Supplementary material

Geostatistical tools to assess shifts in recreational fishing

Shannon J. Burchert^{A,C}, Glenn A. Hyndes^A, Karina L. Ryan^B and Ute Mueller^A

^AEdith Cowan University, School of Science, 270 Joondalup, WA 6027, Australia.

^BDepartment of Primary Industries and Regional Development, PO Box 20,

North Beach, WA 6920, Australia.

^cCorresponding author. Email: <u>s.burchert@ecu.edu.au</u>

Fig. S1. Study area within the West Coast Bioregion of Western Australia with management zones for the West Coast Demersal Scalefish Resource

Reference application	Spatial indices
Capture and detect spatial changes in European Hake in the Bay of Biscay through time using trawl survey data to inform stock assessments and quota allocation (Woillez <i>et al.</i> 2005).	CG, I, An, GIC, LIC, PA, SA, EA, NP
Demonstrating the ability of various indices to describe various fisheries using demersal trawl, dredge and acoustic survey d ata (Petitgas <i>et al.</i> 2017).	CG, I, An, GIC, LIC, PA, SA, EA, NP
Identify fish distribution trends in South Africa using three decades of demersal trawl survey data (Currie et al. 2019).	CG
Sum marise the spatial distribution of saucer scallop recruits and residuals in Shark Bay, Western Australia using trawl surve y data (Mueller <i>et al.</i> 2012).	CG, I, An
Quantify the spatial overlap of the yellow tail flounder and the American plaice in the Southern Grand Banks area using trawl survey data (Kulka <i>et al.</i> 2003).	CG, I, An, GIC, NP
Detect changes in the diversity distribution of demersal species across survey years in Western Australia using recreational fishing data (Aidoo 2016).	CG, GIC, LIC
Assess associations between eight demersal species distributions (juvenile and adult) with habitat characteristics in the Bay of Biscay from trawl survey data (Persohn <i>et al.</i> 2009).	SA
Develop map of spatially varying fish stocks with high-density values in the Bay of Biscay from fish stock acoustic survey data (Pierre Petitgas <i>et al.</i> 2018).	NP

Table S1. Spatial indices application with reference to relevant studies.

Centre of gravity (CG), inertia (I), anisotropy (An), global index of collocation (GIC), local index of collocation (LIC), positive area (PA), spreading area (SA),

equivalent area (EA) and number of spatial patches (NP).

 Survey year	Min.	Max.	Mean	s.d.	CV	Q1	Median	Q3
All retained	demers	al specie	es					
2011/12	0	1.2	0.2	0.2	0.8	0.1	0.2	0.3
2013/14	0	1.3	0.3	0.2	0.8	0.1	0.2	0.3
2015/16	0	1.1	0.3	0.2	0.7	0.1	0.2	0.3
2017/18	0	1.3	0.3	0.2	0.8	0.1	0.2	0.3
All released demersal species								
2011/12	0	1.9	0.4	0.3	0.9	0.2	0.3	0.5
2013/14	0	4.2	0.4	0.5	1.3	0.2	0.3	0.4
2015/16	0	7.3	0.4	0.8	1.9	0.2	0.3	0.4
2017/18	0	1.6	0.3	0.3	0.9	0.2	0.3	0.4
Retained We	est Aust	ralian dl	hufish					
2011/12	0	0.7	0.1	0.1	1.4	0	0	0.1
2013/14	0	1.3	0.1	0.2	1.8	0	0	0.1
2015/16	0	0.6	0.1	0.1	1.1	0	0.1	0.1
2017/18	0	0.4	0.1	0.1	0.9	0	0.1	0.1
Released We	est Aust	ralian dl	hufish					
2011/12	0	0.8	0.1	0.1	1.3	0	0.1	0.2
2013/14	0	2	0.2	0.3	1.9	0	0.1	0.2
2015/16	0	3.6	0.2	0.4	2.2	0	0.1	0.2
2017/18	0	0.6	0.1	0.1	1.2	0	0.1	0.2
Retained Bal	ldchin g	roper						
2011/12	0	0.4	0.1	0.1	1.7	0	0	0.1
2013/14	0	0.3	0	0.1	1.6	0	0	0.1
2015/16	0	0.3	0	0.1	1.4	0	0	0.1
2017/18	0	1	0.1	0.1	2.2	0	0	0.1
Released Baldchin groper								
2011/12	0	1	0	0.1	3.4	0	0	0
2013/14	0	0.3	0	0.1	2.4	0	0	0
2015/16	0	0.2	0	0.1	1.7	0	0	0
2017/18	0	09	0	0.1	3	0	0	0

 Table S2. Summary statistics for retained and released CPUE across species and years. Minimum (Min.), maximum (Max.), standard deviation (s.d.), coefficient of variation (CV), the lower quartile (Q1) and the upper quartile (Q3).

Fig. S2. Maps showing the number of events with fishers exceeding their mixed demersal species bag limit per block across survey years 2011/12, 2013/14, 2015/16 and 2017/18 (left to right) in the West Coast Bioregion.

Year	CPUE	Demersal	WA dhufish	Baldchin groper					
2011/12	0.001	36(31)	25(18)	45 (68)					
	0.02	50(43)	39 (25)	60 (82)					
	0.08	79 (74)	73 (51)	81 (92)					
	0.2	95 (89)	93 (85)	92 (94)					
	0.4	99 (96)	98 (96)	99 (99)					
	0.8	100 (100)	99 (98)	100 (100)					
2013/14	0.001	33 (33)	17(16)	43 (61)					
	0.02	42 (35)	24 (21)	64 (76)					
	0.08	79 (62)	67 (50)	84 (92)					
	0.2	93 (87)	95 (82)	96 (97)					
	0.4	98 (97)	99 (95)	99 (99)					
	0.8	99 (98)	100 (98)	100 (100)					
2015/16	0.001	18 (24)	11(9)	38 (56)					
	0.02	35 (31)	19(15)	54(72)					
	0.08	67(71)	72(39)	82 (85)					
	0.2	90 (89)	97 (79)	94 (98)					
	0.4	97 (94)	99 (93)	99 (99)					
	0.8	100 (98)	100 (98)	100 (100)					
2017/18	0.001	19(19)	10(17)	33 (47)					
	0.02	40 (24)	19 (23)	53 (67)					
	0.08	79 (68)	64 (56)	81 (91)					
	0.2	96 (94)	97 (85)	96 (98)					
	0.4	98 (96)	99 (95)	98 (99)					
	0.8	99 (100)	100(100)	100 (100)					

Table S3. Indicators cut-offs with associated percentiles for retained and released (in brackets) demersal, WA dhufish and Baldchin groper CPUEs for survey years 2011/12, 2013/14, 2015/16 and 2017/18

Fig. S3. Plots represent variogram ratios, $P[Z(u) \in A_i | Z(u) \in A_i, Z(u+h) \notin A_i]$, for all retained demersal CPUE in survey years 2011/12, 2013/14, 2015/16 and 2017/18 used to define the hotspot cut-off.

Fig. S4. Plots represent variogram ratios, $P[Z(u) \in A_i | Z(u) \in A_i, Z(u+h) \notin A_i]$, for all released demersal CPUE in survey years 2011/12, 2013/14, 2015/16 and 2017/18 used to define the hotspot cut-off.

Fig. S5. Plots represent variogram ratios, $P[Z(u) \in A_j | Z(u) \in A_i, Z(u+h) \notin A_i]$, for retained WA dhufish CPUE in survey years 2011/12, 2013/14, 2015/16 and 2017/18 used to define the hotspot cut-off.

Fig. S6. Plots represent variogram ratios, $P[Z(u) \in A_j | Z(u) \in A_i, Z(u+h) \notin A_i]$, for released WA dhufish CPUE in survey years 2011/12, 2013/14, 2015/16 and 2017/18 used to define the hotspot cut-off.

Fig. S7. Plots represent variogram ratios, $P[Z(u) \in A_i | Z(u) \in A_i, Z(u+h) \notin A_i]$, for retained Baldchin groper CPUE in survey years 2011/12, 2013/14, 2015/16 and 2017/18 used to define the hotspot cut-off.

Fig. S8. Plots represent variogram ratios, $P[Z(u) \in A_j | Z(u) \in A_i, Z(u+h) \notin A_i]$, for released Baldchin groper CPUE in survey years 2011/12, 2013/14, 2015/16 and 2017/18 used to define the hotspot cut-off.

Fig. S9. Maps of variance associated with probability maps of retained demersal species, WA dhufish and Baldchin groper CPUE hotspots estimated on a 5×5 -nautical mile grid in the West Coast Bioregion of Western Australia from 2011/12 to 2017/18 (left to right).

Fig. S10. Maps of variance associated with probability maps of released demersal species, WA dhufish and Baldchin groper CPUE hotspots estimated on a 5×5 -nautical mile grid in the West Coast Bioregion of Western Australia from 2011/12 to 2017/18 (left to right).

References

- Aidoo EN (2016) Geostatistical modelling of recreational fishing data: a fine-scale spatial analysis. PhD Thesis, Edith Cowan University. Available at https://ro.ecu.edu.au/theses/1813/
- Currie JC, Thorson JT, Sink KJ, Atkinson LJ, Fairweather TP, Winker H (2019) A novel approach to assess distribution trends from fisheries survey data. *Fisheries Research* **214**, 98–109 doi:10.1016/j.fishres.2019.02.004.
- Kulka DW, Hendrickson L, Bez N, Schlitzer R, Black GAP, Simpson MR (2003) Report of the workshop on mapping and geostatistical methods for fisheries stock assessment. *Northwest Atlantic Fisheries Organization Scientific Council Studies* **39**, 1–43.
- Mueller U, Kangas M, Sporer E, Caputi N (2012) Variability in the spatial and temporal distribution of the saucer scallop, *Amusium balloti*, in Shark Bay – management implications. *Marine and Freshwater Research* 63, 1152–1164. doi:10.1071/MF12051
- Persohn C, Lorance P, Trenkel VM (2009) Habitat preferences of selected demersal fish species in the Bay of Biscay and Celtic Sea, North-East Atlantic. *Fisheries Oceanography* **18**(4), 268–285. doi: 10.1111/j.1365-2419.2009.00515.x
- Petitgas P, Woillez M, Rivoirard J, Renard D, Bez N (2017) Handbook of geostatistics in R for fisheries and marine ecology. ICES Cooperative Research Report 338, International Council for the Exploration of the Sea, Copenhagen, Denmark. doi:10.17895/ices.pub.3717
- Petitgas P, Woillez M, Doray M, Rivoirard J (2018) Indicator-based geostatistical models for mapping fish survey data. *Mathematical Geosciences* **50**(2), 187–208 doi:10.1007/s11004-018-9725-2.
- Woillez M, Petitgas P, Rivoirard J, Poulard J (2005) Indices for capturing spatial pattern and change across years of a fish population: an application on European Hake (*Merluccius merluccius*) in the Bay of Biscay. ICES Communication 33. Available at https://www.ices.dk/sites/pub/CM%20Doccuments/2005/L/L1605.pdf