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Abstract. Barriers to dispersal can disrupt gene flow between populations, resulting in genetically distinct populations.
Although many marine animals have potential for long-distance dispersal via a planktonic stage, gene flow among
populations separated by large geographic distances is not always evident. Polychaetes are ecologically important and

have been used as biological surrogates for marine biodiversity. Some polychaete species are used as bait for recreational
fisheries, with this demand supporting commercial fisheries for polychaetes to service the retail bait market. However,
despite their ecological and economic importance, very little is known about the life history or population dynamics of
polychaetes, and few studies have used genetic or genomic approaches to understand polychaete population connectivity.

Here, we investigate the population structure of one commonly collected beachworm species used for bait on the eastern
coast of Australia, namely, Australonuphis teres, by using genome-wide single-nucleotide polymorphism data. We
sampled A. teres from hierarchical nested spatial scales along 900 km of the coast in New South Wales. We identified six

genetic groups, but there was no clear geographic pattern of distribution. Our results suggest that there is considerable gene
flow among the sampled populations. These high-resolution genomic data support the findings of previous studies, and we
infer that oceanographic processes promote genetic exchange among polychaete populations in south-eastern Australia.
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Introduction

Life history, particularly the larval stage, and environmental

influences govern biodiversity and population structure in the
marine environment (Thorrold 2006; Chan et al. 2018).
Understanding population connectivity, size and structure is

critical for effective management of marine resources. Pelagic

larval duration along with physical and ecological processes
can greatly affect the likelihood of successful dispersal and

population connectivity for marine species (Thiel and Gutow
2005a, 2005b; Cowen and Sponaugle 2009; Riginos et al.

2011; Kinlan and Gaines 2003). Despite evidence of strong

population connectivity in some species (Shulman and
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Bermingham 1995; Roberts 1997; Cowen et al. 2007), many
other marine taxa, even those with apparently high dispersal

potential, show surprisingly little evidence for gene flow
among disjunct populations (Dibacco et al. 2006; Purcell et al.
2006; Froukh and Kochzius 2007; Marko et al. 2007; Temby

et al. 2007; Miller et al. 2009, 2014; Xuereb et al. 2018). There
is, thus, a growing recognition that marine systems are not all
open and interconnected (Dennis and Hellberg 2010; Karsenti

et al. 2011; Iacchei et al. 2013). Defining the scale of con-
nectivity and determining the factors that influence gene flow
are critical for understanding population dynamics and genetic
structure of marine species, and for developing effective

management strategies to mitigate anthropogenic effects on
populations and ecosystems (Giangrande et al. 2005; Waples
and Punt 2008).

Polychaete worms are common in intertidal ecosystems
(Cole et al. 2007, 2017), and are good indicators of species
richness and community patterns in benthic invertebrate assem-

blages (Olsgard and Somerfield 2000; Giangrande et al. 2005).
Indeed, polychaetes have been used as biological surrogates for
marine biodiversity (Olsgard et al. 2003; Shokri et al. 2009).
Among benthic groups, polychaetes are one of the best indica-

tors of environmental disturbance, because there are both
sensitive and tolerant species across pristine and heavily dis-
turbed habitats (Olsgard and Somerfield 2000). Polychaetes are

important members of the marine food chain; they can act as
predators, scavengers and grazers of diverse other organisms, or
as prey for a variety of bird, fish and crustacean species

(Fauchald and Jumars 1979; Jumars et al. 2015).
In addition to their ecological importance, many species of

polychaetes are an important bait resource for recreational

fishers (Cole et al. 2018). As with any fisheries resource,
management relies on information about stock size and popula-
tion connectivity (Cowen et al. 2007; Fogarty and Botsford
2007). In Australia, recreational and commercial fishers target

beachworms directly for bait or for sale into the bait market
respectively. Beachworms, including the ‘kingworm’ or
‘stumpy’ Australonuphis teres (Onuphidae), inhabit high-

energy sandy beaches from Maroochydore, Queensland to
Lakes Entrance, Victoria (Paxton 1979). Although little is
known about their population biology, they are thought to be

broadcast spawners, have been recorded to be sexually mature
at 420 mm in length (Paxton 1979), and are suspected to
breed multiple times a year (Paxton 1986). As adults, dispersal
of A. teres is relatively limited (Paxton 1979), with large

topographic structures (e.g. headlands and river mouths) that
separate sandy beaches acting as physical barriers to dispersal.

Despite their ecological and economic importance, few

population genetic (and fewer population genomic) studies
have yet been conducted for polychaetes. In one genetic
study from the USA, the baitworm Glycera dibranchiata

(Glyceridae) was inferred to have little connectivity among
populations within an estuary and between intertidal and
subtidal populations (Bristow and Vadas 1991). In contrast,

in Australia, a recent study of estuarine polychaetes found little
genetic differentiation among populations of the nephtyids
Aglaophamus australiensis and Nephtys longipes, from which
the authors inferred that pelagic larval dispersal is probably

mediated by ocean currents in these two species (Smith et al.

2015). However, this latter research was based only on small
fragments of mitochondrial and nuclear loci, which were not of

a high-enough resolution to enable assessment of whether
population connectivity was ongoing or merely recent. The
connectivity of populations of polychaetes along Australian

coasts, thus, remains largely unknown, yet, such knowledge is
of considerable importance for managing the sustainable
harvest of beachworms and other polychaete bait species.

Here, we use genomic approaches to investigate population
structure of the polychaete worm A. teres at multiple nested
spatial scales (i.e. sites separated by kilometres, beaches sepa-
rated by tens of kilometres, and regions separated by hundreds of

kilometres) along 900 km of the New SouthWales (NSW) coast
in Australia. We generated a single-nucleotide polymorphism
(SNP) dataset via genotype-by-sequencing. The three possible

findings are as follows: (1) genetic homogeneity in all A. teres
samples across spatial scales, which would indicate a single
panmictic population and considerable gene flow along the

coast, (2) genetically distinct populations of A. teres, indicating
negligible gene flow among populations, or (3) a mixed result,
with both similarities and differences among populations,
indicating some gene flow. This study is one of the first to

use large-scale genomic data to assess population connectivity
in polychaetes.

Materials and methods

Field methods for sampling Australonuphis teres

Populations of A. teres were sampled in the Eastern Warm
Temperate biogeographic zone of the NSW coast. Three bior-
egions were selected and we designated them as North, Central

and South, corresponding to the Tweed–Moreton (288S–
30.58S), Manning (30.58S–30.758S) and Batemans (34.68S–
36.68S) bioregions respectively. A fully nested design was used

to obtain samples of A. teres. In each of the three regions
(separated by hundreds of kilometres), two beaches (separated
by tens of kilometres), each with two randomly chosen sites

(separated by kilometres), 45 individuals were collected. The
posterior end (the last 20 mm of the body) was removed and
placed in 98% ethanol and stored below �188C for subsequent

analysis. Beaches were selected as those where commercial
harvesting of beachworms occurs (.0.6 t year�1 commercial
catch over the previous 2 years). Samples of the population of
A. tereswere obtained through beach sampling, whereby a mesh

bag containing a fish frame was dragged along the sand in the
swash zone to entice the worms to emerge, and any worms that
surfaced were collected by hand.

DNA extraction, library preparation and sequencing

Tissue samples were removed from ethanol, dried and sub-
sampled. DNAwas extracted with the Qiagen DNeasy 96 Blood

and Tissue Kit (Qiagen, Hilden, Germany) following the man-
ufacturer’s instructions. The quality and quantity of DNA were
evaluated by gel electrophoresis and Qubit fluorometer

(Invitrogen, Carlsbad, CA, USA). The 40 highest-yield extrac-
tions from each site were selected for sequencing, with a total of
480 individual A. teres being used in library preparation.

A genotyping-by-sequencing (GBS) approach to generate

sequence data was used, as applied in similarly non-model
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systems in the past, and following Fraser et al. (2018a) and
references therein. Briefly, GBS library preparation followed

standard protocols (Elshire et al. 2011) with minor modifica-
tions (Wilson et al. 2019). To each DNA sample, a uniquely
barcoded PstI adaptor was added (2.25 ng per sample; Morris

et al. 2011). Digestion was performed with 4 U PstI-HF (New
England Biolabs, MA, USA) in 1 � CutSmart Buffer, and
incubation at 378C for 2 h. Adapters were ligated with T4

DNA ligase in 1 � ligation buffer (New England Biolabs,
MA, USA) and incubated at 168C for 90 min (with 2 min at
378C every 30 min) and 808C for 30 min. Purification was
performed using a QiagenMinElute 96UF PCR Purification Kit

(Qiagen, Hilden, Germany), with elution in 25 mL 1 � TE.
Polymerase chain reactions (PCRs) were run on 50-mL volumes
containing 10 mL purified DNA, 1�MyTaqTMHSMasterMix

(Bioline, Sydney, Australia) and 1 mM each of PCR primers
50AATGATACGGCGACCACCGAGATCTACACTCTTTC-
CCTACACGACGCTCTTCCGATC*T and 50CAAGCAGA-
AGACGGCATACGAGATCGGTCTCGGCATTCCTGCTG-
AACCGCTCTTCCGATC*T (where * indicates phosphoro-
thioation) at 728C for 5 min, 958C for 60 s, and 24 cycles of
958C for 30 s, 658C for 30 s and 728C for 30 s, with a final

extension step at 728C for 5 min. Concentrations for each sample
were assessed using a LabChip GXII (Caliper Life Sciences,MA,
USA) and pooled equimolarly. A 200-base pair (bp) fraction

(fragment size 250–450 bp) of the pooled library was separated
via electrophoresis on a 1.5% agarose gel. Sequencing of DNA
from this size range was performed on one lane of a high-output

flowcell in an Illumina NextSeq 500 system (Illumina, CA, USA,
75 bp paired-end). The raw sequence data are available in the
NCBI Sequence Read Archive under BioProject: PRJNA512571

(http://www.ncbi.nlm.nih.gov/bioproject/512571).

Data analysis

Sequencing yielded 185 204 387 reads that were, on average,

76 bp long. The quality of the sequences was first assessed using
FASTQC (Andrews 2010), and SNPs were extracted using
STACKS 2.41 (Catchen et al. 2013). All scripts are available as

Supplementary Material to this paper.
Raw sequence reads were demultiplexed and quality filtered

using the process_radtags module in STACKS. As there is

no reference genome, SNP calling was performed using the
denovo_map.pl pipeline, using default parameter settings. After
removing low-quality individuals, SNPs with less than 60% of
individuals sequenced were discarded as likely collapsed

repeats. We explored the data following McGaughran et al.

(2019) in vcftools (Danecek et al. 2011) and filtered to have a
maximum of 50% of samples with missing genotypes, yielding

853 SNP loci for 273 samples.
The remaining analysis was performed in R, following

McGaughran et al. (2019), with all scripts used being available

in Supplementary Material. We used several packages, includ-
ing adegenet (Jombart 2008; Jombart and Ahmed 2011), vcfR
(Knaus and Grünwald 2017), poppr (Kamvar et al. 2014, 2015),

devtools (Wickham et al. 2019), hierfstat (Goudet 2005), ade4
(Chessel et al. 2004; Dray and Dufour 2007; Bougeard and Dray
2018), pegas (Paradis 2010), ggplot2 and ggbiplot (Wickham
2016), radiator (Gosselin 2019) and SeqVarTools (Gogarten

et al. 2019). We calculated pairwise Nei’s distance (Nei 1987)

and Weir and Cockerham’s Fst (Weir and Cockerham 1984)
values at three population levels, namely, region (n¼ 3), beach

(n¼ 6) and site (n¼ 12). We looked at the relationship between
geographical (all three levels independently) and both measures
of genetic differentiation by using a Mantel test. We used

principal component analysis (PCA) to visualise patterns in
the genetic data.

To further investigate connectivity and population structure,

we investigated partitioning of variance at the three hierarchically
sampled geographic levels (i.e. region, beach, site) by using an
analysis of molecular variance (AMOVA, Excoffier et al. 1992),
using the R packages poppr (Kamvar et al. 2014, 2015), adegenet

(Jombart 2008; Jombart and Ahmed 2011) and vcfR (Knaus and
Grünwald 2017). To assess statistical significance, a randomisa-
tion test was performed using 1000 permutations.

Population-structure analysis was performed using
fastSTRUCTURE ver. 2.3.4 (Pritchard et al. 2000; Falush
et al. 2003, 2007; Hubisz et al. 2009).We ran fastSTRUCTURE

with default settings for between 1 and 12 populations, chose the
model complexity to best explain the structure in the data, and
produced plots to visualise the admixture analyses.

Results and discussion

Our GBS dataset contained 853 SNPs for 273 A. teres from the

eastern coast of Australia. Genetic differentiation among popu-
lations inA. tereswas small or near negligible across the sampling
range. Model complexity of the fastSTRUCTURE analysis sug-

gested six genetic populations, but there was no relationship
between ‘genetic populations’ and geographic distribution
(Fig. 1). The PCA (Fig. 2) showed no geographic structuring and

each component represented less than 4% of the variation.
The lack of strong genetic differentiation was confirmed by

pairwise measures of genetic distance between populations
showing absent to negligible differentiation among populations

along the eastern coast of Australia, using both Nei’s genetic
distance and Weir and Cockerham’s Fst (Table 1).

The Mantel test showed no significant correlation between

the geographic and genetic distance matrix, Nei’s D �0.153
(P-value 0.672) andWeir andCockerham’s Fst�0.115 (P-value
0.587), further indicating that there was little genetic differenti-

ation among populations across our sampling range. An
AMOVA confirmed limited genetic structure across the sam-
pling range, with most variance being among samples within
beaches, and within samples (Table 2).

Using BayeScan ver. 2.1 (Foll and Gaggiotti 2008) to try to
partition variance between potentially adaptive and truly neutral
loci, we found that 12 SNPs showed an excess of differentiation

among the three regions (Fig. 3) and, thus, could be under
selection. In the absence of a reference genome, this number of
bi-allelic variants is not enough to enable us tomeaningfully assess

genetic structure from a neutral versus adaptive perspective.
Population genetic structure of sedentary marine species is

generally expected to be shaped by the dispersal ability of their

larvae (Levin 2006). Long-lived pelagic larvae can connect
populations through migration and gene flow, whereas species
with non-dispersive larvae might be expected to have geneti-
cally differentiated populations (Kesäniemi et al. 2012). How-

ever, there are notable exceptions to these generic expectations;
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for example, congeneric species with similar life-history traits

can show dissimilarities in population structure (Temby et al.

2007; Miller et al. 2009, 2014).
The reproduction and larval development of A. teres is not

well understood, but A. teres have been found with over 100 000
eggs in their body cavity (Paxton 1986), and mature gametes
have been found throughout the year, suggesting a long

spawning season (Paxton 1979). Exposure to a wide variety of

oceanographic and biological processes would occur over this
period, potentially influencing larval dispersal distance.

With these polychaetes increasingly being used as bait (Cole

et al. 2018), there is a growing need to understand their population
structure to support sustainable resource-management practices.
Our results suggested that despite movement throughout the
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sample range of this study, each geographic population has a

different, but not diagnostic, genetic composition, and there has
been bidirectional genetic mixing along the coast. This inference
is consistent with previous research along the same region on the

eastern coast ofAustralia, except for benthic estuarine polychaete
species, which were inferred to have high levels of gene flow
among populations (Smith et al. 2015). Although they live in

different habitats, A. teres and the two estuarine species studied
by Smith et al. (2015) are likely to be influenced by the same
ocean currents.

Most prior studies have found no or little genetic differentia-
tion among polychaete populations (e.g. Shen and Gu 2015;

Zaâbi et al. 2015; David et al. 2016). High levels of gene flow
were inferred between populations of two polychaetes, Laener-
eis culveri and Capitella nonatoi, living in lagoons in Brazil,
albeit with there being evidence of somewhat restricted gene

flow between particular populations (Seixas et al. 2018). How-
ever, in a similar area, Nunes et al. (2017) found strong genetic
differentiation between Phragmatopoma caudata polychaetes

from Florida and those from Brazil, suggesting a biogeographi-
cal barrier between these locations. Overall, most research
suggests that gene flow can be high in polychaetes, presumably

because of planktonic larval dispersal. However, most previous
studies have been limited to just one or a few markers, such as,
for example, COI (Chatzigeorgiou et al. 2015; David et al.

2016), 18S rRNA (Shen and Gu 2015; Sun et al. 2018), 28S

rRNA (Shen andGu 2015; Sun et al. 2018) and ITS (Nunes et al.
2017; Sun et al. 2018), whereas our study employed a genome-
wide approach with hundreds of SNP loci, which enhanced

confidence in our inferences.
The eastern coast of Australia appears to have few bio-

geographical barriers for marine coastal organisms with a

high dispersal ability (e.g. Coleman et al. 2013; Smith et al.

2015; Bellgrove et al. 2017). Despite the general southward
flow of the East Australian Current (EAC; Coleman et al.

2013), some small pelagic invertebrates have been inferred to
have travelled 1000 km north from their release site (Ruello
1975; Montgomery 1990). Northward movement probably
results from dispersal with counter-currents and local eddies

(Coleman et al. 2011, 2013). These oceanographic currents
could help explain the patchy distribution of A. teres, as the
eddies, together with other population processes, affect the

Table 2. Analysis of molecular variance (AMOVA) results, with P-values obtained by permutation tests as in Excoffier et al. (1992)

Source of variation d.f. Sum of squares Variance component Percentage of total variance P-value

Among regions 2.00 814.26 0.36 0.26 0.45

Among beaches within regions 3.00 993.03 1.19 0.86 0.09

Among sites within beaches 6.00 1349.64 1.28 0.93 ,0.01

Among samples within beaches 261.00 44 111.64 33.49 24.21 ,0.01

Within samples 273.00 27 853.33 102.03 73.75 ,0.01

Total 545 75 121.90 138.35 100
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Fig. 3. BayeScan results, showing 12 outlier single-nucleotide polymorph-

isms (SNPs) among the three regions at q-value of ,0.05. Dashed line

indicates q ¼ 0.05.

Table 1. Pairwise genetic distance between populations (beaches) along the eastern coast of Australia

Nei’s D is below the diagonal andWeir and Cockerham’s Fst is above the diagonal. CH, Crowdy Head; M,Moruya; SB, South Ballina;

SM, Seven Mile; SR, South-west Rocks; and W, Wooyung

W SB SR CH SM M

W – 0.015 0.003 0.007 0.008 0.011

SB 0.015 – 0.023 0.020 0.033 0.006

SR 0.003 0.023 – �0.003 0.008 0.005

CH 0.007 0.020 �0.003 – 0.014 0.008

SM 0.008 0.034 0.008 0.014 – 0.021

M 0.010 0.007 0.005 0.007 0.019 –
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spread, deposition and survival of pelagic larvae (Levin 2006;
Keane and Neira 2008; Chan et al. 2018). Other polychaete

worms respond to chemical cues from adults when settling
(Hsieh 1994), which could lead to density-dependent pro-
cesses, including density blocking, limiting gene flow

between connected populations (Waters et al. 2013; Fraser
et al. 2018b). As the carrying capacity of a beach or site is
approached, the rate of successful settlement of additional

larvae might diminish, restricting gene flow. In the case of
A. teres, the presence of six genetic groups could indicate that
past structure that has since been eroded by natural distur-
bance events (e.g. storms), changes in environmental condi-

tions affecting long-term rates of successful larval dispersal
(e.g. changes in currents and temperature regimes), anthropo-
genic disturbance (e.g. periods of heavy harvesting reducing

population densities and supporting successful recruitment),
or combinations of the above, allowing the observed diverse
lineages to establish at each site. Understanding the factors

affecting genetic diversity, and minimising anthropogenic
processes that could reduce diversity, should be a priority
for the ongoing sustainable management of these beachworm
populations. This study is one of the first population genomics

studies of polychaetes and has demonstrated the power of SNP
analyses in resolving fine-scale population structure. Geno-
mic tools can assist with testing evolutionary and ecological

questions for polychaetes globally.
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