Supplementary material

Spatiotemporal ichthyofaunal dynamics in a permanently open estuary, Otago, New Zealand

Fasil Taddese^{A,B} and Gerard P. Closs^A

^ADepartment of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.

^BCorresponding author. Present address: School of Fisheries and Wildlife, Bahir Dar University,

PO Box 1901, Bahir Dar, Ethiopia. Email: wolfa164@student.otago.ac.nz

Table S1.Summary of similarity-percentage analysis (SIMPER) conducted on the Bray–Curtis
similarity matrix constructed from log(x+1)-transformed biological data

Differences in average abundances (i.e. log(x+1) of number of individuals of a species per seine haul) of species that contributed to the dissimilarities among upper, middle and lower reaches of the Waikouaiti Estuary. Differences between reaches are indicated in < and > signs. A cut-off value of 70% contribution

to dissimilarity was used

Species	Upper		Middle		Lower
Forsterygion nigripenne	0.04	<	4.11	>	0.88
Aldrichetta forsteri	0.00	<	1.30	>	0.74
Gobiomorphus cotidianus	2.16	>	0.84	>	0.07
Galaxias maculatus	1.09	>			0.00

Table S2.Summary of similarity-percentage analysis (SIMPER) on the Bray–Curtis similarity
matrix constructed from log(x+1)-transformed biological data

Differences in average abundances (i.e. log(x+1) of number of individuals of a species per seine haul) of species that contributed to the dissimilarities between spring, summer, autumn and winter seasons in the Waikouaiti Estuary. Differences among seasons are indicated in < and > signs. A cut-off value of 70% contribution to dissimilarity was used

Species	Spring		Summer		Autumn		Winter
Forsterygion nigripenne	0.97	<	2.00	<	2.03	>	1.90
Aldrichetta forsteri	0.85	<	1.51	>	0.33	>	0.04
Gobiomorphus cotidianus	1.51	>	0.71	<	1.26	>	0.42
Galaxias maculatus	0.30	<	1.66	>	0.24	>	0.05
Retropinna retropinna	0.14	<	1.08	>	0.35	>	0.10
Galaxiid sp.	0.64	>	0.00		0.00	<	0.29
Rhombosolea retiaria	0.19				0.17	<	0.22
Diplocrepis puniceus					0.00	<	0.19

Fig. S1. Ordination by non-metric multidimensional scaling (nMDS) of samples based on Bray–Curtis similarities calculated from log(x+1)-transformed biological data. Bubbles indicate salinity measurements superimposed on the nMDS plot. Symbols are labelled to highlight differences among upper, middle and lower reaches of the Waikouaiti Estuary.

Fig. S2. Ordination by non-metric multidimensional scaling (nMDS) of samples based on Bray–Curtis similarities calculated from log(x+1)-transformed biological data. Bubbles indicate turbidity (NTU) measurements superimposed on the nMDS plot. Symbols are labelled to highlight differences among upper, middle and lower reaches of the Waikouaiti Estuary.