Supplementary material

Biodiversity, trait composition and ecological functioning: impacts of coastal urbanisation on subtropical mudflats

Navodha G. Dissanayake^{A,B}, Christopher L. J. Frid^B and Bryony A. Caswell^{A,C,D}

^AEnvironmental Futures Research Institute, Griffith University, Gold Coast,

Parklands Drive, Qld 4222, Australia.

^BSchool of Environment and Sciences, Griffith University, Gold Coast,

Parklands Drive, Qld 4222, Australia.

^cDepartment of Geography, Geology and Environment, University of Hull, Cottingham Road, Hull, East Riding of Yorkshire, HU6 7RX, UK.

^DCorresponding author. Email: b.a.caswell@hull.ac.uk

The subtropical mudflat macrofaunal assemblages were sampled in selected 24 mudflats along southeast Queensland, Australia (Table S1). Anthropogenic activities have a profound impact on biodiversity and ecosystem functioning, and therefore, the coastal sub-catchments were categorised in to 4 urban land-uses (Fig. S1).

Geographic locations of the study site

Table S1. The geographic coordinates of the 24 subtropical mudflats along the south-eastQueensland coast (negative latitudes indicate S of the equator) (Fig. 1)

Site	Latitude (°)	Longitude (°)	Sub-catchment & (classification)	Sub-catchment
number				size (km ²)
1	-27.8222	153.0464	Cooboulture River Northern catchment (P)	12.59
2	-27.1747	153.0319	Deception Bay coastal drainage (R)	2.54
3	-27.1956	153.0431	Redcliffe Deception Bay (L_ind)	17.23
4	-27.2597	153.0747	Hays inlet (P)	78.81
5	-27.2775	153.0369	Pine River Northern catchment (P)	9.56
6	-27.3436	153.0933	Kedron Brook (H_ind)	59.23
7	-27.3425	153.1000	Kedron Brook (H_ind)	59.23
8	-27.3947	153.1391	Inter catchment (H_ind)	14.21
9	-27.3950	153.1583	Brisbane port (H_ind)	9.84
10	-27.3933	153.1689	Brisbane port (H_ind)	9.84
11	-27.4222	153.1706	Crab Creek (H_ind)	3.65
12	-27.4764	153.2033	Tarradarrapin creek (R)	14.22
13	-27.4808	153.2422	Hillard Creek (L_ind)	27.57
14	-27.5158	153.2622	Cleveland (R)	10.58
15	-27.5739	153.3056	Eprapah Creek (R)	38.70
16	-27.5622	153.3003	Eprapah Creek (R)	38.70
17	-27.6019	153.3019	Moogurrapum Creek (L_ind)	15.90
18	-27.6436	153.3119	Southern Redland coastal drainage (P)	8.62
19	-27.6589	153.3092	Southern Redland coastal drainage (P)	8.62
20	-27.7053	153.3239	Logan River lower catchment (L_ind)	192.35
21	-27.7178	153.3539	Logan River lower catchment (L_ind)	192.35
22	-27.7503	153.3511	Behm Creek (L_ind)	21.10
23	-27.8222	153.3781	McCoy's Creek (P)	10.06
24	-28.1069	153.4464	Tallebudgera Creek (R)	24.11

H_ind, high industry; L_ind, low industry; R, residential; P, peri-urban

Marine and Freshwater Research, 2020, 71, 1043–1061

Fig. S1. A schematic of the experimental design. Four sub-catchment categories were used, replicated at least 3 times with two sites of differing land use selected within each replicate sub-catchment. In total 24 field sites were used. (Note: it was not always possible to select both the residential–industry and natural–peri-urban sites within the same sub-catchment so overall 4–5 sub-catchments were used in each of the 4 categories). The four sub-catchment categories were: low-intensity Industrial (4–12% land use coverage), high-intensity industrial (>35% land use coverage), residential (53–90% land use coverage) and peri-urban (54–70% land use coverage). The replicated sub-catchments for each land use category were selected so that they were spatially distributed along the coast and not immediately adjacent to each other (except high industry which was unavoidable) maximising the spatial separation of replicates.

Macrofaunal assemblages of subtropical mudflats in south-east Queensland

A preliminary survey of macrofaunal assemblage was conducted at Tallebudgera Creek was used to determine the minimum number of box core samples that would best represent the assemblage of a given subtropical mudflat in south-east Queensland (Fig. S2).

Fig. S2. Species accumulation plot for macrofaunal benthos collected in 20 core samples ($0.018 \text{ cm}^2 \times 11\text{-cm}$ sediment depth) from the mid-intertidal mudflats at Tallebudgera Creek, south-east Queensland (January 2016). The observed species count (Sobs; green) plateaus after the 5th sample, thus a minimum of five box cores are required to represent the benthic macrofaunal assemblage. UGE, Ugland, Gray and Ellingsen (Ugland *et al.* 2003); MM, Michaelis-Menton.

Table S2. The results of SIMPER to compare macrofaunal species composition between winter2016 and summer 2017 across the 24 mudflats in south-east Queensland

Species that contributed more that >90% to the cumulative dissimilarity between the two seasons are

shown.

Species	Mean abundance (individuals		Individual contribution	Cumulative contribution	
	m	l ⁻²)	(%)	(%)	
	Winter 2016	Summer 2017			
Hiatula alba	2.06	2.7	5.25	5.25	
Barantolla lepte	2.47	2.6	4.69	9.94	
Magelona dakini	2.02	1.99	4.00	13.95	
Nematoda	1.36	2.06	3.96	17.90	
Marcia hiantina	1.21	1.8	3.94	21.84	
Haminoea fusca	1.03	1.38	3.45	25.29	
Notomastus torquatus	1.80	2.16	3.39	28.68	
Aglaophamus	2.92	2.89	3.19	31.87	
australiensis					
Victoriopisa	0.70	1.1	3.18	35.06	
australiensis					
Armandia intermedia	0.91	1.42	3.09	38.15	
Mactra maculata	1.02	1.11	3.07	41.22	
Phyllodoce	1.07	1 19	2.89	44.11	
novaehollandiae	1.07	1.17	2.09		
Owenia australis	2.04	2 24	2 79	46 91	
Macrophthalmus	1 51	1.98	2.72	49 69	
satosus	1.51	1.90	2.76	+9.09	
Flnhidium discoidala	0.32	11	2 69	52 38	
A cotas siboggo	0.32	0.06	2.09	55.03	
Aceles sloogue	1.50	0.90	2.03	57.65	
Lumbrin orig totrauna	0.26	1.02	2.02	57.05	
	0.30	0.90	2.30	00.13	
Austrationerets enterst	0.42	0.8	2.22	62.57	
Myrianiaa australiensis	0.39	0.78	2.10	64.47	
Pyrazus ebeninus	1.27	1.44	2.00	66.46	
Glycera americana	0.28	0.77	1.99	68.46	
Leitoscoloplos	0.48	0.72	1.99	70.45	
bifurcatus	0.50	0.61	1.0.5	50.44	
Australoplax tridentata	0.53	0.61	1.96	72.41	
Uca vomeris	0.44	0.7	1.94	74.35	
Metapenaeus	0.24	0.61	1.72	76.07	
endeavouri					
Nemertea	0.26	0.7	1.72	77.80	
Conuber sordidum	0.74	0.98	1.65	79.45	
Prionospio	0.32	0.5	1.53	80.98	
queenslandica					
Stenothoe miersi	0.06	0.62	1.4	82.38	
Alpheus richardsoni	0.24	0.48	1.38	83.76	
Sternaspis scutata	0.18	0.5	1.37	85.13	
Chaenostoma	0.41	0.39	1.37	86.50	
punctulatum					
Laternula anatina	0.18	0.4	1.22	87.72	
Lutraria impar	0.19	0.43	1.21	88.93	
Eurysyllis tuberculata	0.18	0.33	1.05	89.98	
Marphysa mullawa	0.30	0.24	1.05	91.03	

Fig. S3. Mean (\pm s.e.m.) water quality parameters (data from Ecosystem Health Monitoring Program 2017) between the four sub-catchment land-use categories in winter 2016 and summer 2017 (A) dissolved oxygen (DO) content, (B) dissolved oxygen (DO) saturation (at 17°C winter, 26°C in summer) (C) mean turbidity, and (D) mean chlorophyll-*a* content. Mean (\pm s.e.m.) water quality parameters (data from Ecosystem Health Monitoring Program 2017) between the two different local land-use categories (peri-urban and industrial–residential) (E) dissolved oxygen (DO) content, (F) dissolved oxygen (DO) saturation (Temperature in winter = 17°C, summer = 26°C), (G) turbidity and (H) chlorophyll-*a* concentration in winter 2016 and summer 2017. NTU, Nephelometric Turbidity Units.

Table S3. Results from one-way ANOVA to compare sediment parameters of the 24 mudflatsand water quality parameters (measured adjacent, <4 km, to the 22 of the sites) (Ecosystem</td>Health Monitoring Program 2017) between the four sub-catchment land-use categories, localland-use categories and 5 urban pressures in winter and summer

The water quality data were collected monthly from 2006 to 2015 (Ecosystem Health Monitoring Program 2017). Data were only available for 22 sites (data was not available for 2 sites belonging to peri-urban sub-catchment category). Bonferroni *P*-value in parentheses. OM, organic matter

Environmental parameters	ental parameters Winter 2016		Summer 2017		
	F	P	F	P	
Sub-catchment land-use categories					
Sediment parameters					
RDL depth	1.242	0.321	1.880	0.166	
Chlorophyll-a	1.746	0.190	1.201	0.335	
Organic matter	1.436	0.262	3.035	0.053	
Silt and clay	2.598	0.081	1.540	0.235	
Water quality parameters					
Dissolved oxygen content	0.207	0.890	0.463	0.712	
Dissolved oxygen saturation	0.435	0.730	0.635	0.602	
Turbidity	1.135	0.362	3.156	0.050 (0.062)	
Chlorophyll-a	4.143	0.021 (0.058)	2.382	0.103	
Local land-use categories					
Sediment parameters					
RDL depth	1.732	0.202	2.082	0.163	
Chlorophyll-a	0.662	0.425	1.004	0.327	
Organic matter	0.107	0.747	0.660	0.425	
Silt and clay	0.795	0.382	1.858	0.187	
Water quality parameters					
Dissolved oxygen content	0.392	0.538	0.144	0.708	
Dissolved oxygen saturation	0.458	0.506	0.299	0.590	
Turbidity	1.643	0.215	2.302	0.145	
Chlorophyll-a	0.101	0.754	3.695	0.065	
Agriculture urban pressure					
Sediment parameters					
RDL depth	0.963	0.398	0.988	0.389	
Chlorophyll-a	0.716	0.500	0.298	0.746	
Organic matter	1.297	0.294	0.335	0.719	
Silt and clay	0.385	0.685	0.188	0.830	
Water quality parameters					
Dissolved oxygen content	0.755	0.484	0.480	0.626	
Dissolved oxygen saturation	1.068	0.363	0.711	0.504	
Turbidity	0.858	0.440	2.003	0.162	
Chlorophyll-a	1.622	0.224	3.090	0.069	
OM enrichment urban pressure					
Sediment parameters					
RDL depth	0.260	0.773	0.104	0.902	
Chlorophyll-a	0.883	0.428	0.402	0.674	
Organic matter	1.995	0.161	3.770	0.040 (0.056)	
Silt and clay	0.475	0.629	0.028	0.972	
Water quality parameters					
Dissolved oxygen content	0.327	0.725	0.292	0.750	
Dissolved oxygen saturation	0.153	0.859	0.061	0.941	
Turbidity	1.330	0.288	0.654	0.531	
Chlorophyll-a	0.600	0.559	0.576	0.572	
Manufacturing urban pressure					
Sediment parameters	0.102	0.000	0.01.6	0.007	
RDL depth	0.103	0.903	0.016	0.985	
Chlorophyll-a	0.330	0.723	0.709	0.504	
Organic matter	0.512	0.606	1.703	0.206	

Environmental parameters	Wint	Winter 2016		Summer 2017	
-	F	Р	F	Р	
Silt and clay	0.581	0.568	0.661	0.527	
Water quality parameters					
Dissolved oxygen content	0.413	0.668	0.083	0.920	
Dissolved oxygen saturation	0.223	0.802	0.051	0.951	
Turbidity	0.316	0.733	0.049	0.952	
Chlorophyll-a	0.559	0.581	0.224	0.803	
Residential urban pressure					
Sediment parameters					
RDL depth	0.380	0.688	0.690	0.513	
Chlorophyll-a	0.599	0.559	0.205	0.816	
Organic matter	0.417	0.664	0.893	0.424	
Silt and clay	0.239	0.790	0.114	0.893	
Water quality parameters					
Dissolved oxygen content	0.950	0.404	0.891	0.427	
Dissolved oxygen saturation	1.182	0.328	1.099	0.353	
Turbidity	0.595	0.562	0.882	0.430	
Chlorophyll-a	2.009	0.162	0.427	0.658	
Utility urban pressure					
Sediment parameters					
RDL depth	0.287	0.753	0.342	0.714	
Chlorophyll-a	1.098	0.352	0.719	0.499	
Organic matter	0.053	0.948	0.157	0.856	
Silt and clay	0.746	0.486	0.513	0.606	
Water quality parameters					
Dissolved oxygen content	0.650	0.533	0.069	0.934	
Dissolved oxygen saturation	0.546	0.588	0.144	0.867	
Turbidity	0.123	0.885	0.111	0.896	
Chlorophyll-a	1.885	0.179	1.018	0.380	

Marine and Freshwater Research, 2020, **71**, 1043–1061 https://doi.org/10.1071/MF19242

© CSIRO 2019

Table S4. Results of two-way ANOVA to compare the number of individuals, species richness, Shannon–Weiner diversity and evenness of mudflat macrofaunal assemblages between the four sub-catchment land-use categories, local land-use categories or the interaction between subcatchment and local land-use in winter or summer

Metric		Winter			Summer		
	F	df (<i>n</i>)	Р	F	df (<i>n</i>)	Р	
Individuals m ⁻²							
Main effect: Sub-catchment land use categories	0.637	3 (6)	0.602	0.508	3 (6)	0.682	
Main effect: local land use	1.184	1 (12)	0.293	0.147	1 (12)	0.707	
Interaction: sub-catchment v. local land use	1.112	3 (24)	0.373	1.889	3 (24)	0.172	
Species richness							
Main effect: Sub-catchment land use categories	1.067	3 (6)	0.391	1.005	3 (6)	0.416	
Main effect: local land use	2.527	1 (12)	0.131	1.246	1 (12)	0.281	
Interaction: sub-catchment v. local land use		3 (24)	0.554	2.195	3 (24)	0.128	
Shannon–Weiner							
Main effect: Sub-catchment land use categories	1.195	3 (6)	0.343	1.082	3 (6)	0.385	
Main effect: local land use	1.878	1 (12)	0.189	1.156	1 (12)	0.298	
Interaction: sub-catchment v. local land use	0.480	3 (24)	0.701	1.524	3 (24)	0.246	
Pielou's evenness							
Main effect: Sub-catchment land use categories	0.020	3 (6)	0.996	0.914	3 (6)	0.456	
Main effect: local land use	0.050	1 (12)	0.826	0.004	1 (12)	0.950	
Interaction: sub-catchment v. local land use	2.348	3 (24)	0.111	2.535	3 (24)	0.093	

Table S5. Results of one-way ANOSIM to compare the species and trait compositional differences between the three varying intensities of the proportional coverage in each urban pressure e.g. agriculture, organic matter (OM) enrichment industries, manufacturing, residential and utilities

Urban pressure	Winter 2016		Summer 2017	
	Global R	Р	Global R	Р
Species composition				
Agriculture	-0.155	0.928	-0.202	0.985
OM enrichment	0.247	0.006*	0.184	0.034*
Manufacturing	-0.027	0.569	0.039	0.350
Residential	-0.250	0.988	-0.072	0.696
Utility	-0.057	0.683	-0.096	0.773
Trait composition				
Agriculture	-0.142	0.962	0.05	0.298
OM enrichment	0.144	0.051	-0.026	0.579
Manufacturing	0.104	0.133	0.107	0.108
Residential	-0.057	0.681	0.054	0.283
Utility	0.04	0.33	0.153	0.084

Significant differences are denoted by *, P < 0.05

○ Reference (0-1.7% manufacturing) ■ 2.0-4.3% manufacturing ▲ 35-58% manufacturing

○ Reference (0-15% residential) ■ 20-57% residential ▲ 70-90% residential

Fig. S4. nMDS ordination of the Bray-Curtis similarity (log(x+1) transformed) of the south-east Queensland macrofaunal mudflat assemblage taxonomic composition between sub-catchments with reference, medium and high cover of 4 urban pressures (of the total sub-catchment area) (A) agriculture in winter, (B) agriculture in summer, (C) manufacturing in winter, (D) manufacturing in summer, (E) residential in winter, (F) residential in summer, (G) utilities in winter and (H) utilities in summer.

Site	Sub-catchment (classification)	Sub-catchment with	Category
number		enriching industry (%)	
1	(a) Caboolture River Northern catchment (P)	0.00	<1.3% OM
2	(b) Deception Bay coastal drainage (R)	0.81	<1.3% OM
3	(c) Redcliffe Deception Bay (L_ind)	0.00	<1.3% OM
4	(d) Hays inlet (P)	1.25	<1.3% OM
5	(e) Pine River Northern catchment (P)	2.28	2–3% OM
6	(f) Kedron Brook (H_ind)	1.36	<1.3% OM
7	(f) Kedron Brook (H_ind)	1.36	<1.3% OM
8	(g) Inter catchment (H_ind)	1.24	<1.3% OM
9	(g) Brisbane port (H_ind)	0.00	<1.3% OM
10	(i) Brisbane port (H_ind)	0.00	<1.3% OM
11	(i) Crab Creek (H_ind)	3.55	3.5–7% OM
12	(j) Tarradarrapin creek (R)	2.59	2–3% OM
13	(k) Hillard Creek (L_ind)	4.51	3.5–7% OM
14	(l) Cleveland (R)	0.00	<1.3% OM
15	(m) Eprapah Creek (R)	3.52	3.5–7% OM
16	(m) Eprapah Creek (R)	3.52	3.5–7% OM
17	(n) Moogurrapum Creek (L_ind)	2.52	2–3% OM
18	(o) Southern Redland coastal drainage (P)	7.00	3.5–7% OM
19	(o) Southern Redland coastal drainage (P)	7.00	3.5–7% OM
20	(p) Logan River lower catchment (L_ind)	2.54	2–3% OM
21	(p) Logan River lower catchment (L_ind)	2.54	2–3% OM
22	(q) Behm Creek (L_ind)	5.02	3.5–7% OM
23	(r) McCoy's Creek (P)	0.27	<1.3% OM
24	(s) Tallebudgera Creek (R)	0.61	<1.3% OM

Table S6. The proportion of organic matter (OM) enriching industries of each sub-catchment area at three different levels of proportional cover of the OM enriching industries in each sub-catchment (reference <1.3°C)

Fig S5. Median (±interquartile range) trait diversity for macrofaunal assemblages of mudflats in the (A) four different sub-catchment land-use categories and (B) local land-use categories in winter 2016 and summer 2017.

Fig. S6. nMDS ordination of the Bray–Curtis similarity of the south-east Queensland macrofaunal mudflat assemblage trait composition between sub-catchments with reference, medium and high cover of 5 urban pressures (of the total sub-catchment area) (A) agriculture in winter, (B) agriculture in summer, (C) organic matter enrichment in winter, (D) organic matter enrichment in summer, (E) manufacturing in winter, (F) manufacturing in summer, (G) residential in winter, (H) residential in summer, (I) utilities in winter and (J) utilities in summer.

References

Ecosystem Health Monitoring Program (2017). 'Ecosystem Health Monitoring Program: Estuarine–Marine EHMP Data.' (National Research Infrastructure for Australia: xxx, XXX, Australia.)

Ugland, K. I., Gray, J. S., and Ellingsen, K. E. (2003). The species–accumulation curve and estimation of species richness. *Journal of Animal Ecology* **72**, 888–897. doi:10.1046/j.1365-2656.2003.00748.x