 

I would also like to extend my thanks to our State Branch 
Chairs and the Chairs of our Standing Committees, and all of 
the members who sit on the committees under these portfo-
lios. Thank you also to the members who take the time to 
represent the Society on National and State Advisory 
Committees and Boards. The members of the Microbiology 
Australia Editorial Board also deserve a very big thank you 
for the wonderful job they do getting interesting, readable 
issues together, and for giving our members an opportunity 
to showcase their science. I am also grateful for the hard 
work of our Scientific Advisors, especially during COVID-19 
restrictions when, together with Kate Seib, they managed to 
deliver online content that kept us all connected and 
engaged. 

A special thank you to Kara Taglieri at ASN events for 
many things, but mostly for helping me to solve problems 
along the way and tolerating my many, many questions. 

Finally, I would like to thank all of our ASM members for 
your support. The ASM is you, our members. Please consider 
taking an active role in the Society at the state or national 
level, it will bring you so much more than you can imagine. I 
wish our new President, Mark Schembri, and our Society, 
the very best for the future, and I know that the Society is in 
good, caring hands. I look forward to seeing many of you at 
our upcoming meeting in Sydney, face-to-face for the first 
time in 3 years. Safe travels to all of you.  
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GUEST EDITORIAL 
https://doi.org/10.1071/MA22016 

Food microbiology: current and future topics of investigation 
Prudence Bramwell  

This edition of Microbiology Australia is dedicated to food 
microbiology. The field of food microbiology is very impor-
tant as microorganisms can be used in a positive way to make 
and enhance food products, or, from a negative perspective, 
microorganisms cause both food spoilage, with subsequent 
food wastage, and foodborne disease, with potentially life- 
threatening consequences. The multidisciplinary field of food 
microbiology is of great interest due to the possibility of 
studying food microorganisms in the context of food safety 
and hygiene, classic and new food preservation technologies, 
traditional and novel food fermentations, functional foods 
and probiotics, rapid automated methods of analysis, epide-
miological and molecular investigations1 and the future use 
of microbes as a sustainable food source and for recycling.2 

Therefore, this edition of Microbiology Australia focuses on 
articles related to food safety, advances in microbial food 
analysis, and novel microbes for new fermented food prod-
ucts that are relevant for the future. 

An important topic in this edition relates to omics and 
its role in food microbiology. Omics (such as genomics, 
transcriptomics, proteomics, and metabolomics) generates 
data that can extend the range of information from a single 
system and increase detection, tracking and adaptation of 
foodborne microbes in processing environments.3 The arti-
cles by both Gray and Pillidge et al. discuss the use of omics 
to better understand microbial communities in food systems. 
Gray reviews the use of omics to study leafy vegetables from 
farm to fork. Leafy green vegetables are well known as a 
source of foodborne illness such as E. coli 0157 infections.4 

Pillidge et al. describe the use of metagenomic analysis to 
study the stages in the production of cheese and the changes 
in cheese microbiota during fermentation and cheese ripen-
ing. Both articles discuss historical culture-based methods 
compared with high-throughput sequencing methods to 
obtain whole genome sequencing (WGS) data to develop 
an understanding of metagenomics, including microbes 
that might be missed using culture-dependent methods 
and how the microbiota changes during processing. 

In addition to cheese, bread is another classic fermented 
food that has been made for thousands of years.5 However, 
dietary preferences are changing due to the increased 
demand for gluten free and low fermentable oligo-, di-, 
monosaccharides and polyols (FODMAP) bread. Wittwer 
and Howell describe research into diverse breadmaking 
yeast that may cater for these demands using novel yeasts 
from potentially non-food environments in sourdough 

production to develop interesting flavour properties and as 
a support to the lactic acid bacteria (LAB) degradation of 
gluten and breakdown of fructans. 

Another area of fermentation research is in plant-based 
products. According to the Bloomberg Intelligence Report, 
plant-based food sales are expected to increase fivefold by 
2030.6 Fermented plant-based foods are important as a 
potential replacement for fermented dairy products as they 
are naturally lactose-free and have a good source of bio-
active compounds. However, there is a need for new strains 
of LAB that are more suited to fermentation of plants than 
dairy products and that could produce acceptable flavour, 
texture and nutritional value if proved safe. Huang et al. 
describes Citizen Science as a way to help identify new 
species of LAB that may be best suited to plant fermentation. 

Laboratory analysis of suspected contaminated food is 
essential to maintain food quality, safeguard consumer safety 
and ensure emerging pathogens are identified.7 In late 2021 
public health investigations across Australia detected cases 
of gastroenteritis caused by Vibrio parahaemolyticus, linked 
to eating raw oysters from South Australia.8 Vibrio parahae-
molyticus is a bacterium found in marine and coastal waters 
where oysters normally grow. Outbreaks in Australia have 
been rare. However, in the last few years Vibrio infections 
have been sporadically reported and are now a notifiable 
infection in Tasmania.9 The article by Hedges addresses the 
possible issue of Vibrio spp. as an emerging issue for 
Australia and discusses advances in molecular methods of 
analysis using PCR and gene sequencing. 

As stated earlier, WGS is increasingly becoming a routine 
tool to detect and track foodborne outbreaks within hours to 
days.10 The article by Bramwell et al. discusses the changes 
in analytical laboratories as traditional methods of detection 
of foodborne pathogens and spoilage microbes are replaced 
by rapid automated molecular technologies, such as WGS, as 
they become more accessible and affordable.10 However, it 
explains the reasons why there is still a place for more 
traditional culture-based methods, in particular for food 
microbiology analysis in complex food matrices and pro-
cessed food. 

A key limitation when testing food is time-to-detection.7 

Therefore, another area of food microbiology related to 
rapid analytical technology is rapid in situ screening assays 
for foodborne pathogens, known as Point of Management 
(POM) assays, similar to ‘Point of Care’ diagnostics in the 
medical field. Most raw poultry contains Campylobacter.11 
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Templeton et al. describes their work on a POM assay to 
detect Campylobacter in poultry production that uses a 
dipstick for molecular screening of Campylobacter DNA. 
They describe the advantages and disadvantages of this 
technology and how it could be extrapolated for other relevant 
pathogens in the poultry industry, such as Salmonella. 

In recent years, novel processing and treatment methods 
such as high-pressure processing, ultrasound, cold plasma, 
and pulsed electric field have been developed to minimise 
the risk of unwanted microorganisms being present in 
food.12 These new processing techniques have less impact 
on the organoleptic and nutritional qualities of food by 
preserving the characteristic properties.13 Seididamyeh 
and Sultanbawa describe the use of photodynamic in-
activation as an emerging technology on microbial safety 
in foods. They describe how this treatment can be used to 
inactivate both pathogenic and spoilage microbes in food, 
showing promise for the future in minimising nutritional 
and sensorial changes in a cost-effective and environmen-
tally friendly way. 

Another issue related to food processing is the produc-
tion of biofilms in food processing facilities. Biofilms have 
been shown to be a source of transmission of pathogens 
from surfaces and equipment, where they adapt to, and 
successfully colonise, niche environments.1 Omics can 
broaden the scope of knowledge gained studying biofilms, 
including identification and remediation of strains that 
persist in the processing plant environment.3 Biofilms are 
addressed in Dykes’ article, including difficulties in study-
ing pathogen biofilms in food processing facilities in situ 
and issues related to the way biofilms are currently 
investigated. 

In conclusion, the above knowledge can be used in prac-
tice to ensure there is a constant, plentiful and safe food 
supply for the future rapidly growing human population. 
And as our future is reliant on food availability and good 
nutrition,14 experts in all food microbiology fields are essen-
tial for improving global health and wellbeing. 
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Omic applications to understand food system microbiomes 
Jessica GrayA,*  

ABSTRACT 

Understanding the microbial communities associated with food systems has traditionally used 
culture-based techniques that can provide a snapshot of the microorganisms present. However, 
this approach requires multiple media types and only allows for the identification of a limited 
number of culturable species. Culture-independent methods such as sequencing and omic 
techniques provide a deeper understanding of the microbial community, how they interact and 
function together across the entire food system. This review provides a brief introduction to 
omic techniques used in microbiome studies and touches on microbiome research that has been 
undertaken across the farm to fork continuum focusing on leafy vegetables where possible.  

Keywords: food systems, metagenomics, metaproteomics, metatranscriptomics, microbiomes, 
omic techniques. 

Leafy vegetables are a part of a healthy and balanced diet providing many nutritional 
qualities including vitamins, minerals, fibre and phytochemical compounds.1,2 Production 
and sale of leafy vegetables has increased due to humans consuming leafy vegetables as 
part of a healthier diet. Between 2019 and 2020, the Australian retail supply of leafy salad 
vegetables increased by 9%.3 As production has increased, so too has foodborne illnesses 
associated with leafy vegetables, with some major outbreaks linked to lettuce, spinach or 
ready to eat salads due to their raw and ready to eat nature.4–6 As a result, important 
strategies, guidelines and policies have been developed both within Australia and 
overseas.7,8 

Traditionally, food safety regulatory measures have focused on the identification of 
foodborne pathogens at various locations within processing facilities and on the final 
product prior to sale. While it is important to track foodborne pathogens, they occur at 
low prevalence and low numbers within a broader microbial community that are often 
present in complex environments such as food production and processing environments 
as well as food products. This leads to challenges in detecting pathogens in food systems, 
determining how they enter and survive throughout the food chain and how best to 
control them. 

Understanding the microbial composition and potential impact these communities 
have on pathogens and spoilage organisms could provide new ways of improving the 
safety and shelf life of foods. A microbiome is a microbial community and includes the 
environmental components (chemical, physical and biological) of the ecological niche in 
which the community exist.9 The microbiome can be composed of bacteria, fungi, 
viruses, algae, or small protists, which is known as the microbiota, in a mutualistic or 
competitive manner. Within food systems, microbiome research can occur within the 
farm arena to understand the microbial interactions with the crop or animal system and 
the production of a healthy commodity; within the processing environment to ultimately 
prevent cross-contamination of products by pathogenic species and reduce spoilage; and 
within the human gut to understand the dietary effects and impact on the native 
microbiota of the commodity on human health. 

Food microbiome research has historically been conducted using culture-based meth-
ods through the identification of pathogens of interest as well as determining total viable 
counts of bacterial and fungal species. With the development of molecular and sequenc-
ing methods and the reduction of costs associated with sequencing, microbiome research 
nowadays is typically performed using omic techniques like 16S rDNA amplicon sequenc-
ing and whole genome sequencing, metagenomics, metabarcoding, metatranscriptomics, 
metaproteomics and metabolomics and provides a greater depth of information. These 
techniques can be used singularly or in combination to help overcome any limitations 
individual techniques may have as well as providing an understanding of community 
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structure, networks and interactions.10 Utilising omic tech-
niques allows the analysis of the taxonomic composition of 
all microbial members (understanding who is there), analy-
sis of the metabolic potential (what they can do) and the 
microbial functioning (what are they doing).9 The majority 
of food system microbiome research has focused on under-
standing the soil microbiome for improving plant/crop 
growth, with a small amount of research concentrating on 
microbial communities within the red meat and poultry 
industry, with limited microbiome research in the horticul-
tural farm to fork space. 

A summary of some of the microbiome research and 
potential applications that have occurred within food sys-
tems are highlighted below. Jackson et al.11 utilised culture- 
dependent and culture-independent methods to assess the 
bacterial composition of leafy salad vegetables. Culture- 
dependent methods identified bacterial colonies from six 
phyla in comparison to culture-independent methods which 
identified 11 different phylas. While most of the dominant 
taxa identified in the leafy salad vegetable samples were 
characterised by both dependent and independent methods, 
pyrosequencing was able to identify two additional bacterial 
taxa, Ralstonia (endophytic) and Actinobacter (associated 
with the leaf surface). Although Ralstonia is capable of 
growth on trypticase soy agar, the colonies are typically 
small and may be missed in isolate sampling, therefore the 
identification of Ralstonia by pyrosequencing ensured its 
presence was detected. Culture-independent methods are 
able to identify low abundant taxa otherwise missed using 
culture-dependent methods. Determining the entire micro-
bial community from leafy vegetable samples also allows for 
the identification of microbial species which may influence 
the survival of pathogenic or spoilage organisms. 

Bacterial 16S and fungal ITS amplicon sequencing was 
employed to distinguish the bacterial and fungal communi-
ties on spinach and swiss chard with consideration of leaf 
damage.12 The fungal community at all stages (baseline – 
manual harvest and no wash step, machine harvest, wash-
ing, packaging) remained consistent for both spinach and 
swiss chard with Ascomycetes followed by Basidomycota 
phyla the most dominant. Whereas the bacterial diversity 
varied with specific species abundant at different harvesting 
and processing stages. Spinach and swiss chard communities 
were both dominated by the phylum Moraxellaceae; how-
ever, a significant reduction in its abundance occurred fol-
lowing the washing stage. The family Pseudomadaceae 
increased and was the most abundant family in the washing 
and packaging microbiota.12 A 16S rRNA analysis before 
and after sanitisation in a fresh produce processing facility 
found greater reduction in bacterial populations and shifts 
in microbiomes following effective sanitation.13 The micro-
bial populations on production floors were also found to be 
consistently reduced by sanitation in comparison to periph-
eral surfaces like doors and walls. Several species were iden-
tified at multiple sites throughout the facility suggesting these 
species comprised part of the core microbiota of the proces-
sing facility. Understanding the microbiota at various stages 
of processing and how these communities are influenced by 
the various hurdles and processes associated with food pro-
duction provides important information on the microbiota 

the consumer is exposed to and the potential influence it 
may have on consumer health. 

A meta-transcriptomic study performed by Jung et al.14 

on the interactions of lactic acid bacteria during a kimchi 
fermentation identified Leuconostoc mesenteroides was most 
active during early phase fermentation and Lactobacillus 
sakei and Weissella koreensis dominated the later fermenta-
tion phase. They identified genes typical of heterolactic acid 
fermentation from pathways relating to carbohydrate trans-
port, hydrolysis and lactate fermentation. The identification 
of active populations, gene expression and interaction of 
community members at important stages of the fermentation 
process would not have been possible with the use of culture- 
based methods. Proteomics was employed to assess the 
inhibition potential of modified atmospheric conditions, 
30% carbon dioxide (CO2) and 70% oxygen (O2), of five 
typical meat spoilage microorganisms on a simulated meat 
medium.15 Proteomic analysis identified the five species were 
able to co-exist as a result of alternative species-specific 
metabolic pathways in which synergistic spoilage occurred. 
Three of the meat spoilage species utilised a variety of mech-
anisms to reduce oxidative stress, maintain intracellular pH, 
osmotic balance and oxygen levels and alteration of the fatty 
acid composition. The use of proteomics provided an insight 
into nutrient utilisation and adaptation to industry adopted 
modified atmospheres designed to reduce the growth of 
spoilage microorganisms and therefore spoilage in general. 
Identification of members of the core microbiota, particularly 
if they are spoilage or pathogenic microorganisms, provides 
valuable awareness of the species which may support 
the survival of undesirable microorganisms. Metagenomic 
analyses also provide greater insight into the effectiveness 
of cleaning and disinfection treatments and offers the ability 
for facilities to tailor their sanitation methods to target 
species of interest. 

There is substantial research in the human gut microbiome 
arena demonstrating the value in understanding microbial 
community interactions. However, microbiome research 
across food systems and in particular non-fermentative and 
or leafy vegetables is lacking. The availability of sequencing 
and omic technologies has the power to rapidly expand our 
understanding of microbial community members and inter-
actions in this space. Understanding how community mem-
bers interact and move from one area of the food chain to 
another area may allow for the development of rapid screen-
ing techniques or the development of healthy state (ideal) 
microbiomes that may increase crop production, reduce 
contamination by spoilage and pathogenic microorganisms, 
increase product shelf-life and improve health benefits for 
consumers. 
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Cheese quality and authenticity: new technologies help solve 
an age-old problem 
Christopher PillidgeA,*, Roya AfshariA and Harsharn GillA  

ABSTRACT 

Cheese represents a complex ecosystem of starter and non-starter bacteria, with populations 
changing over time as the cheese matures. Successive microbial communities, particularly in aged 
cheeses like cheddar, have a profound impact on the final cheese flavour and quality. Being able to 
accurately predict cheese ripening outcomes at an early stage, based on cost-effective analyses, 
would be of great benefit to cheesemakers. In the past, there has been a significant gap between 
microbiological and chemical information obtained from omics and its application to the cheese 
industry, but thanks to recent advances in omics analytical methods, computing programs and 
sensor technologies, this gap is narrowing.  

Keywords: cheese authenticity, cheese quality, metabolomics, microbial profiling, multi‐omics, 
proteomics, sensors. 

Introduction 

Cheese is one of the most widely consumed dairy products. Many different varieties of 
cheese that vary in texture, taste, and aroma are made and consumed around the world. 
The number one cheese produced in Australia is cheddar,1 although other cheese types 
are gaining in popularity (Fig. 1). For cheddar and other low moisture cheeses that 
require ageing (ripening), manufacturers have a keen vested interest in getting the 
ripening process right. If ripening does not proceed correctly, the cheddar made in a 
daily production run could end up being sold off cheaply, perhaps as an ingredient for 
locally made processed cheese rather than being exported to an overseas customer at top 
dollar. 

Cheesemaking begins with raw milk. After standardisation of the milk to a pre- 
determined protein–fat ratio and high-temperature short-time (HTST) pasteurisation, 
the milk is pumped into a cheese vat. The starter culture is then added, followed by 
addition of rennet, a mixture of milk coagulating enzymes traditionally obtained from the 
lining of the abomasum from young calves. Alternatively, the rennet can be plant- or 
microbial-derived, or it may be a highly purified form of bovine chymosin obtained 
through recombinant DNA technology.2 Based on the action of the rennet and starter, 
milk coagulation occurs. Subsequent cheesemaking steps include cutting the curd and 
whey drainage, heating, salting and pressing.3 In large-scale industrial cheddar cheese-
making, strains of Lactococcus lactis, a species of lactic acid bacteria (LAB), usually 
comprise the starter culture. Starter cultures can be added either in freeze dried form 
direct to the vat, known as direct vat inoculation (DVI), or grown in a separate tank then 
added as bulk starter. It is not uncommon for cheesemakers to also add adjunct cultures 
at lower levels, usually non-starter lactic acid bacteria (NSLAB) comprising strains of 
Lactobacillus helveticus, Lacticaseibacillus paracasei (formerly Lactobacillus paracasei),4 

or other species. These NSLAB grow slowly in the young cheese during ripening to 
eventually reach high numbers where they modulate cheese flavour and texture develop-
ment.5 Cheese ripening becomes more complicated, however, because each factory has 
its own distinctive resident microbiota that naturally ‘inoculate’ the cheese before 
ripening begins. These adventitious microbiota also contribute to the complex succession 
of microbes critical in determining the final cheese properties.3 

How is cheese ripening monitored and controlled as it progresses? In most large 
cheddar-making factories, experienced cheese-graders take core samples at different 
ripening stages to assess and predict the final cheese flavour and texture. Some basic 
chemical and microbiological analyses may also be done. Alongside the skill and 
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knowledge of the cheese grader, scientific developments in 
chemical analytic techniques and in omics technologies 
have progressed, leading to mapping of the many thousands 
of individual cheese components, including the microbial 
communities, proteolytic breakdown products, huge numbers 
of metabolites, as well as the fermentation primary end prod-
ucts. But how can all this information be applied in a mean-
ingful way to help cheesemakers better assess and predict 
cheese ripening outcomes? This challenge can be tackled in 
part by the application of so-called omics technologies.6,7 

Omics and cheese 

The term omics refers to the scientific discipline of analysing 
the interactions and functions of large clusters of biological 
information molecules.8 Omics technologies include meta-
genomics based on high-throughput next generation 
sequencing (NGS) methods, metatranscriptomics, metapro-
teomics, and metabolomics, targeting DNA, RNA, protein 
and metabolites, respectively.9–11 In recent years, the appli-
cation of omics technologies to study fermented food prod-
ucts, especially cheese, has greatly increased.7 

Metagenomics encompasses amplicon sequencing and 
shotgun whole genome sequencing.9 In amplicon sequencing, 
total DNA is extracted from an environmental sample, then a 
targeted region (e.g. within the 16S rRNA gene for identifica-
tion of bacteria) is PCR-amplified and sequenced. Due to 
inherent methodological errors that can occur using this 
approach, along with ongoing improvements in DNA sequenc-
ing and computer processing power, shotgun sequencing is 
gaining wider use. Here, total DNA is sequenced providing not 
only taxonomic identification results but also information 
on the total genes present in a sample and their potential 
corresponding protein (or enzyme) metabolic functions.12 

Such DNA-based approaches have helped to identify novel 
microbial species not identifiable using traditional micro-
biological culturing techniques in many environments, 
including cheese. An early pioneering study to apply meta-
genomics in cheese involved 16S rRNA gene amplicon 
sequencing of 60 Irish soft cheeses.13 In addition to common 
LAB species, many non-LAB bacterial genera were identi-
fied, such as Prevotella and Arthrobacter. The authors found 
that the bacterial community composition depended upon 
the cheese type, the origin of the milk, production techno-
logy and the ingredients used. 

Metatranscriptomics and metaproteomics involve assess-
ing the complete gene expression and protein complement 
(respectively) of multi-component biological systems. Both 
methods are difficult to apply in fermented foods, hence 
relatively few studies have been published to date.7 

Metatranscriptomics studies on cheeses have shown that reg-
ulation of microbial enzymes capable of impacting flavour 
development occurs during ripening, with one study on a 
Swiss-type cheese showing that regulation of central metabo-
lism enzymes in cold ripening conditions varied depending on 
the species.14 Metaproteomics studies have also revealed the 
functional roles of microbial proteins in fermented foods, 
however, there have been few studies on cheese, in part due 
to the complexity of analysing microbial and non-microbial 
milk proteins and their breakdown products together.7,15 

Despite these difficulties, these tools have the potential in 
future to provide exciting new insights into the functional 
aspects of the cheese microbiota. 

Metabolomics consists of identification and quantification/ 
semi quantification of all endogenous small molecules 
(metabolome) biosynthesised and modified in a cell, tissue 
or in a microbial consortium. Typically, there are two 
approaches: metabolite profiling (targeted analysis of 
specific groups of metabolites) and metabolite fingerprinting 

Fig. 1. Hard cheeses such as cheddar 
are ripened for relatively long periods 
of time, in some cases for up to 3 years. 
Accurately predicting ripening out-
comes at an early stage would save 
cheesemakers money and lead to 
improved product quality for consum-
ers. New advances in omics and sensor 
technologies will help cheese graders 
achieve this goal with greater reliability 
and precision. Furthermore, by applying 
integrative omics, detailed chemical fin-
gerprints of cheeses can be obtained 
that can help prove product authentic-
ity, for example, by showing accuracy of 
labelling for animal sources of milk or 
for cheese maturation age.    
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(untargeted analysis of the global metabolome profile with-
out the need for a prior specific hypothesis on a set of 
metabolites). Metabolomics relies on an efficient method for 
metabolites extraction, followed by application of analytical 
instrumentation – usually gas chromatography-mass spectro-
metry (GC-MS) and liquid chromatography-mass spectro-
metry (LC-MS) together with nuclear magnetic resonance 
(NMR) and multivariate data analysis.6,11 Other approaches 
may also be used; as one example, a group in the Czech 
Republic used matrix-assisted laser desorption ionisation 
time-of-flight mass spectrometry (MALDI-TOF MS) together 
with principal component analysis, or liquid chromatography 
coupled with electrospray ionisation and quadrupole time-of- 
flight mass spectrometry, to distinguish 27 cheeses made from 
milks of different animal species.16 We also showed that spa-
tially offset RAMAN spectroscopy (SORS), a fast, inexpensive 
and non-invasive method, can be used with chemometrics to 
distinguish cheeses made from different animal species.17 

Multi-omics with data integration 

Individual omics approaches have shown the enormous 
complexity of fermented food products at a biological 
level. However, there has been emerging interest in deve-
loping mathematical tools that analyse high-dimensional 
omics datasets obtained from multiple omics platforms 
applied to fermented foods. For example, new insights into 
the cheese microbiota were obtained from the combination 
of strain-level metagenomics with metabolomics, highlight-
ing that different strains of the same species may produce 
different metabolites in cheese.18 Samples of 55 artisanal 
cheeses from 27 Irish producers were analysed; the authors 
recovered 328 metagenome-assembled genomes, including 

47 putative new species in cheese. In addition, numerous 
phage and bacteriocin genes were found. Most of the new 
species identified belonged to halophilic genera such as 
Psychrobacter and Halomonas, while other species belonged 
to genera known to be associated with cheese rinds (for exam-
ple, Brevibacterium, Corynebacterium, and Arthrobacter). In 
another study integrated amplicon-targeted metagenomics 
and metabolomics provided the basis for the selection of 
cheese adjunct cultures for the accumulation of specific 
flavours in soft-type ripened cheeses.19 

Multi-omics studies on Australian industrial and artisanal 
cheddar cheeses done by us have also revealed some interest-
ing associations between cheese microbiota and metabolites. 
These studies further suggest the possibility of discovering 
new biomarkers for validating cheese age and brand authen-
ticity and cheese quality. For example, some low abundant 
taxa such as Pediococcus spp. in artisanal cheeses correlated 
with the presence of 21 metabolites that may influence cheese 
flavour.20 Another study showed how integration of metage-
nomics and metabolomics datasets could enable better differ-
entiation of ten similar mass-produced cheddar cheeses of 
different brands and ages (Fig. 2).21 In a further study we 
differentiated identical-style cheddars of the same age but of 
different quality manufactured by the same company.22 By 
integrating multi-omics datasets much better resolution was 
obtained, giving more confidence in the results and thus 
proving (or disproving) authenticity. Other associations 
were revealed in these studies – for example, levels of phenyl-
alanine correlated positively with the presence of Thermus 
spp. which have been implicated in the pink discoloration of 
cheese, while cheese cholesterol showed a negative associa-
tion with Streptococcus thermophilus.20 To our knowledge, 
this had not been previously reported. Potential cheese age- 
and quality-related biomarkers were also identified. 
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Fig. 2. Multi-factorial analysis of bacterial community composition and metabolite omics datasets obtained from ten similar style 
Australian cheddar cheeses. Analyses like these enable precise fingerprinting, and hence grouping and identification, of different 
cheeses, as well as identifying new microbe–metabolite associations. The cheeses represented in this figure are all mass-produced 
Australian cheddar cheeses of different brands and/or different ripening ages (maturity levels) made by three major local Victorian 
cheese manufacturers. Adapted from fig. 4 in Afshari et al. (2020). 21    
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Challenges for multi-omics 

Despite the potential of multi-omics to give new insights 
into cheese ripening, challenges remain. One major problem 
is cost. The technology is simply nowhere near the stage 
where it can be routinely applied. Other problems are 
heterogeneity across the same omics platforms, making 
data comparisons difficult, also challenges related to the 
large computational resources needed and a lack of any 
unified public repository where researchers can access 
multi-omics datasets.23 As these limitations are resolved 
over time, multi-omics will become a major innovation for 
the food industry. 

Prospects for real-time monitoring 

Identification of novel biomarkers to predict cheese ripening 
outcomes, or detailed fingerprints to prove cheese authentic-
ity, will only be useful for the industry if analyses can be 
done routinely, easily and affordably. Advances in sensor 
and real-time monitoring technology are bringing this goal 
closer. Such technologies have wider applicability in terms of 
achieving higher process efficiency, improved product quality, 
ensuring food authenticity and provenance e.g. through 
coupling with blockchain technology, reducing food waste 
and improving food safety through real-time pathogen 
monitoring. Some recent examples include biosensors for 
pathogen detection in food;24 microbial potentiometric sensors 
(MPS) technology coupled with appropriate signal analysis 
tools and methodologies used to monitor kefir fermentation;25 

application of an electronic nose to accurately identify and 
quantify four yeast species (Pichia anomala, P. kluyveri, 
Hanseniaspora uvarum and Debaryomyces hansenii) in fresh 
soft cheese;26 the development of biosensors for analysing 
fermentation-related parameters,27 and monitoring the micro-
bial quality of raw milk.28 The latter is already being done in 
some parts of the dairy industry. 

Together, these observations suggest that we can expect 
to have new highly sensitive tools for real-time monitoring 
of cheese quality in the future to complement traditional 
cheese grading practices. Coupled with the new insights 
provided by omics and multi-omics, this will lead to better 
prediction and management of cheese quality, as well as 
improvements in food safety and in ensuring product 
authenticity. 
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The food microbiological analyst: pairing tradition with the 
future 
Prudence BramwellA,*, Dean ClarkeB and Thishakya de SilvaB  

ABSTRACT 

Choosing methods for the detection, isolation and identification of foodborne pathogens or 
spoilage microorganisms from foodstuffs is a complex task. Although there are standard food 
microbiology methods available around the world, many have changed little in decades, while 
some tests take many days to perform. The use of automated technologies, genomics and rapid 
methods are now replacing many traditional tests. Food microbiology analysts need to under-
stand the underlying science and limitations of these methods for food analysis and the crucial 
importance of validation protocols for correct results reported to customers. This article 
discusses the current status of food microbiology analysis in commercial laboratories, what 
the future food microbiology analytic laboratory looks like, and the education changes that may 
be required to become a future food microbiology analyst.  

Keywords: food safety, food spoilage, foodborne disease, genomics, method validation, PCR, 
rapid methods, WGS. 

Introduction 

Food safety is important for all. The WHO has estimated that globally 600 million people 
get sick from foodborne illnesses each year including an estimated 420 000 deaths and 
loss of 33 million heathy years of life.1 Apart from food safety, food spoilage and waste 
are also global issues. It has been estimated that one-third of all food produced globally is 
lost or wasted.2 Not only is a large-scale spoilage issue detrimental to a brand but 
discarded spoiled food products cause losses in waste of energy input, land resources, 
water, shipping costs and more.3 Therefore, the role of the food microbiology analyst is 
critical in ensuring foodborne outbreaks are solved, food is constantly monitored for 
microbial safety and spoilage of food is minimised. This has a major effect on people’s 
health, safety, and the economy. However, identification of microbes in food presents 
many challenges that need to be understood by food microbiology analysts. Food often 
contains many microorganisms in a complex food matrix. Finding the elusive pathogen 
that caused a foodborne outbreak or caused spoilage in a batch of food can be like finding 
a ‘needle in a haystack’. Critical decisions need to be made by the trained food micro-
biologist to ensure the laboratory has the ability to choose the appropriate method to 
produce accurate, sensitive and specific results that truly reflect the microorganisms 
present in the food sample submitted for analysis. 

Choosing the appropriate method 

The decision about which method to use will be based on the food microbiologist asking 
the right questions such as: what is an appropriate sample size; is the sample homoge-
nous; what is an appropriate subsample for analysis; how consistent are the subsamples; 
which portion or area of the sample to target or include in the process; and is there matrix 
interference such as with garlic or spices, that requires inhibition mitigation or extra 
dilution, due to their antimicrobial effects on the target organisms. Decisions also need to 
be made if qualitative or quantitative analysis is required based on infective dose and 
pathogen virulence. An important consideration for qualitative analysis is the type of 
enrichment performed to ensure enough of the pathogen is present to be detectable in 
subsequent steps, especially for severe pathogens with a low infective dose. Uniquely in 
microbiology, the test target can exist in a wide spectrum of viable states, that is, target 
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cells may be damaged to varying degrees, and this is often 
related to the effects of food processing. This, in turn, means it 
is important to consider method choices to ensure maximum 
recovery of stressed microorganisms, such as using broths 
versus plates, or adding selective steps later rather than sooner 
in the method. In addition, the design and use of selective and 
differential agars can have limitations related to visually sep-
arating the irrelevant microbes likely to be present in a food 
sample from the possible culprit. Measurement Uncertainty 
(MU) is another issue to be addressed.4 All routine test meth-
ods have MU, and as such, any numerical result should be 
seen as existing within a range of possible values within which 
the true value of the measurement lies. This must also be 
considered when obtaining a result, including the MU overlap 
of a specified or applied guideline. Numerous methods may be 
available for the same target organism. Does one method have 
lesser uncertainty (e.g. measurement of E. coli by acid pro-
duction versus presence of a specific enzyme in chromogenic 
agars)? It is strongly advisable to consider MU when applying 
specific guidelines to produced results. 

Food microbiology analysts need to be able to identify 
these issues when developing or implementing new technol-
ogies by being well trained in strict validation protocols. 
Although these questions have been addressed in designing 
international standards for the detection and identification 
of a handful of well-documented foodborne bacterial and 
viral pathogens, the CDC state that researchers have identi-
fied at least 250 foodborne diseases caused by a mix of 
bacteria, viruses and parasites,5 many of which would not 
have current validated standard food microbiological meth-
ods. This requires future method development addressing 
many of the questions above and deciding which of the 
developed and emerging methods might be appropriate. 

Automated rapid technologies, genomics 
and the future 

Over the last few decades, analytic food microbiology labora-
tories have embraced automated technologies using culture- 
independent diagnostic platforms based on immunological 
principles or principles of nucleic acid amplification. The 
advantages of pathogen detection kits that rely on nucleic 
acid amplification techniques (such as but not limited to 
PCR) include significantly increased throughput, the potential 
to combine testing for multiple pathogens at one time, and the 
ability to detect viable but non-culturable (VBNC) microor-
ganisms and others that are difficult to isolate by traditional 
culture techniques.6 Procedures for use of the ‘black box’ 
equipment for rapid automated technologies can be quite 
straight forward with good instructions, but there is still a 
very important need for training of analysts to understand 
the underlying science and method limitations. As an exam-
ple, the sensitivity of a PCR test in foods can be greatly 
reduced in a complex food matrix, such that a false negative 
could be reported if the food contains ingredients that 
are PCR inhibitors.7 Another implication of automated tech-
nologies for the food microbiologist is to be able to change 
from observing a colony growing on a plate to reading a 
response, spike, or curve on a screen. 

Many medical laboratories now use fully automated 
culture-independent diagnostic techniques, but most food 
microbiology analytic laboratories still do many tests using 
the traditional standard methods supplemented by modern 
automated methods. This is because microbial analysis of 
food can be significantly more challenging due to the mix of 
microorganisms typically present and possible low numbers 
of target pathogens compared to, say, identification of an 
infectious agent in normally sterile urine, CSF, or blood. In 
most cases a negative food pathogen result using the above 
technologies, such as a PCR test of sample taken directly 
from an enrichment broth, is enough to report the food 
sample result as negative and therefore the food as safe or 
compliant (notwithstanding the overriding importance of 
eliminating the likelihood of a false-negative); but if the 
test is positive, it is necessary to go back to the food sample 
(or at least the enrichment broth) and retest or confirm the 
result via an approved standard method that relies on iso-
lating viable colonies.8,9 This retesting or additional analysis 
is necessary as it proves the food sample contained a living 
pathogen and not just left-over strands of genetic material 
from a pathogen captured using genetic analysis. This would 
lead to a false positive result, when in fact the food processing 
steps may have been correctly designed to kill any microor-
ganisms in the raw or pre-processed food. Therefore, again, 
understanding the importance of validation and intended 
use and consequences of using these methods cannot be 
understated. 

In further advancement, genomic technologies are now 
rapidly replacing culture methods6 as this technology 
advances and the cost of sequencing is continually decreased. 
Sequencing the genes that are diagnostic for a presumptive 
positive foodborne isolate growing on an agar plate is now 
routine in public health laboratories using commercially avail-
able sequencing equipment, but the interpretation of the 
sequencing reads requires people trained in bioinformatics. 
The advantage of genomics is that it can rapidly detect multi-
ple genes or transcription products, which is invaluable in 
subtyping bacteria and for collecting epidemiological data. 
This is now critical for tracking foodborne outbreaks locally, 
nationally, and internationally in sufficient time to act. As the 
genomic analysis of SARS-CoV-2 has highlighted, gene 
sequencing is very important in assessing the evolutionary 
pathway of strains. In the same way, the sequencing of isolates 
to link clinical, food and environmental samples is invaluable 
in providing information about the origin of outbreaks, the 
path(s) of the pathogen from farm to fork,6 and ultimately in 
implementing change to improve food safety in a timely way. 

The GenomeTrakr Network is an international collabora-
tion of government, public health and academic laboratories 
that collect and openly share genomic and geographic data 
from foodborne pathogens for the benefit of public health. 
It  is the most extensive and best-known application of 
Whole Genome Sequencing (WGS) to food safety.10 It 
includes the U.S. Food and Drug Administration (FDA), 
Centers for Disease Control and Prevention (CDC), U.S. 
Department of Agriculture, U.S. National Center for 
Biotechnology Information (NCBI), state health depart-
ments, and international partners.11,12 It is vital to support 
public health and for the diagnosis and epidemiology of 
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emerging pathogens, microbial genome variation and evolu-
tion, and new gene discovery.13 

One recent technology that sits between traditional 
methods and genomics is matrix-assisted laser desorption- 
ionisation time of flight mass spectrometry (MALDI-TOF 
MS). Again, food microbiology analysts who rely on the 
results of this technology should understand the underlying 
science and limitations. Its advantages are being useful for 
screening presumptive pathogenic or spoilage colony iso-
lates as it generates rapid results, is cost effective and 
easy-to-use. However, identification of the isolated target 
relies heavily on the database of peptide mass fingerprints 
containing the spectra of known organisms14 and while 
databases are improving, they are not perfect, due to limita-
tions of lack of sufficient spectra in the database and an 
inability to discriminate between some related species.15 

There is a need for more rapid and precise methods for 
microbial food analysis and the use of genomics will even-
tually become more mainstream. However, this requires 
ongoing education around sequencing platforms and bio-
informatics analysis to be able to correctly interpret the 
results. These methods, as with any new method including 
novel molecular methods, will require robust validation to 
determine the sensitivity, selectivity and in particular, repro-
ducibility, to be applicable in a global framework. The end 
goal is for regulators, manufacturers and public health 
authorities to make clear and confident decisions based on 
these results. However traditional culturing also remains 
important to determine pathogen viability, for enumeration, 
and as a proof of experimental concept for data obtained 
from genomic methods.6 

Conclusion 

Being a food microbiologist is a truly fascinating career path 
with many strings to its bow, but to ensure the upcoming 
student who wishes to become a specialist in food micro-
biological analysis has the widest possible career options, 
tertiary education must now encompass not only traditional 

food microbiology analysis but also cutting edge molecular, 
genomic and associated bioinformatic technologies. 
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Vibrio parahaemolyticus: an Australian perspective 
Claire E. HedgesA,B,*  

ABSTRACT 

A recent outbreak of gastroenteritis caused by Vibrio parahaemolyticus following consumption of 
South Australian oysters has brought to the forefront an increasing hazard for the Australian 
oyster industry and consumers. Vibrio pathogens have been sparsely implicated in illnesses in 
Australia; however, rising sea temperatures and varied weather conditions delivered by climate 
change could be driving the increased prevalence of these pathogens in our oyster growing 
regions. This is a brief overview of Vibrio parahaemolyticus, the risk it presents to our industry and 
consumers, and an insight into the limitations involved with detection and identification of the 
pathogen in foods.  

Keywords: Australia, foodborne diseases, food safety, microbiology, oysters, qPCR, Vibrio 
parahaemolyticus. 

Vibrios as human pathogens 

Vibrios are ubiquitous in marine and estuarine environments and the genus encompasses over 140 
species, with many involved in symbiotic relationships with marine life.1 The comma-shaped, 
Gram-negative bacteria with polar flagella generally present no risk to humans; however, within 
the genus there are a small proportion, at least 12 species, that are human pathogens.2 These 
pathogens are capable of causing infections ranging from ear or wound infections to foodborne illness 
and sepsis.2 The most notable of these is Vibrio cholerae, a water and foodborne pathogen that is the 
causative agent of cholera. Presently, however, it is non-choleragenic vibrios causing concerns for the 
Australian seafood industry. The species of greatest concern in Australia currently is Vibrio para-
haemolyticus. Some strains of V. parahaemolyticus are pathogenic and capable of causing gastro-
enteritis that is primarily associated with consumption of raw seafoods, particularly oysters.3 In 
Australia, oysters are a significant commodity and in 2019–2020 it is estimated that over 11.2 million 
retail dozens were sold, to a total of over $100 million for the industry.4 

In many major seafood producing and consuming countries such as the United States, China, 
Japan and Korea, V. parahaemolyticus is recognised as a leading cause of seafood-associated 
illness.5–7 Concerningly, the number of infections in many areas appears to be increasing.7 

Virulence qualities and the changing climate 

Like other species within the genus, there is a high degree of genetic diversity among 
V. parahaemolyticus strains and importantly, not all strains are pathogenic. The molecular markers 
typically utilised to indicate pathogenicity are the thermostable direct haemolysin (tdh) gene and 
the TDH-related hemolysin (trh) gene or a combination of both.8 Clinical isolates have been found 
to contain these markers approximately 90% of the time whereas environmental or food isolates 
carry a low likelihood of possessing these genes with only 1–10% of isolates carrying the markers.9 

In terms of distribution in seawater, Vibrio species have an increased presence in coastal tropical 
areas due to their preference for warmer water.10 There are also indications that changing salinity 
levels and algal blooms can contribute to a greater risk of pathogenic vibrio species being present in 
certain areas.1 

It is this predilection of vibrios for warm water which has prompted concerns about changing 
climates and warming sea temperatures.11 In recent decades, incidences of vibrio-associated 
illnesses have been occurring in cooler climates where there had previously been no known 
cases.12 Studies have revealed an upward trend in case numbers in already affected populations 
and many have positively correlated large outbreaks to warm weather events.10 The persistence of 
this pathogen overseas has prompted surveys in many marketplaces and oyster farming regions to 
understand its prevalence.13–15 Models have also been developed, such as the surface sea-water 
temperature monitoring system by the European Centre for Disease Prevention and Control (ECDC) 
to enhance risk prediction.16 
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Vibrio parahaemolyticus in Australia 

In Australia, the prevalence of vibrio infections historically has 
been intermittent, with many of the reported infections linked to 
overseas travel or the consumption of imported foods.17,18 

However, in the recent decade, outbreaks of V. parahaemolyticus 
infections associated with locally produced seafood appear to have 
been increasing.19 The most recent of these outbreaks occurred 
over November–December 2021, where reports from this time 
period indicated that over 250 people had fallen ill across multiple 
states after consuming oysters harvested in Coffin Bay, South 
Australia.20 In 2016, there were two separate outbreaks of 
V. parahaemolyticus infections in Australia, one in Tasmania asso-
ciated with consumption of Tasmanian grown oysters involving 11 
cases and one in Western Australia associated with consumption of 
South Australian oysters involving nine cases.19 This increase in 
infections could be correlated to warming sea surface temperatures 
and weather events, with Australia not being spared effects of 
climate change.21 There are other factors that might be contribut-
ing to an apparent increase in prevalence and it has been noted 
there is potential that infections are being under reported due to 
the bacteria previously not being included in clinical panels.19 

There are also varying State and Territory requirements as to 
whether Vibrio spp. infections are notifiable illnesses which can 
leave gaps in epidemiological data collection.19 

V. parahaemolyticus is not a new pathogen; however, 
its increasing prevalence with many unknown contributing factors 
does complicate risk management practices. There are few guide-
lines available for safe levels of V. parahaemolyticus in food as the 
virulence is unclear. Food Standards Australia New Zealand 
(FSANZ), the Australian statutory authority which develops and 
maintains the Australian Food Standards Code, provides recommen-
dation for levels of the bacteria in Ready to Eat (RTE) foods.22 This 
serves as a guideline only and does not provide impetus for regular 
screening of seafood products. There are also some state guidelines 
in place to mitigate risks, such as control plans implemented by 
Tasmanian state authorities.23 Despite these controls, there is still 
much to learn about the distribution of pathogenic strains of V. 
parahaemolyticus in Australian oyster growing areas. This prompts 
the need for further research to understand variations in the Vibrio 
populations during weather events and as sea water temperatures 
rise. Improvements in detection and identification methodologies 
would also assist in routine monitoring of the bacteria levels during 
varying weather conditions and assist in the development of appro-
priate risk management procedures. 

Methods of detection and identification of 
V. parahaemolyticus 

Questions have also been raised about the suitability of currently 
recommended methodologies for the detection and enumeration of 
both total and pathogenic V. parahaemolyticus in food. To adopt 
routine or surveillance testing and ensure testing results are con-
sistent across multiple areas, access to robust, validated methods 
that are easily adopted by laboratories with a range of capabilities 
are required. Available methods for use by laboratories are 
described in a joint document by the Food and Agriculture 
Organisation (FAO) and the World Health Organization (WHO).24 

The traditional culture-based method of detection for vibrios is laid 
out in the Bacteriological Analysis Manual (BAM) by the United 
States Food and Drug Administration (FDA) as well as in the 
International Standards Organisation (ISO) standard ISO21872- 
1.25,26 Briefly, 10–12 oyster specimens are homogenised and 
weighed into a selective broth for enrichment and then plated 

onto selective agar. Suspect colonies are then analysed using 
probes or transferred to non-selective agar for biochemical testing 
to identify bacterial species. Enumeration can be achieved by 
combining this method with a Most Probable Number (MPN) 
protocol to determine counts per gram. Many MPN methods for 
detection of V. parahaemolyticus, including the current Australian 
Standard AS 5013.18, utilise a three tube technique.27 This pro-
vides a limit of detection (LOD) of 3 MPN/g, which may not be 
sensitive enough in some applications. There are alternative meth-
ods available that can provide far greater sensitivity, such as the US 
FDA BAM method that utilises a polymerase chain reaction (PCR) 
MPN method that can quantify down to 0.3 MPN/g. The increased 
sensitivity confers many benefits and can improve low level detec-
tions of pathogenic bacteria. 

The MPN technique for quantification is the most accessible for 
laboratories but carries limitations, including lengthy result turn-
arounds and numerous confirmation tests for suspect colonies. 
Confirmation testing is vital for characterising the pathogenicity 
and virulence of V. parahaemolyticus isolates and can include 
detection of genes which indicate pathogenicity, sequence typing 
and serotyping. The time to detection and identification is a key 
aspect for the oyster industry and regulators who require rapid 
information in order to deliver safe products to the marketplace. 
Conversely, this method provides the best opportunity for genomic 
investigation of colonies and for epidemiological tracing. Also of 
concern with culture-based methods is the potential for bacterial 
cells to be missed. Some research has indicated difficulties in 
detecting and identifying vibrio spp. in samples, which can be 
partially attributed to their ability to enter a viable but not cultur-
able (VBNC) state.28 

The preferred alternative to culture-based methods in terms of 
rapidity and sensitivity is quantitative PCR (qPCR). For qPCR appli-
cations, there are multiple options available in terms of methodolo-
gies or commercial kits to use, many using different gene targets and 
having varying sensitivities. For detection and enumeration of total 
V. parahaemolyticus numbers within a sample, the ISO standard, 
ISO-21872, utilises VpToxR for species level detection and trh and 
tdh as molecular markers of pathogenicity.26 Recent research has 
indicated the potential for false negative results using the trh gene 
as a marker, due to high sequence variability among strains and 
suggests an alternative target, a urease gene (UreR) which is located 
directly upstream to trh and highly conserved.29 With such rich 
genetic diversity among V. parahaemolyticus strains and high homol-
ogy to closely related species, it is important to investigate the most 
appropriate gene targets for PCR testing. Recent advances in technol-
ogy have also provided accessibility to previously out of reach tech-
niques, such as whole genome sequencing (WGS) and next generation 
sequencing (NGS). Utilising these tools to understand more about the 
genetic diversity of isolates and their pathogenicity will confer great 
benefits, particularly during outbreaks of illness. As V. parahaemo-
lyticus infections increase, so too does the data available, and further 
work is warranted to determine the most appropriate analyses for 
detection and identification and to ensure there are standardised 
methods available to allow for optimal sensitivity and accuracy of 
testing. 

Looking to the future 

As the climate continues to change around the world and microbial 
communities shift with it, further research is required to protect our 
industries and consumers. Improvement in methods of detection 
and identification of V. parahaemolyticus as well as increased 
surveillance with epidemiological tracing can ensure Australia’s 
safe enjoyment of oysters for years to come. 
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Biofilms of foodborne pathogenic bacteria: how important 
are they? 
Gary A. DykesA,*  

ABSTRACT 

Biofilms are recognised as an important mode of life in bacteria. All species of foodborne bacterial 
pathogens are known to form biofilms in vitro under the right growth conditions. This fact is often 
extrapolated to claim that biofilms are critical to the transmission of foodborne pathogens, 
particularly during processing. While this may be the case little direct in situ evidence, with some 
exceptions, is available to confirm this. This is because there are a number of difficulties in 
studying pathogen biofilms in food processing facilities. The reasons for these issues are discussed 
by comparison to work in the medical biofilm area, and by using species such as Listeria 
monocytogenes and Campylobacter jejuni as examples. A range of potential solutions and avenues 
for future research are presented.  

Keywords: biofilms, Campylobacter, foodborne pathogens, food processing, industry, in situ, 
Listeria, pathogenic E. coli. 

Introduction 

Biofilms are generally defined as a community of microorganisms attached to a surface or 
interface, and to each other, and encased in a matrix that they have produced. The matrix 
consists of extracellular polysaccharides, proteins and extracellular DNA and provides 
protection from the environment, a nutrient trap and facilitates interaction between cells.1 

Estimates suggest that upward of 40% of prokaryotic life exist in biofilms confirming the 
importance of this mode of life and the need to understand it better in a range of contexts.2 

It is widely asserted that biofilms are critical to the ability of bacterial foodborne 
pathogens, such as Listeria monocytogenes, Salmonella enterica, pathogenic Escherichia 
coli and thermophilic Campylobacter, to move through the food system (particularly 
during processing) and cause human disease.3 For this reason, studies investigating biofilm 
formation by single strains or collections of foodborne pathogenic bacteria in model 
systems, some mimicking those seen in food processing, are legion (without identifying 
specific papers a brief search of any database will confirm this). A high proportion of these 
studies use a micro-titre plate-based (polystyrene) crystal violet assay to quantify the 
biofilms, sometimes under a range of incubation conditions. In these cases the bacterial 
strains used (or most of them) demonstrate an ability to form biofilms in the model system. 
Often conclusions are drawn about their capability (or potential capability) to use biofilms 
to survive, persist and transmit in food-related environments. Rightly the caveat that 
further investigations need to be conducted, ideally in situ during food production, before 
any strong conclusions can be drawn is sometimes included. Unfortunately, aside from 
providing evidence of the wide distribution of the biofilm formation trait, these studies 
often contribute very little to our understanding of the role of foodborne pathogen biofilms 
in the food system. The reasons these studies fail in this regard, the difficulties in 
conducting more relevant studies and possible solutions to this are discussed below. 

Why is it difficult to study foodborne pathogenic biofilms in situ? 

In primary or further processing food facilities, particularly those processing high risk 
foods, the presence of pathogens is generally monitored for daily using swabs and/or 
product samples. For example, Listeria monocytogenes is monitored for in a range of small 
goods, dairy, fish, and poultry production facilities. In many of these which produce 
ready-to-eat largely untreated foods, such as fresh fish, the concerns around biofilms of 
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this (and other) pathogens are clearly greater than in others, 
such as dairy. If positives are encountered corrective actions 
are taken which may entail stopping production, tracing 
back potential contamination in raw ingredients and imple-
menting extensive additional cleaning protocols.4 Product 
recalls may also ensue. Often these actions will resolve the 
problem and production will begin again. In the case of 
L. monocytogenes, only if the problem persists and the 
same strain reoccurs will consideration be given to the 
potential of a biofilm reinfecting the plant. In most cases 
tracing the source of the potential biofilms is difficult and 
doing so requires dismantling equipment, stopping produc-
tion and specialist testing. In many cases the strain of con-
cern cannot be traced, and L. monocytogenes biofilms cannot 
be confirmed.5 In the case of other pathogens the situation 
may be more difficult with single persistent strains not 
generally the only cause of contamination. A further com-
plication is apparent in that a wide range of potential bacte-
ria can and do form biofilms in processing facilities, 
including on floors and walls, and in drains, which create 
a lot ‘noise’ in locating the pathogen of concern. 

A comparison to what may be entailed in establishing the 
presence of biofilms on a medical catheter, implants or on 
teeth can give us insights into the issues with food- 
processing facility related biofilms. Generally, an infection 
in a patient alerts clinical staff to a potential issue. In the 
case of catheters or teeth, for example, they may be removed 
providing a ready source of material to investigate in situ 
biofilms using microscopy and disruptive sampling for 
molecular techniques. In the case of implants the relatively 
sterile interior of the human body often means only a single 
strain or species will form biofilms and cause issues and this 
strain can be isolated. These approaches can establish with-
out a doubt that a biofilm is contributing to their persist-
ence.6 In food production only a limited number of foods, 
such as heat processed dairy products, may provide similar 
scenarios. However, while heat resistant spore forming 
spoilage bacteria, such as Geobacillus, can be categorically 
shown to form biofilms in dairy processing pipes,7 patho-
genic bacteria are generally not a major issue in these 
systems and are controlled by the heat. 

The above scenarios highlight the key issues in establish-
ing a role for biofilm formation by foodborne pathogenic 
bacteria in situ during processing. Namely, (1) the availabil-
ity of samples of equipment and infrastructure to investigate 
the categorical presence of pathogen biofilms; (2) the com-
plexity of the microbiological populations during processing 
and the ability to identify pathogens among other species; 
and (3) the difficulty of establishing if pathogens are part of 
mixed-species biofilms or simply adhering to them as they 
might to other surfaces. 

What are the potential solutions to 
conducting more relevant studies? 

To establish the importance of biofilms in bacterial food-
borne pathogen transmission, and particularly during food 
processing, some systematic changes in the way they are 
investigated are required. 

The first of these changes is conducting in vitro studies 
which provide information on the ability of pathogens to 
form biofilms under conditions more relevant to food-related 
environments. For example, numerous studies examine bio-
film formation by Campylobacter jejuni at 37°C or 42°C in 
microaerobic environments in monoculture using micro-titre 
plates and draw conclusions about their importance in pro-
cessing. This is not really useful as C. jejuni is very unlikely 
to encounter these conditions in the processing environ-
ment.8 Studies in air, at ambient processing temperatures, 
and together with other bacteria that form biofilms suggest 
that C. jejuni is far more likely a ‘passenger’ on surfaces and 
other biofilms than an active biofilm former or participant in 
the community.9 

The second is the wider introduction of in-processing 
biofilm sampling equipment. Some studies have been con-
ducted by adhering, for example, stainless steel slides onto 
equipment or in drains which are then removed at particular 
times. A more satisfactory approach is the design of equip-
ment and infrastructure with removable and replaceable areas 
or sections which can be routinely monitored as ‘sentinels’ for 
the presence of biofilm formation and in particular pathogens 
forming or associated with the biofilms. The potential for in- 
line real-time monitoring of biofilms through digital means is 
a reality in some plants and situations but generally does not 
indicate the presence or absence of pathogens.10 

The third is the development of markers for biofilm 
formation. Differentiating cells that are simply present or 
transitory from cells that have been growing in a biofilm is 
critical to understanding the broader role of biofilm formation 
in foodborne pathogen transmission. This is an area which is 
receiving a lot of attention in the medical biofilm sphere and 
in which little work has been conducted in the foodborne 
pathogen space. The presence of extracellular molecular com-
ponents produced only in the biofilm matrix, including poly-
saccharides or extracellular DNA, using mass spectroscopy or 
other methods, for example, may represent a way to assess if 
cells are part of, or have been recently associated with, 
biofilms. Other potential options may include the presence 
or absence of flagella that are switched on or off in a biofilm. 
This approach is in its infancy but is likely to grow in impor-
tance as techniques for detecting molecules evolve.11 

The fourth approach is to develop a better understanding 
of the relationship between foodborne pathogenic bacteria 
and non-pathogenic microbes that are strong biofilm formers. 
As indicated above, biofilms in most food processing facilities 
are unlikely to be monocultures and the complex biofilms 
that form in drains, for example, may provide environments 
that allow pathogen biofilm formation. An example of one 
such group of organisms of wide interest in this context are 
the pseudomonads. Psychrotrophic Pseudomonas species can 
form extensive biofilms on surfaces and on food themselves. 
They may also provide environments conducive to the sur-
vival of foodborne pathogens such as C. jejuni.9 However, 
what is not clear is how they interact with pathogens at a 
physical and molecular level and how this impacts their sur-
vival. The advent of ‘omics’ technologies and more sensitive 
molecular detection techniques will allow a better understand-
ing of these interactions and provide possible mechanisms to 
manipulate them to the positive.12 

www.publish.csiro.au/ma                                                                                                                       Microbiology Australia 

65 

https://www.publish.csiro.au/ma


Conclusion 

In short, the answer posed to the question in the title is that 
in most cases, with some exception, we don’t know. What 
we do know is that, unsurprisingly, most if not all foodborne 
bacterial pathogens can form biofilms and occur in proces-
sing facilities. We need to move on from re-establishing this 
to work on understanding if and where biofilms play a role 
in individual pathogen/food processing combinations. This 
requires not only a better understanding of biofilms in situ 
but also closer cooperation with industry, both of which 
have their own challenges. 
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Are point of management assays relevant for food safety in the 
poultry industries? 
J. M. TempletonA,*, J. R. BotellaB and P. J. BlackallC  

ABSTRACT 

The current pandemic has ensured considerable attention has been paid to the role of the approach 
termed ‘Point of Care’ diagnostics. Indeed, the term ‘RAT’ (Rapid Antigen Test) and RAT hunting 
now have totally different meaning to that widely understood before 2020. In the veterinary field, 
including food safety, the term used for these types of rapid in situ assays is ‘Point of Management’ 
(POM) assays. In this article, we describe our recent research on low cost, low technology, 
in-house style POM assays in the field of food safety as applied to the poultry industries. We then 
discuss what are the advantages and disadvantages of these low cost, low technology POM assays.  

Keywords: Campylobacter, chicken, food safety, isothermal, LAMP, point of management, 
poultry, Salmonella. 

Key food safety pathogens for the poultry industries 

As with all food production systems, the potential for food safety pathogens to enter the 
system and cause human illness is a key issue for the Australian poultry industries. Two 
genera dominate the food safety issues linked to the poultry industries – Campylobacter 
and Salmonella. 

Over 96 million cases of food-borne illness linked to Campylobacter jejuni and C. coli 
are estimated to occur globally each year.1 The Australian infection rate of 146.9 cases 
per 100 000 population2 is one of the highest among the industrialised countries.3 

Importantly, while not the only source of Campylobacter, it is recognised that in 
Australia, undercooked poultry are a major source.4 

Salmonella is second only to Campylobacter as the most notified enteric pathogen in 
Australia.2 As with Campylobacter, while there are multiple sources of human infections, 
raw and undercooked foods, eggs, and to a lesser degree poultry meat, are often 
associated with Salmonella infections.5 

Food-borne pathogens impose costs onto both broad society as well as the production 
system. While figures are not available for Australia, a recent report estimated that 
campylobacteriosis costs the US (population >10 times that of Australia but with 
10 times lower Campylobacter infection rate3) in the range of US$1.5–US$6.9 billion 
per year depending on the calculation method.6 The reduced income and increased 
expenses associated with Salmonella in the Australian egg industry were estimated to 
cost $7 million annually in 2015–2016.7 The scale of these economic impacts to both 
broad society as well as the producers emphasises the need for improved control of food- 
borne pathogens in the poultry industries. 

POM assays 

Our work in the development of POM assays arose from the finding that dipsticks made 
from untreated cellulose-based paper can bind nucleic acids in seconds, retain them 
during a rinse step that removes the contaminants and then release the nucleic acids 
when placed in a reaction buffer.8,9 We have combined the low-cost DNA extraction 
technology with isothermal amplification performed in another existing innovation – the 
‘Diagnostic Droid’.10 The workflow involves a centrifugation of a 2 mL aliquot of carcass 
rinse, a treatment of the pellet with proteinase K and heat denaturation to release the 
DNA. Two dipsticks are added to bind the DNA and purify it away from the contaminants. 
Each dipstick is then given a single wash and the DNA eluted into a loop mediated 
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isothermal amplification (LAMP) reaction mix for either 
C. jejuni or C. coli. The ‘Diagnostic Droid’ performs the 
amplification step and monitors the increase in turbidity 
associated with a positive LAMP reaction by illuminating 
the reaction tubes with an LED and measuring the amount 
of scattered light via a light sensor perpendicular to the LED 
light source. The results are automatically interpreted with 
no need for human involvement and are available within 
2.5 h10 (see Fig. 1 for an illustrative workflow of our POM 
for Campylobacter). The Australian chicken meat industry 
has a self-set target of ensuring that all chicken carcasses 
have less than 6000 colony forming units (cfu) which is 
equivalent to 12 cfu/mL in the 500 mL volume used to 
wash the carcass. The performance of the POM assay was 
evaluated using 29 rinse samples that were examined by the 
relevant Australian Standard method11 (see Fig. 2 for an 
illustration of the work required by this Standard) as well 
as the POM assay.10 A total of 26 samples were in agreement 
– 16 were high in the POM assay and contained more than 
12 cfu/mL and 10 were low in the POM assay and had 
<12 cfu/mL in the culture method. While three samples 
gave different results in the two assays (i.e. an 11% dis-
agreement), only two samples (i.e. 7% of samples) were a 
major disagreement where the POM assay result was low and 
the culture result was above 12 cfu/mL. It is worth noting 
that these two disagreements occurred on the edge of the 
12 cfu/mL cut-off – being 23 and 37 cfu/mL. All samples 
above 45 cfu/mL in the culture method were positive in the 
POM assay. Overall, this work has shown the potential for a 
very low-cost POM assay that uses little in the way of tech-
nology to be used to semi-quantify the level of Campylobacter 
in chicken carcass rinses. 

Who pays? 

In evaluating the advantages/disadvantages of a POM assay 
there is a critical primary issue that first needs to be addressed 
– who pays? In a situation where a producer has a disease 
problem on farm, the solution of a vaccine that controls the 
disease results in an extra cost but returns an increased profit 
via less mortalities or an improved growth rate. In these 
circumstances, the producer sees a direct financial benefit 
from a new intervention or a new management tool. In 

contrast, producers or processing companies that introduce 
an intervention to reduce the level of Campylobacter have the 
cost of that intervention but no direct financial return. Society 
would benefit from the intervention with a lower level of 
campylobacteriosis in the population but the producer/ 
processor bears the costs and gains no financial benefit. 
Hence, any interventions to increase food safety (such as 
POM assays to provide near to real time information on 
Campylobacter levels on carcasses) must be implemented 
with an understanding that society will benefit but that 
there will be no immediate financial benefit to the individual 
producer or processor. Clearly, an industry providing food to 
the population benefits from a public perception that they 
provide a high-quality product that is safe and healthy. The 
public expects safe and healthy food but often does not 

Fig. 1. Work flow for the Campylobacter Point-of-Management assay. A 2 mL aliquot of the carcass rinse is centrifuged (5 min) 
and the pellet resuspended, treated with proteinase K and heated to lyse cells and release DNA. The two cellulose dipsticks are 
added to the crude lysate to bind the released DNA. The dipsticks are then placed in a wash buffer and then in the LAMP reaction 
mix (one for C. jejuni and one for C. coli). The LAMP reactions proceed for 100 min at 65°C in the ‘Diagnostic Droid’. The Droid 
monitors the reaction and interprets the result.    

Fig. 2. Part of the work flow for conventional Australian standard 
methods for Campylobacter.   
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understand the associated financial burdens. Hence, adoption 
of POM assays for food safety pathogens has to occur in a 
situation where no immediate benefit flows from the cost of 
adopting the technology. 

Advantages of POM assays 

In evaluating the advantages of the type of POM assay we 
have developed, our vision is that these assays are not seeking 
to replace the Australian Standard method11 but rather add to 
the quality and relevance of the formal testing provided by 
the standard methods. The POM assay we have developed is 
as sensitive as the gold standard of culture but gives results in 
a little over 2 h vs 2 days required by the standard culture 
method. Hence, quality assurance/quality control staff can 
implement routine rapid, low-cost regular monitoring of the 
effectiveness of the processing chain in achieving the industry 
set target of <6000 cfu of Campylobacter per carcass. Given 
that there are around 50 processing plants for chickens in 
Australia and that over 663 million birds were processed in 
2020, the need for cost-effective, low technology, rapid 
assays suitable for both the large multi-state processors as 
well as the much smaller state and regionally based proces-
sors is clear in our view. A POM assay would allow refine-
ments and alterations in production parameters to be rapidly 
monitored for their impact on Campylobacter levels. POM 
assays should not be seen as replacements for the nationally 
certified standards but rather supplementary, additional tests 
that support the same goal – the production of a high quality, 
safe food product. 

Disadvantages of POM assays 

POM assays suffer the same generic problem that all food 
safety interventions suffer as outlined above (i.e. they are an 
additional cost). However, it should be noted that the cost of 
our POM approach is far cheaper than the currently availa-
ble commercial instruments and assays. 

There is a general acceptance that POM assays are not as 
sensitive as laboratory-based methods – as clearly shown in 
comparisons of RATs and RT-qPCR for COVID-19.12 Our 
work is, at this stage, still too early to provide firm evidence 
about the relative sensitivity of culture and our POM assay. 
However, it should be noted that the three samples in 
disagreement all involved viable counts of less than 40 
colonies on the two counting plates. As the reliable counting 
range for plate counts is 25–250 colonies,13,14 it is clear that 
the disagreements occurred in a range where both techno-
logies (plate counts and POM assay) were struggling to 
detect very low numbers of Campylobacter. 

Conclusion 

The importance of reducing the levels of Campylobacter on 
chicken carcasses for public health is well established. 

A European study has shown that a 2-log reduction in the 
number of Campylobacter on carcasses would result in a 
30 times reduction in the incidence of campylobacterosis.15 

In our view, access to low cost, low technology, rapid POM 
assays is an essential requirement to ensure the level of 
monitoring required to achieve either the 2-log reduction 
suggested by the European study15 or the industry-assigned 
target of 6000 cfu per carcass. 

While this article has focussed on Campylobacter and 
chicken carcasses, there are other areas where POM assays 
for food safety pathogens could be effective tools e.g. in 
detecting the presence of Salmonella on layer farms. Few 
layer farms currently engage in Salmonella tests due to the 
costs of the assay, the delay in obtaining results and the 
distance from the farm to the laboratory. POM assays for 
on-farm detection of Salmonella would remove many of 
those barriers and could encourage a far more proactive 
quality assurance program. 
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Impact of photodynamic inactivation on microbial safety in 
foods 
Maral SeididamyehA,B and Yasmina SultanbawaA,B,*  

ABSTRACT 

Food-borne diseases caused by contaminated food products continue to pose a threat to public 
health, as well as causing major economic losses and a negative impact on companies’ reputation 
among consumers. In the food industry, inactivation of pathogenic and spoilage microorganisms is 
conventionally performed through thermal- and chemical-based techniques, which can affect the 
nutritional and sensorial quality of food. Furthermore, the emergence of microbial resistance to 
conventional decontamination techniques has drawn increased attention to finding an alternative 
and sustainable approach for similar or higher decontamination efficiency. Over the past decade, 
photodynamic treatment has been introduced for inactivating food spoilage and pathogenic 
microorganisms as a promising cost-effective, chemical-free, environmentally friendly technique 
with no reports on toxic residues and microbial resistance. The application and efficiency of 
photodynamic treatment in various food matrices against a broad range of microorganisms 
demonstrates the potential of using this technology in the food industry.  

Keywords: antimicrobial treatment, curcumin, food preservation, food safety, green technology, 
photodynamic, photosensitiser, reactive oxygen species. 

Introduction 

The key element in achieving good health and sustaining life is access to nutritious and 
safe food. According to the World Health Organization, over 200 different diseases with 
severity ranging from diarrhoea to cancers can be caused by unsafe food consumption, 
which contains harmful microorganisms or chemical substances.1 Food safety is generally 
influenced by the growing world population, climate change, and globalisation of food 
trade. Therefore, it contributes greatly to global food and nutrition security, as well as to 
national economies. 

Food industry traditionally uses conventional thermal-based processing such as dry- 
heating and steam-heating to reduce the microbial contamination of foods caused by 
vegetative cells, spores, and biofilms. However, this practice sometimes suffers from 
undesirable impacts on flavour, nutritional composition, and texture of treated foods.2 

Various non-thermal processing technologies such as ultraviolet light, irradiation, ultra-
sound, ozonation, cold plasma, pulsed electric field, and high hydrostatic pressure have 
been introduced to the food industry to reduce the microbial load while retaining the 
natural colour, flavour and nutrition. Nevertheless, the wide application of some of these 
non-thermal decontamination technologies is limited by strict processing conditions, expen-
sive equipment, high energy consumption, and the emergence of microbial resistance.3 

One of the recently introduced non-thermal decontamination technologies to the food 
industry is photodynamic treatment, which is also known as photosensitisation. For 
several decades, photodynamic treatment has been investigated and used for medical 
and dental purposes to treat tumour/cancerous cells and as antibacterial/antibiofilm treat-
ment. Reactive oxygen species (ROS) are produced during the photodynamic treatment, 
which only requires the presence of oxygen, a photosensitiser, and light (at photosensitiser’s 
λmax). Photosensitisers become excited on illumination and generate cytotoxic ROS through 
subsequent de-excitation and collision with the surrounding oxygen molecules4 (Fig. 1). The 
produced ROS exhibit a multi-target attack towards different intracellular components of 
microorganisms present in the food, such as their proteins, lipids, and nucleic acids, 
resulting in cellular death. Therefore, because of direct and non-selective oxidative damage 
to essential biomolecules required for cell integrity and function, there is also a low 
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probability of the emergence of microbial resistance using 
photodynamic treatment.5 Another advantage of this treat-
ment is being chemical free that is in line with the growing 
demand for ‘clean label’ food products. 

Generally, photosensitisers can be endogenous such as 
porphyrins, which already exist within some fungal and 
bacterial cells, or exogenous such as curcumin, chlorophyll, 
and riboflavin isolated from plant material (Fig. 2). 
However, the poor water solubility of some potent photo-
sensitisers such as curcumin can limit the wide application 
of the treatment on different food products. This can be 
overcome with the aid of encapsulation technology using 
hydrocolloids isolated from natural resources. This results in 
better bonding of the photosensitiser with microbial cells 
and better accumulation in the vicinity of target cells and 
therefore an enhanced photodynamic antimicrobial effect. 
Furthermore, another feature of this photodynamic treatment 
is its low energy requirement and no toxic by-products or 
residue generation,5 thus making it a safe and eco-compatible 
technology. 

Photodynamic application for food 
decontamination 

In 2004, Lukšien and colleagues explored the application 
of innovative and promising photodynamic inactivation 
for microbial food safety. The authors reported a com-
plete in vitro photoinactivation of common food crop spoil-
age fungi, namely Rhizopus oryzae, Aspergillus flavus, 
Trichothecium roseum, and Fusarium avenaceum, using 
hematoporphyrin dimethyl ether as a photosensitiser.8 

Further studies have since shown the efficiency of 
photodynamic treatment in inactivating a wide variety 
of food spoilage and pathogenic microorganisms (i.e. veg-
etative cells, spores, biofilms) such as Listeria monocyto-
genes, Salmonella enterica,9 Vibrio parahaemolyticus,10 

Enterococcus faecalis,11 Pseudomonas fluorescens, Shigella 
flexneri,12 Staphylococcus aureus,13 Bacillus cereus,14 

Candida albicans, Aspergillus niger, Penicillium griseofulvum, 
Fusarium oxysporum, Zygosaccharomyces bailii,15 Aspergillus 
flavus,16 and Botrytis cinerea.17 
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Several studies have shown that photodynamic treatment 
has the potential to be applied on a variety of food products 
including fruits and vegetables, seeds and grains, meat and 
aquatic products, and juices. This also has the advantage of 
minimal influence on nutritional and sensorial properties 
compared to conventional thermal processing technologies. 
A few examples of decontamination efficiency of photo-
dynamic treatment of various food matrices include reducing 
the population of V. parahaemolyticus on cooked oysters,18 

of L. monocytogenes on smoked salmon19 and on fresh-cut 
pears,20 of E. coli on fresh-cut pineapple,21 of Staph. sapro-
phyticus on fresh dough sheet,22 of P. fluorescens on Minas 
Frescal cheese,23 of A. flavus on maize kernel and flour24 and 
on peanuts,25 and of Botrytis cinerea on apples.26 The use of 
photodynamic treatment in disinfecting the water in fish 
farming was also suggested by Wohllebe and colleagues. 
The authors successfully decontaminated the water contain-
ing larvae (of human pathogenic parasites) using low con-
centrations of chlorophyll acid27 before introducing the fish. 
They further suggested chlorophyll-mediated photodynamic 
treatment as a practical and inexpensive treatment for con-
trolling ectoparasites such as Ichthyophthirius mulftifiliis in 
fish.28 

Furthermore, encouraged by promising antimicrobial 
efficacy of this treatment, photodynamic-mediated food 
packaging films have been recently investigated. The photo-
sensitiser is embedded in the film forming matrix to add 
the antimicrobial activity to the food packaging material. 
Examples of  photodynamically active food packaging are 
riboflavin-incorporated chitosan-based film as a salmon packag-
ing material, with the ability to reduce L. monocytogenes, 
V. parahaemolyticus and Shewanella baltica populations,29 

carbon nitride-incorporated konjac glucomannan-based film 
as a cherry tomato packaging material with the ability to inhibit 
E. coli and Staph. aureus growth,30 curcumin-incorporated cel-
lulose laurate-based film as a pork packaging material with the 
ability to reduce Staph. aureus population,31 β-cyclodextrin/ 
curcumin complex-incorporated 2,3-dialdehyde cellulose- 
based film as a salmon packaging material with the ability 
to inactivate L. monocytogenes, V. parahaemolyticus, and 
Shew. putrefaciens,32 and aloe emodin-incorporated poly(3- 
hydroxybutyrate-co-3-hydroxyvalerate)-based film as a packag-
ing material for fresh-cut papaya, pork belly and pork bologna 
with the ability to inactivate E. coli.33 It is also possible that 
the photosensitiser-incorporated food packaging material 
may improve the shelf life of the products by being exposed 
to artificial lighting in the retail stores. However, this needs 
further investigation. 

Summary 

In general, various studies have shown the efficiency of 
photodynamic treatment as a naturally based, cost effective, 
clean label and eco-friendly decontamination technique. 
The key benefit of this technology is that it is a non- 
thermal process and retains the nutritional and organoleptic 
qualities of food. It is easily scalable and can be implemented 
in the food industry as it can operate using an existing 
conveyor system. It does not require expensive equipment 

and the materials used such as curcumin and visible light are 
already approved and being used in the food industry. It is 
effective against a wide range of food related microorgan-
isms including viruses, bacteria, yeasts, and moulds. 

Besides the diverse applications of photodynamic treat-
ment in post-harvest and processed foods from plant or 
animal sources it has applications in decontamination of 
fruit and vegetable washing water, making it attractive for 
adoption by industry. It can also be investigated as an antibac-
terial, antifungal, and possibly pesticide treatment for the 
photosensitiser to be applied directly on fresh produce and 
be photoactivated with the aid of artificial lighting for example 
in greenhouses, where the intensity of light and time of 
exposure can be controlled. However, the efficiency of the 
treatment is dependent on the processing conditions such as 
photosensitiser concentration, light dose, and wavelength, as 
well as the food matrix properties. Optimising and validating 
the treatment conditions, including photosensitiser formula-
tion and illumination dosage, are the future challenges to 
effectively implementing the treatment in the food industry 
to replace the conventional decontamination techniques, while 
maintaining similar or higher decontamination efficiency. 

References  
1. World Health Organization (2020) Food safety fact sheet. who.int  
2. Huang M et al. (2019) Recent development in the application of 

alternative sterilization technologies to prepared dishes: a review. 
Crit Rev Food Sci Nutr 59, 1188–1196. doi:10.1080/10408398. 
2017.1421140  

3. Pexara A, Govaris A (2020) Foodborne viruses and innovative non- 
thermal food-processing technologies. Foods 9, 1520. doi:10.3390/ 
foods9111520  

4. Penha CB et al. (2017) Photodynamic inactivation of foodborne 
and food spoilage bacteria by curcumin. LWT 76, 198–202. 
doi:10.1016/j.lwt.2016.07.037  

5. Costa L et al. (2011) Evaluation of resistance development and 
viability recovery by a non-enveloped virus after repeated cycles 
of a PDT. Antivir Res 91, 278–282. doi:10.1016/j.antiviral.2011. 
06.007  

6. Seidi Damyeh M et al. (2020) An insight into curcumin-based 
photosensitization as a promising and green food preservation 
technology. Compr Rev Food Sci 19, 1727–1759. doi:10.1111/ 
1541-4337.12583 

7. PubChem Identifier, CID, 493570 (riboflavin), 123798 (chloro-
phyllin A), 3663 (hypericin), 969516 (curcumin), 10207 (aloe- 
emodin). PubChem (nih.gov). 

8. Luksiene Z et al. (2004) Inactivation of fungi in vitro by photo-
sensitization: preliminary results. Ann Agric Environ Med 11, 
215–220.  

9. Kairyte K et al. (2012) Effective inactivation of food pathogens 
Listeria monocytogenes and Salmonella enterica by combined treat-
ment of hypericin‐based photosensitization and high power pulsed 
light. J Appl Microbiol 112, 1144–1151. doi:10.1111/j.1365-2672. 
2012.05296.x 

10. Chen B et al. (2020) Eradication of planktonic Vibrio parahaemo-
lyticus and its sessile biofilm by curcumin-mediated photodynamic 
inactivation. Food Control 113, 107181. doi:10.1016/j.foodcont. 
2020.107181 

11. Chiniforush N et al. (2020) The effect of antimicrobial photo-
dynamic therapy using chlorophyllin–phycocyanin mixture on 
Enterococcus faecalis: the influence of different light sources. 
Appl Sci 10, 4290. doi:10.3390/app10124290  

12. Liang Z et al. (2022) Photodynamic inactivation of Shigella flexneri 
by curcumin. LWT 153, 112491. doi:10.1016/j.lwt.2021.112491  

13. Shi Y-g et al. (2022) Ultra-efficient antimicrobial photodynamic 
inactivation system based on blue light and octyl gallate for ablation 
of planktonic bacteria and biofilms of Pseudomonas fluorescens. 
Food Chem 374, 131585. doi:10.1016/j.foodchem.2021.131585  

14. Oliveira A et al. (2009) Porphyrin derivatives as photosensitizers 
for the inactivation of Bacillus cereus endospores. J Appl Microbiol 
106, 1986–1995. doi:10.1111/j.1365-2672.2009.04168.x 

www.publish.csiro.au/ma                                                                                                                       Microbiology Australia 

73 

http://who.int
https://doi.org/10.1080/10408398.2017.1421140
https://doi.org/10.1080/10408398.2017.1421140
https://doi.org/10.3390/foods9111520
https://doi.org/10.3390/foods9111520
https://doi.org/10.1016/j.lwt.2016.07.037
https://doi.org/10.1016/j.antiviral.2011.06.007
https://doi.org/10.1016/j.antiviral.2011.06.007
https://doi.org/10.1111/1541-4337.12583
https://doi.org/10.1111/1541-4337.12583
https://nih.gov
https://doi.org/10.1111/j.1365-2672.2012.05296.x
https://doi.org/10.1111/j.1365-2672.2012.05296.x
https://doi.org/10.1016/j.foodcont.2020.107181
https://doi.org/10.1016/j.foodcont.2020.107181
https://doi.org/10.3390/app10124290
https://doi.org/10.1016/j.lwt.2021.112491
https://doi.org/10.1016/j.foodchem.2021.131585
https://doi.org/10.1111/j.1365-2672.2009.04168.x
https://www.publish.csiro.au/ma


15. Al-Asmari F et al. (2017) A novel photosensitization treatment for 
the inactivation of fungal spores and cells mediated by curcumin. 
J Photochem Photobiol B: Biol 173, 301–306. doi:10.1016/j. 
jphotobiol.2017.06.009  

16. Temba BA et al. (2016) Inactivation of Aspergillus flavus spores by 
curcumin-mediated photosensitization. Food Control 59, 708–713. 
doi:10.1016/j.foodcont.2015.06.045  

17. Huang L et al. (2021) The inactivation by curcumin-mediated 
photosensitization of Botrytis cinerea spores isolated from straw-
berry fruits. Toxins 13, 196. doi:10.3390/toxins13030196 

18. Chen B et al. (2021) Effects of the curcumin-mediated photo-
dynamic inactivation on the quality of cooked oysters with 
Vibrio parahaemolyticus during storage at different temperature. 
Int J Food Microbiol 345, 109152. doi:10.1016/j.ijfoodmicro. 
2021.109152  

19. Josewin SW et al. (2018) Antibacterial effect of 460 nm light- 
emitting diode in combination with riboflavin against Listeria 
monocytogenes on smoked salmon. Food Control 84, 354–361. 
doi:10.1016/j.foodcont.2017.08.017  

20. Chai Z et al. (2021) Antibacterial mechanism and preservation 
effect of curcumin-based photodynamic extends the shelf life of 
fresh-cut pears. LWT 142, 110941. doi:10.1016/j.lwt.2021.110941 

21. Zou Y et al. (2021) Effects of curcumin-based photodynamic treat-
ment on quality attributes of fresh-cut pineapple. LWT 141, 
110902. doi:10.1016/j.lwt.2021.110902  

22. Wang Z et al. (2021) Antimicrobial photodynamic inactivation with 
curcumin against Staphylococcus saprophyticus, in vitro and on fresh 
dough sheet. LWT 147, 111567. doi:10.1016/j.lwt.2021.111567  

23. Saraiva BB et al. (2021) Photodynamic inactivation of Pseudomonas 
fluorescens in Minas Frescal cheese using curcumin as a photo-
sensitizer. LWT 151, 112143. doi:10.1016/j.lwt.2021.112143  

24. Nguenha RJ et al. (2022) Effect of solvents on curcumin as a 
photosensitizer and its ability to inactivate Aspergillus flavus and 

reduce aflatoxin B1 in maize kernels and flour. J Food Process 
Preserv 46, e16169. doi:10.1111/jfpp.16169  

25. Mukubesa N et al. (2022) Curcumin-based photosensitization, a 
green treatment in inactivating Aspergillus flavus spores in pea-
nuts. Foods 11, 354. doi:10.3390/foods11030354  

26. Wei C et al. (2021) Photosensitization effect of curcumin for 
controlling plant pathogen Botrytis cinerea in postharvest apple. 
Food Control 123, 107683. doi:10.1016/j.foodcont.2020.107683 

27. Wohllebe S et al. (2009) Photodynamic control of human patho-
genic parasites in aquatic ecosystems using chlorophyllin and 
pheophorbid as photodynamic substances. Parasitol Res 104, 
593–600. doi:10.1007/s00436-008-1235-6  

28. Wohllebe S et al. (2012) Chlorophyllin for the control of 
Ichthyophthirius multifiliis (Fouquet). Parasitol Res 111, 729–733. 
doi:10.1007/s00436-012-2893-y  

29. Su L et al. (2021) Chitosan-riboflavin composite film based on 
photodynamic inactivation technology for antibacterial food 
packaging. Int J Biol Macromol 172, 231–240. doi:10.1016/j. 
ijbiomac.2021.01.056 

30. Ni Y et al. (2021) Enhanced antimicrobial activity of konjac glu-
comannan nanocomposite films for food packaging. Carbohydr 
Polym 267, 118215. doi:10.1016/j.carbpol.2021.118215  

31. Ma T et al. (2021) Cellulose laurate films containing curcumin as 
photoinduced antibacterial agent for meat preservation. Int J Biol 
Macromol 193, 1986–1995. doi:10.1016/j.ijbiomac.2021.11.029  

32. Chen L et al. (2021) Novel 2, 3-dialdehyde cellulose-based films 
with photodynamic inactivation potency by incorporating the 
β-cyclodextrin/curcumin inclusion complex. Biomacromolecules 
22, 2790–2801. doi:10.1021/acs.biomac.1c00165 

33. Le TD et al. (2021) Development of an antimicrobial photo-
dynamic poly (3-hydroxybutyrate-co-3-hydroxyvalerate) packag-
ing film for food preservation. Food Packag Shelf Life 30, 100749. 
doi:10.1016/j.fpsl.2021.100749 

Data availability. Data sharing is not applicable as no new data were generated or analysed during this study. 

Conflicts of interest. The authors declare no conflicts of interest. 

Declaration of funding. This research did not receive any specific funding. 

Author affiliations 
ACentre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, St Lucia, Qld 4072, 
Australia. 

BARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of 
Queensland, Indooroopilly, Qld 4068, Australia.  

Biographies 

Maral Seididamyeh has studied curcumin-based 
photosensitisation for inactivating Botrytis cinerea 
spores, the cause of grey mould in strawberry 
fruits, during her PhD at the University of 
Queensland. She is working as a Research 
Officer in Professor Sultanbawa’s lab on projects 
related to rapid non-destructive technologies to 
assess the provenance and authenticity of food 
products as well as to detect the chemical residues 
in food products. 

Yasmina Sultanbawa is a Professorial Research 
Fellow at the Queensland Alliance for Agriculture 
and Food Innovation and the Director of the ARC 
Training Centre for Uniquely Australian Foods at 
the University of Queensland. Some of her 
research is focussed on food safety and functional 
ingredients as natural additives in food products 
or packaging material to enhance shelf life as well 
as the nutritional value of foods.   

ASM Social Media

Facebook: https://www.facebook.com/AustralianSocietyForMicrobiology
Twitter: @AUSSOCMIC
LinkedIn group: https://www.linkedin.com/groups/Australian-Society-Microbiology-6605071
YouTube channel: http://www.youtube.com/user/AUSSOCMIC
Instagram: https://www.instagram.com/theasmicro/

M. Seididamyeh and Y. Sultanbawa                                                                                                           Microbiology Australia 

74 

https://doi.org/10.1016/j.jphotobiol.2017.06.009
https://doi.org/10.1016/j.jphotobiol.2017.06.009
https://doi.org/10.1016/j.foodcont.2015.06.045
https://doi.org/10.3390/toxins13030196
https://doi.org/10.1016/j.ijfoodmicro.2021.109152
https://doi.org/10.1016/j.ijfoodmicro.2021.109152
https://doi.org/10.1016/j.foodcont.2017.08.017
https://doi.org/10.1016/j.lwt.2021.110941
https://doi.org/10.1016/j.lwt.2021.110902
https://doi.org/10.1016/j.lwt.2021.111567
https://doi.org/10.1016/j.lwt.2021.112143
https://doi.org/10.1111/jfpp.16169
https://doi.org/10.3390/foods11030354
https://doi.org/10.1016/j.foodcont.2020.107683
https://doi.org/10.1007/s00436-008-1235-6
https://doi.org/10.1007/s00436-012-2893-y
https://doi.org/10.1016/j.ijbiomac.2021.01.056
https://doi.org/10.1016/j.ijbiomac.2021.01.056
https://doi.org/10.1016/j.carbpol.2021.118215
https://doi.org/10.1016/j.ijbiomac.2021.11.029
https://doi.org/10.1021/acs.biomac.1c00165
https://doi.org/10.1016/j.fpsl.2021.100749


IN FOCUS 
https://doi.org/10.1071/MA22023 

Rising stars in the bakery: novel yeasts for modern bread 
Anna WittwerA and Kate HowellA,*  

ABSTRACT 

Bread is a widely consumed fermented food whose taste, aroma, and texture are partly 
determined by the choice of microbe(s) employed in dough fermentation. Consumer preferences 
and dietary considerations are currently changing; in addition to a desire for novel, complex 
flavour profiles, foods low in gluten and fermentable oligo-, di-, monosaccharides and polyols 
(FODMAPs) are becoming increasingly important. The potential of non-conventional yeasts to 
improve and diversify key aspects of breadmaking is highlighted in this mini-review. Researchers 
have investigated species from the genera Kazachstania, Kluyveromyces, Lachancea, Pichia, 
Torulaspora, and Wickerhamomyces to this end. Some species have demonstrated comparable 
leavening capacity to baker’s yeast, as well as improved tolerance of baking-related stresses such 
as high salt and low pH conditions. Others have demonstrated valuable functional properties 
permitting the degradation of gluten and FODMAPs. Future research directions include the 
establishment of safe use status and the improvement of novel yeasts’ baking traits through 
techniques such as evolutionary engineering.  

Keywords: aroma, bread, fermentation, FODMAP, gluten, leaven, non-conventional yeast, 
sourdough. 

The microbial fermentation of bread dough leads to the production of CO2 and other 
metabolites that give bread its characteristic texture and aroma. Today, the chief microbe 
used by humans in this endeavour is Saccharomyces cerevisiae, also known as brewer’s or 
baker’s yeast. Its domestication to food environments occurred long ago,1 and it has been 
the dominant breadmaking organism since the advent of purified S. cerevisiae monocul-
tures in the 19th century.2 Despite its predominance, S. cerevisiae has several major 
drawbacks as a fermenting yeast, namely its limited use of only a few carbon substrates 
and an inability to withstand certain stresses associated with baking, such as osmotic, 
oxidative, temperature, and ethanol stresses.3 The range of nitrogen sources the yeast is able 
to assimilate is also relatively limited, due to a whole-genome duplication (WGD) event 
affecting several genera within the Saccharomycetaceae.4 This may be due to WGD-driven 
gene partitioning: copies of nitrogen assimilation genes that each perform only a subset of 
an ancestral gene’s function.5 It is also likely that most S. cerevisiae strains used for 
breadmaking arose from interbreeding of an ale and wine strain, and while this has 
advantages for the consistency and speed of the fermentation process, it limits the taste 
and aroma complexity of the final products.6 Therefore, there is a desire to seek out diverse 
breadmaking yeasts that can be used to make baked goods with improved technological and 
organoleptic properties, as well as those that can cater to the gluten-free and low-FODMAP 
(fermentable oligo-, di-, monosaccharides and polyols) demands of modern consumers. 

There are many yeast species from the family Saccharomycetaceae (to which 
S. cerevisiae belongs) that are found in food environments. Non-S. cerevisiae yeasts are 
involved in the production of cocoa, kefir, fermented vegetables, wine, and beer.7 Bread 
was historically leavened using traditional sourdough starters: flour and water mixtures 
that are left at room temperature for several days to ferment ‘spontaneously’, i.e. without 
a starter culture.2 This practice continues today, and sourdough microbial composition – 
specifically unique functional properties of constituent microbes – continues to be an 
active field of study. A large proportion of non-S. cerevisiae yeasts are commonly found in 
sourdough starters, and recent research suggests that the fungal diversity of sourdoughs 
may be greater than previously thought.8 

Mature sourdough starters tend to contain only one or two yeast species. The most 
common non-S. cerevisiae yeasts found in sourdoughs are Kazachstania exigua, K. humilis, 
Candida glabrata, Torulaspora delbrueckii, Pichia kudriavzevii, and Wickerhamomyces 
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anomalus.9,10 Novel non-conventional yeasts continue to be 
isolated from sourdoughs, such as K. saulgeensis which was 
first described in 2016.11 It is important to note that while 
S. cerevisiae is also found in many sourdoughs, it remains 
unclear whether this is due to contamination from purified 
baker’s yeast often used in the same bakeries12 and industrial 
contexts or due to its autochthonous presence there. 
Sourdough yeasts occupy an environment described as ‘spe-
cific and stressful’ due to cereal dough forming an environ-
ment with low pH, low oxygen tension, and carbohydrates 
(mainly maltose) needing to be shared with fermenting lactic 
acid bacteria.10 Sourdough starters are therefore a significant 
source of novel yeasts with interesting applications. 

In addition to using sourdoughs themselves as reservoirs 
of novel breadmaking yeasts, the original sources of sour-
dough microbes (such as soils, plants, and insects) have 
yielded non-conventional yeasts of interest. Madden et al.13 

found that from a pool of yeast strains isolated from sugar- 
seeking insects, thirteen from the Candida, Lachancea and 
Pichia genera were able to produce bread loaves of compa-
rable quality to those made with baker’s yeast. Furthermore, 
it was found that some of the Lachancea strains isolated 
could grow in osmotically challenging conditions, meaning 
that isolates of this genus may be suitable for growth as 
purified monocultures on an industrial scale. Potentially, 
‘bioprospecting’ in non-food environments could yield 
novel food fermentation organisms. 

It is frequently observed that the taste, texture, and 
aroma profiles of sourdough bread are different to those of 
‘straight’ dough breads produced with purified baker’s yeast. 
While some of this difference must be attributed to the 
different process parameters involved in making sourdough 
bread and the presence of lactic acid bacteria in the sour-
dough ecosystem, attention has now turned to sourdough 
yeasts as a source of valuable aroma volatiles in bread. In 
fact, yeast metabolism has been reported to be the main 
source of aromatic diversity in fermented foods such as 
alcoholic beverages and bread.14 When used as the sole 

fermenting yeasts in bread dough, Wickerhamomyces supel-
liculosus and Kazachstania gamospora were found to pro-
duce unique aromatic compounds.15 These compounds may 
include volatile esters, associated with a fruity aroma, which 
have been reported in increased amounts when novel yeasts 
are used in bread fermentation.6 A co-culture of S. cerevisiae 
and T. delbrueckii was found to improve production of suc-
cinic acid and acetic acid (Fig. 1) in steamed bread compared 
to dough fermented with mono-cultures.16 Interestingly, 
when a strain of S. cerevisiae that had been isolated from 
an Australian sourdough was used to ferment bread dough, 
the resulting bread had a distinct, different chemical aroma 
profile compared to that made with commercial baker’s 
yeast.17 This suggests that even for S. cerevisiae, the deriva-
tion of yeasts from a sourdough environment may be related 
to important aroma- and flavour-generating properties. 

Gluten and FODMAP contents in bread are, for those with 
coeliac disease, irritable bowel syndrome,18 and other gas-
trointestinal disorders, significant obstacles to the consump-
tion and enjoyment of bread. Recent research has shown 
that non-conventional yeasts may play a key supporting role 
in the predominantly LAB-mediated degradation of gluten 
in sourdough (Table 1). The presence of T. delbrueckii in 
co-culture with bacterium Pediococcus acidilactici was 
shown to enhance the latter’s protein metabolism and accel-
erate its ability to degrade proteins.19 Additionally, although 
not considered bakery yeasts, fungal proteases derived from 
Aspergillus oryzae and A. niger have been used in conjunction 
with sourdough lactobacilli to initiate primary hydrolysis of 
wheat proteins. Ultimately, these enzymes could detoxify 
wheat flour.20 Interestingly, growth on a synthetic gluten- 
limited medium showed that strains of W. anomalus could 
be classified as ‘gluten-degrading’ in their own right, and that 
the extent of gluten degradation varied slightly between indi-
vidual strains.21 FODMAPs are a class of small, osmotically 
active carbohydrate molecules. These properties mean that 
they are not well absorbed in the small intestine and pass 
into the large intestine, where they undergo rapid bacterial 
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fermentation, which in turn causes abdominal swelling and 
luminal distention.22 Novel yeasts derived from sourdoughs 
have been shown to have the enzymatic capabilities to break 
these carbohydrates down, notably fructans. As an example, 
Kluyveromyces marxianus was found to be able to degrade 
>90% of the fructan component of whole wheat bran, due 
to its ability to produce inulinase.23 Struyf et al. have 
also demonstrated the successful use of co-cultures of 
K. marxianus and S. cerevisiae to ensure sufficient CO2 
production, producing bread with adequate loaf volume and 
≤0.2% fructan content.24 Non-conventional yeasts, both as 
mono-cultures and co-cultures, might therefore present an 
attractive opportunity to create high-quality bread that caters 
to the dietary needs of modern consumers. 

An additional notable aspect of novel bakery yeasts is 
their capacity to form associations with bacteria. This is 
important in fermented food products such as kefir and 
kombucha that rely on a consortium of both yeasts and 
bacteria to produce their characteristic properties. These 
co-cultures have been shown to have interesting and valu-
able effects on final food products that their constituent 
monocultures are not capable of producing. When inocu-
lated in bread dough as co-cultures alongside sourdough- 
derived lactic acid bacteria, novel sourdough-derived yeasts 
are capable of producing distinctive aroma profiles (with 
predominant sour aromas) and crumb structures preferred 
by sensory panels.17 It is likely that interactions between 
yeasts and lactic acid bacteria affect the manner in which 
the bacteria use carbohydrates to produce metabolites.25 It 
has been suggested that the oft-documented association 
between Kazachstania humilis and the sourdough heterofer-
mentative LAB Fructilactobacillus sanfranciscensis may be 
driven by cross-feeding, as maltose metabolised by F. 
sanfranciscensis into glucose may provide a source of nutri-
tion for the maltose-negative yeast.26 Although the molecular 
mechanisms underpinning this interaction are yet to be fully 
elucidated, the frequent detection of established yeast- 
bacteria pairs in food environments suggests that there is a 
strong natural tendency for such partnerships to form. 

Ongoing research is required to render novel non- 
conventional yeasts suitable for baking, especially in an indus-
trial context. For instance, Kluyveromyces marxianus cannot 

ferment maltose,23 so it requires added sucrose or an enzyme 
(i.e. amyloglucosidase) to release glucose from amylose to 
produce sufficient CO2 to fulfil its leavening requirements. 
This emphasises the need to consider the metabolic demands 
of novel yeasts, and to consider whether they might function 
best as co-cultures, or in conjunction with certain substrates or 
enzymes. Co-cultures of yeasts or yeasts in combination with 
bacteria present an attractive area for future research into the 
applications of novel yeasts in breadmaking. Particularly 
for yeasts derived from non-food environments, safe usage 
status (generally-regarded-as-safe or qualified presumption 
of safety status) must also be established15 before they can be 
approved for use on an industrial scale. 
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ABSTRACT 

Plant-based foods have risen in popularity in recent years including a number of dairy alternative 
products. Fermentation has the potential to support the development of innovative plant-based 
foods with enhanced flavour, texture and nutritional quality. Lactic acid bacteria (LAB) have been 
used for thousands of years to carry out fermentation of a wide variety of food substrates 
through production of organic acids and flavour compounds. However, LAB strains used in dairy 
fermentations are commonly found to be suboptimal in their metabolism of plant substrates, so 
efforts to identify alternative strains are needed. We provide an overview of the plant-based milk 
alternative category and explore screening approaches (including citizen-science efforts) to 
identify new LAB that hold potential in acidification and flavour formation of plant-based 
substrates.  

Keywords: almond, alternative protein, citizen science, dairy-alternatives, fermentation, 
flavour, lactic acid bacteria, new foods, plant based. 

The rise of plant-based foods and the non-dairy category 

Consumer interest, preference, and market share for plant-based foods has grown 
significantly in recent years. This has been due to greater health conscientiousness 
in consumers, concerns around animal welfare and environmental impacts of 
greenhouse gas emissions, health-related issues such as dairy allergies and lactose 
intolerance, as well as the increased promotion of plant-rich diets and interest in 
veganism. 

Plant-based food products include natural (fruits and vegetables) or processed 
(plant-based meat and milk alternatives). As milk is one of the most widespread and 
nutritious food sources, its plant-based alternatives have also seen high demand over 
the past decade.1 This article will focus on plant-based milk alternatives (PBMA) 
and explore the potential of fermentation to enhance their flavour, texture, and 
nutrition. 

In 2021, the worldwide PBMA revenue was US$19 billion.2 The most common sources 
of PBMA include soy, almond, coconut, rice, and oat, with others including macadamia, 
walnut, pea, banana, and flax being less common. In Australia, the most popular PBMA 
currently is soy-based; however, demand for almond PBMA is growing rapidly.3,4 The 
PBMA market share captured by almond-based PMBA increased from 18% to 44% 
between 2015 and 2020, while soy-based PBMA reduced from 69% to 48% in the 
same period. Australia is the world’s second largest producer of almonds with ~$1 billion 
grown each year, and almonds are our most valuable horticultural export,5 making this 
an attractive target for fermented PBMA product development. 

In addition to being naturally lactose-free, PBMA contain bioactive compounds that 
are absent or have low bioavailability in cow milk, such as dietary fibres, antioxidants 
and phytoestrogens.6,7 Furthermore, legume- and seed-based PBMA are promising 
plant-based alternative protein sources.8 However, PBMA can have several disadvan-
tages including undesirable flavour profiles (e.g. beany flavour in soymilk), a less 
comprehensive nutritional profile compared with cow milk, anti-nutritional compounds 
and potential allergenic activity. Fermentation is one potential option that can be 
investigated to improve PMBA nutritional properties and sensory attributes, and reduce 
allergenicity.9 
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Lactic acid bacteria (LAB) and their potential 
in PBMA fermentations 

The most common group of bacteria used in food fermenta-
tions are LAB. For industrialised (controlled) fermentations, 
defined LAB strains are used as inoculants. LAB can be 
grouped into ‘starter cultures’, whose primary role is to 
produce lactic acid or ‘adjunct cultures’ that are used for 
flavour formation. Many fermented dairy foods including 
cheese, yoghurt, sour cream, cultured buttermilk, kefir and 
kumis all utilise LAB (such as Lactococcus, Lactobacillus and 
Streptococcus). Large culture supply companies provide a 
wide range of well characterised strains in live freeze-dried 
powders for dairy applications. However, these strains are 
adapted to dairy substrates and can be less suited for dairy- 
free plant bases due to differences in sugar, protein and 
sensitivity to growth inhibitors.10,11 In preliminary work, 
we compared the ability of a cheese starter culture strain 
(strain A) to acidify cow milk and almond milk (a model 
PBMA). It acidified cow milk but was incapable of lowering 
the pH of almond PBMA (Fig. 1). Therefore, there is signifi-
cant interest in identifying new strains better suited for 
acidification and flavour formation in plant-based substrates. 
LAB are commonly found on plants and wild strains exhibit 
greater metabolic capability than industrialised (domesti-
cated) strains.12 Therefore, searching for strains from plant 
niches suitable for plant-based fermentations appears logical. 

In some preliminary work using the almond PBMA 
model, we have screened a collection of ~600 LAB, sourced 
from a wide variety of vegetables, fruits, and herbs for their 
ability to acidify almond PBMA. Previous work has shown 
that this LAB collection can be a novel source of diverse 
strains that have beneficial anti-bacterial activity, anti- 
fungal activity or food flavour production.13–16 While 
>90% of the plant-derived strains of LAB acidified almond 
PBMA poorly, several strains possessed medium-to-strong 
almond PBMA acidification. As an example, strain B was 
identified as a strong acidifier, strain C a medium acidifier 
and strain D a non-acidifier (Fig. 2). Further work identify-
ing the strains and also understanding why different LAB 
acidify almond PBMA differently using whole genome 
sequencing, metabolic and genetic methods is underway. 

Citizen science as a tool for microbial 
discovery 

Obtaining and screening LAB strain collections, as we have 
done previously as described above,16 prior to determining 
their potential in plant-based food fermentations is how-
ever both costly and laborious. There is a need to first 
collect samples, grow, isolate, and identify microbes before 
even beginning to filter through the strains for applicable 
candidates. One way to raise efficiency and lower the costs 
is to make use of Citizen Science (CS), where the public is 
involved in some or all of the processes. CS is a strong 
tool for massive sample and data collecting on a low 
budget and in a short time span, exemplified by the 
Danish 2018 project Mass Experiment17 (http://www. 
bacteriadanica.dk/) where school children collected over 
30 000 environmental samples. The project ended up iden-
tifying ten new species of LAB. In another study18 research-
ers were able to collect more than 500 unique sourdough 
starter culture samples from four different continents 
within 3 months, showing the potential of wide geographi-
cal coverage when using the public for sampling. CS has 
even been used to strengthen the possible origin of ancient 
yoghurt production, which includes the initiation of fer-
mentation in milk, by adding twigs and leaves of specific 
plants.19 Here, researchers collected hundreds of plant 
samples, from which the traditional yoghurt species 
Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus 
thermophilus were isolated. CS in natural sciences is already 
well established, even though it might be called different 
names. A well-known phenomenon is the BioBlitz, where 
both experts and hobbyists contribute to the identification 
of species in a defined area within a short period. This type 
of CS is often used for identification of plants, insects, or 
larger animals, but could in principle just as well be used 
for microbial identification. Today’s social media plat-
forms, global connectivity, and technological advances in 
terms of e.g. genomic screening, microbial identification 
and characterisation can enable much faster discoveries, 
than if CS was used just 20 years ago. This further strengthens 
the arguments for implementing CS in more research- 
based work. 
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Fig. 1. Acidification bystrain A incubated in cow milk and almond 
PBMA held in non-shaking tubes at 30°C. Data are representative of 
at least two independent trials.   
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Fig. 2. Acidification bythree plant-derived LAB strains incubated 
in almond PBMA held in non-shaking tubes at 30°C. Data are repre-
sentative of at least two independent trials.   
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Importance of microbial fermentation 
for flavour formation in plant-based 
alternatives 

To optimise a plant-based fermentation for animal-based 
alternatives, flavour is key to success. As an example, 
various compounds produced during lactic acid fermenta-
tion are integral factors in obtaining a flavour profile like 
that of dairy yoghurt. This includes lactate and acetate 
(acidic), acetoin, diacetyl (buttery), and acetaldehyde 
(green apple), and even ethanol to name a few.9,20 The 
production of these compounds relies on specific precur-
sors in the plant base, as well as LAB capable of fermenting 
these precursors. Lactic acid fermentation can also 
decrease the amount of ‘beany’ off-flavours found in soy 
products, while also providing dairy related flavour com-
pounds.21 Madsen et al.11 proved the importance of specific 
bacterial strain selection, and showed that dairy-adapted 
yoghurt starter cultures were unable to compete with 
plant-adapted ones in a mixed soy and malt base. The 
number of studies characterising flavour development of 
fermented PBMAs are much fewer than that for meat alter-
natives.22 Kaczmarska et al.23 investigated the chemical 
composition and sensory profile of various meat analogues, 
as well as fermented plant products such as tempeh and 
tofu, which are often regarded as meat-like substitutes. The 
results showed that only a few alternatives had a sensory 
profile vaguely resembling a meaty taste, and vastly 
different flavor profiles. Still, the study argued the possi-
bility of using natto and tempeh as an ingredient in a meat 
substitute. 

Future opportunities/challenges 

With the recent public surge in interest of plant-based alter-
natives, the outlook of better quality products is promising. 
Still, there are several hurdles that need to be overcome, in 
order to create ‘true alternatives’. Nutritional values are 
hard to reach without additives such as B12 and calcium,9 

texture of cheese alternatives is difficult due to the lack of 
casein proteins in plants. Likewise, it is complicated to 
correctly balance the flavor profiles of meat analogues 
due to the complicated landscape of various contributing 
compounds.24 Several start-up companies and non-profit 
organisations, such as Perfect Day and Real Vegan Cheese, 
are already trying to tackle many of these obstacles through 
genetically modified yeast or bacteria producing the 
main milk protein casein, enabling a way of producing 
vegan alternatives. But this is still very much on a theoreti-
cal stage, and a complicated procedure. The use of plant- 
derived, non-modified microbes could still prove useful in 
this regard. Projects such as the Mass Experiment and large 
sourdough starter culture study18 has proven that CS is a 
strong tool, and that nature still holds more potential in 
terms of new tools for food fermentation. Hopefully future 
plant-based fermentation research will pave the way for new 
applications. 
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Congratulations to Professor Peter Timms on being honoured 
as a Queensland Great  

The ASM congratulates Professor Peter Timms on being 
listed as one of eight Queensland Greats for the 2022 
award round. Peter, who is based at the University of the 
Sunshine Coast, is a world expert in chlamydia infections in 
both humans and animals. He is leading a vaccine develop-
ment program to safeguard koalas from extinction. 

This year alone, as many as 1000 wild koalas in south-east 
Queensland will be given a single-shot vaccine developed by 
Peter and his team as part of the largest-ever trial to combat 
the sexually transmitted disease chlamydia, which can lead to 
painful urinary tract infections, loss of bladder control, 
infertility, blindness and death. The vaccine provides three 
levels of protection to koalas: reduced infection levels circu-
lating in the population, reduced progression to clinical dis-
ease, and even reversal of existing cases of the disease. 

The Queensland Greats Award recognises extraordinary 
Queenslanders who have made a long-term contribution to, 
or whose achievements have significantly impacted, the 
history and development of Queensland. Peter’s achieve-
ments have been recognised with a commemorative plaque 
displayed proudly at Roma Street Parkland, Brisbane. 

Peter has also been a long-time member of ASM, serving 
on ASM’s National Council and then on the National 
Examinations and Qualifications Board for 10 years, initially 
as a member and then as Chair.  

Professor Peter Revill receives Queen’s Birthday Honour 

Microbiologist and virologist Professor Peter Revill has 
received an AM (Member in the General Division of the 
Order of Australia) in the Queen’s Birthday Honours for 
2022. Professor Revill, Molecular Research and 
Development Group Head at the Victorian Infectious 
Diseases Reference Laboratory (VIDRL), Royal Melbourne 
Hospital, at the Doherty Institute, was honoured for his 
significant service to microbiology and immunology research. 

Doherty Institute Director Professor Sharon Lewin con-
gratulated Professor Revill, noting his important contribu-
tion to hepatitis research. ‘Professor Revill’s research into 
the molecular virology of hepatitis B virus has advanced our 
understanding of this virus and his global leadership and 
advocacy has highlighted the importance of finding a cure 
for hepatitis B’, Professor Lewin said. 

Professor Revill’s work has focused on the molecular 
virology of hepatitis B virus (HBV) and played a key role 
in establishing the International Coalition to Eliminate 
Hepatitis B (ICE-HBV), in partnership with Professor 

Stephen Locarnini at VIDRL and Professor Fabien Zoulim 
at France’s National Agency for AIDS Research (ANRS). 

A Principal Research Fellow at the Department of 
Microbiology at the University of Melbourne, Professor 
Revill is also an executive mem-
ber of the Australian Centre for 
HIV and Hepatitis Virology, 
a member of the Australian 
Centre for Hepatitis Virology, 
the Australian Virology Society 
and the Victorian Infection and 
Immunity Network. Peter, along 
with Adam Taylor, is theme 
leader of virology for The 
Australian Society for 
Microbiology. 

This announcement is an edi-
ted version of the Doherty 
Institute’s media release.  
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