Supplementary material

Friend or foe? Development of odour detection, differentiation and antipredator response in an embryonic elasmobranch

Connor R. Gervais^{A,C}, Tiffany Nay^B and Culum Brown^A

^CCorresponding author. Email: cgervais9249@gmail.com

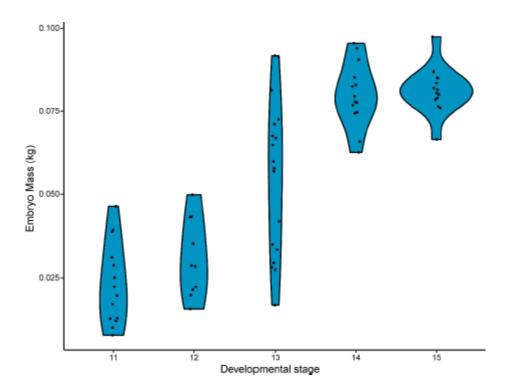


Fig. S1. Violin plots depict the embryo mass (excluding external yolk source) for Port Jackson sharks (n = 14) across developmental stages (see Rodda and Seymour 2008).

^ADepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

^BARC Centre of Excellence for Coral Reef Studies, James Cook University, James Cook Drive, Townsville, Qld 4811, Australia.

Table S1. Top linear mixed model (LMM) model selections

The top-ranked model is in bold and was determined by the lowest AIC score (Akaike's information criterion). k is the number of model parameters and Δ AIC is the difference between the current model and the top-ranked model. All models (except where specifically stated) include Individual and Tank as a random effect

Model	k	AIC	ΔΑΙС
Oxygen Uptake Rate [Gaussian distribution (identity link)]			
~Cue × Developmental Stage	7	1083	0
~Cue	5	1103	19.3
~1 (Intercept-only)	3	1111	28
~Stage	5	1112	28.5
~CUE × Developmental Stage (No Random effects)	4	1158	75.1

Table S2. Oxygen uptake rates ($\dot{M}O_{2Rest}$, mg O_2 kg^{-0.86} h⁻¹) over embryonic development

Mean oxygen uptake values (±s.e.m.) are provided in bold. Tukey *post hoc* analyses indicate pairwise comparisons between developmental stages. Asterisks (*) denote significant differences

Stage	11	12	13	14	15
11	44.46 ± 3.12				
12	P < 0.001* z = 5.11	64.21 ± 3.44			
13	P = 0.75	P < 0.001	48.62 ± 3.05		
	z = 7.73	z = -3.90			
14	P < 0.01*	P < 0.001*	P < 0.001	34.90 ± 1.69	
	z = -3.30	z = -8.41	z = -4.51		
15	P = 0.82	P = 0.001*	P = 0.99	P < 0.001*	47.84 ± 2.35
	z = 1.07	z = -4.04	z = -0.14	z = 4.38	

Reference

Rodda, K. R., and Seymour, R. S. (2008). Functional morphology of embryonic development in the Port Jackson shark *Heterodontus portusjacksoni* (Meyer). *Journal of Fish Biology* **72**(4), 961–984. doi:10.1111/j.1095-8649.2007.01777.x