Supplementary material

Diel vertical movements of a coastal predator, the roosterfish (Nematistius pectoralis)

Jeremy J. Vaudo^{A,D}, Ryan K. Logan^A, Bradley M. Wetherbee^{A,B}, Jessica C. Harvey^C, Guy C. McN. Harvey^A and Mahmood S. Shivji^A

^AGuy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL 33004, USA.

^BDepartment of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.

^CGuy Harvey Ocean Foundation, George Town, Grand Cayman, Cayman Islands.

^DCorresponding author. Email: jvaudo@nova.edu

Residual plots for best fit GAMM predicting roosterfish (*Nematistius pectoralis*) minimum depth over the course of the day. Model was fit using a Gamma distribution and log link.

Residual plots for best fit GAMM predicting roosterfish (*Nematistius pectoralis*) mean depth over the course of the day. Model was fit using an Inverse Gaussian distribution and log link.

Residual plots for best fit GAMM predicting roosterfish (*Nematistius pectoralis*) maximum depth over the course of the day. Model was fit using a Gamma distribution and log link.

Residual plots for best fit GAMM predicting roosterfish (*Nematistius pectoralis* vertical distance traveled over the course of the day. Model was fit using a Gamma distribution and log link.

Residual plots for best fit GAMM predicting roosterfish (*Nematistius pectoralis*) activity over the course of the day. Model was fit using an Inverse Gaussian distribution and log link.