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Abstract. Aquatic microbial ecosystems are increasingly under threat from human activities, highlighting the need to for
the development and application of biomonitoring tools that can identify anthropogenically induced stress across a wide

range of environments. To date, microbial biomonitoring has generally focussed on community composition and univariate
endpoints, which do not provide discrete information about how species both interact with each other and as a collective. To
address this, co-occurrence networks are being increasingly used to complement traditional community metrics.
Co-occurrence network analysis is a quantitative analytical tool that examines the interactions between nodes (e.g. taxa)

and their strengths. This information can be integrated and visualised as a network, whose characteristics and topological
structures can be quantified. To date, co-occurrence network analysis has rarely been applied to aquatic systems. Here we
explore the potential of co-occurrence networks as a biomonitoring tool in aquatic environments, demonstrating its capacity

to provide a more comprehensive view of how microbial, notably bacterial, communities may be altered by human
activities. We examine the key attributes of networks and providence evidence of how these may change as a response to
disturbances while also highlighting some of the challenges associated with making the approach routine.

Received 16 February 2022, accepted 25 February 2022, published online 16 November 2022

Introduction

Healthy aquatic ecosystems are pivotal for supporting life on
Earth, and of immense social, economic, cultural and environ-
mental value. However, the health of aquatic ecosystems is
being put at risk, due to the direct and indirect effects of human

activities (Halpern et al. 2008). With the growth of the human
population and the expansion of cities globally, pollution,
alterations to land use, climate change, overexploitation and

invasive species are having an increasingly pronounced detri-
mental effect on aquatic systems (Friedman et al. 2020). Indi-
vidually, and in concert, these anthropogenic stressors are

placing unprecedented pressure on all aquatic ecosystems,
eroding biodiversity and altering ecosystem functions and ser-
vices at an unparalleled scale and pace (Steffen et al. 2011).
Consequently, a deeper understanding of the potential impacts

and extent of human activities on aquatic ecosystems is perti-
nently needed to better inform management actions that are
capable of both protecting essential water resources, while also

supporting the growth and expansion of the human population.
Freshwater, estuarine and marine ecosystems are complex,

heterogeneous, and dynamic environments (Heino et al. 2015).

They are host to a great variety of species, with the majority of
their biomass, up to 90% (Costello et al. 2010; Snelgrove 2010)
being composed of microorganisms. Microorganisms, most

notably prokaryotes, provide invaluable functions including
carbon and nitrogen fixation and the remineralisation of organic
matter, as well as forming the basis of oceanic food webs

(Jeffries et al. 2016). The global carbon and nutrient cycles

are thus dependent on the activity of these microorganisms
(Azam and Malfatti 2007). As such, human induced changes to
aquatic microbiota can have secondary effects on productivity,
food-web structure and energy flow, and carbon export (Sagova-

Mareckova et al. 2021). Moreover, the microbiota of these
systems are highly responsive to local and global pressures,
because of their high metabolic and growth rates (Allison and

Martiny 2008). Consequently, the microbiota can be highly
influenced by the input of both organic and inorganic pollutants
(Holman et al. 2021; Sagova-Mareckova et al. 2021). For

example, it has been found that in an aquatic mesocosm,
bacterial community composition, structure and function can
be markedly altered by increasing concentrations of copper
(Sutcliffe et al. 2019; Codello 2021).

Microbial responses to stress, such as changes diversity,
composition and structure can be used to detect disturbances
in water ecosystems (Williams et al. 2014). Although the use of

aquatic biota as indicators of disturbance and ecological condi-
tion is an integral part of water quality and sediment monitoring
(Sun et al. 2012), to date, they are very eukaryotic centric, with

the routine monitoring of microorganisms, including bacteria,
archaea and protists, rarely employed (Bohan et al. 2017;
Sagova-Mareckova et al. 2021).

Indicators based on microorganisms can be selected from a
broad assortment of taxonomic groups and cover a wide variety
of functions and services (Aylagas et al. 2016). Microorganisms
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are highly sensitive and have an overall population that include
both niche specialists and generalist microbes (Bell and Bell

2021). The census of aquatic microorganisms is today possible
due to the development of molecular technologies like high
throughput sequencing and readily available genetic databases.

These advances, which have allowed the construction of effec-
tive new approaches such as the culture-free analysis of a
microorganism’s genetic material (Shendure and Ji 2008)

enable numerous samples of complex assemblages to be
sequenced simultaneously.

Analysis of microbial genetic material with metabarcoding
and amplicon sequencing techniques is accurate, fast, cost-

effective and capable of analysing thousands of environmental
samples at the same time, providing a better understanding of
microbial communities than previous techniques. These meth-

ods can reveal information on the most abundant microbial
species in aquatic environments, on rare species, recently
introduced invasive species, and can report the presence of

organisms that cannot otherwise be sampled or identified with
more traditional techniques (Aylagas et al. 2016; Cristescu and
Hebert 2018).

To date, the focus has been on composition and univariate

endpoints, which does not inform how species interact with each
other and as a collective. Most microbial communities are
complex systems with intricate interaction patterns showing a

collective behavior that cannot be identified by just looking at
the single entities or composition (Cimini et al. 2019). Conse-
quently, there is a need to usemore advanced analytical methods

such as co-occurrence network analysis and their properties to
monitor the biological environment and provide a far more
complete picture (Tylianakis et al. 2010).

In this review, we demonstrate the potential utility of the
microbial community co-occurrence networks and their prop-
erties as a biomonitoring tool to assess aquatic health. To date,
a number of studies has employed this approach to characterise

the system-level responses to environmental change in aquatic
systems, including anthropogenic disturbances (Bohan et al.

2017; Cordier et al. 2020; Di Battista et al. 2020). However, it

has yet to be used to its full potential because of a lack of
empirical data and conflicting views with regards to the
ecological implications of any perceived changes in network

structure and its associated metrics (Karimi et al. 2017;
Derocles et al. 2018; Barroso-Bergada et al. 2020). To address
this, firstly, we provide a summary of aquatic microbial net-
works, specifically co-occurrence networks, and their main

structural components, such as nodes and edges. Secondly, we
describe network properties, and where possible, what eco-
logical information can be drawn from these networks. Finally,

we illustrate the use of co-occurrence network as a biomoni-
toring tool by providing an overview of existing studies, while
articulating the potential advantages and pitfalls associated

with applying co-occurrence networks for biomonitoring in
aquatic systems.

Co-occurrence networks

The theory that underpins ecological co-occurrence analysis
originates from Jared Diamond’s seminal work on the assembly

rules of ecological communities, which predicted that

competitive interactions between bird communities in New
Guinea would result in non-random co-occurrence patterns

(Diamond 1975). The bird population was found to follow a
‘checkerboard’ distribution representing one of the first pieces
of evidence that competition can play a key role in determining

which species are found within a community. A network is a
representation of a community consisting of a multitude of parts,
also called nodes, which are connected by a binary interaction that

allows exchanges or communications between the parts (Newman
2010). This concept has been used by many fields with myriad
applications, ranging from social networks (e.g. Facebook), the
World Wide Web to electrical grids. Some of the most common

types of biological networks are protein–protein interaction net-
works, metabolic networks, genetic interaction networks, gene
and transcriptional regulatory networks, cell signaling networks,

food webs, and networks of interactions between species (co-
occurrence) (Newman 2010). Although the biological applica-
tions are broad and capture a wide range of systems and processes,

they often have a common characteristic, being scale-free net-
works, also called real-world networks, which inherently contain a
relatively low number of nodes that are highly connected to other
nodes (Fig. 1) (Bianconi and Barabási 2011).

Biological networks are generally compared to a random
network, where it is rare to find nodes that have significantly
more or fewer connections than the average node (Barabasi and

Bonabeau 2003). Most biological complex systems have a
similar architecture and similar organisational principles. Con-
sequently, the scale-free structure has important implications,

for example, in controlling the spread of viral diseases such as
HIV andCOVID-19 (Barabasi andBonabeau 2003;Murali et al.
2011; Pal et al. 2020). Similarly, the interaction between

microorganisms have been shown to have scale-free distribution
in many freshwater and marine environments (Ruan et al. 2006;
Steele et al. 2011; Kara et al. 2013).

Although there are numerous types of networks, here we

focus on co-occurrence networks. Co-occurrence networks are
derived from the presence or abundance and interactions of taxa
occurrences within a repeatedly sampled unit e.g. multiple

samples from a site. Co-occurrence networks are founded on
the interactions between taxa derived from significant bipartite
relationships. The two fundamental components are nodes and

edges. Nodes represent taxa that have a significant interaction
with other taxa, and edges represent the co-occurrences bipartite
interactions between taxa, allowing for the possibility to repre-
sent and study the interactions of the whole microbial commu-

nity (Fig. 2). Amicrobial network co-occurrence analysis allows
a holistic study of the environment that not only focuses on
presence or absence and composition of organisms in the

ecosystem but also on how they interact (Layeghifard et al.

2018).
A holistic methodology can facilitate our understanding of

the complex interactions that occur within biological systems.
This is evident in the case of marine bacterioplankton, where ten
different ‘ecological species’ of SAR11, phylogenetically simi-

lar, have been found due to the unique co-occurrence network
relationship between them, other organisms and environmental
parameters (Fuhrman and Steele 2008). For a global biomoni-
toring approach, networks can provide a comprehensive under-

standing of how ecosystems function across systems and
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biogeographical regions (Raffaelli 2007; Bohan et al. 2017).

Thus, it has been suggested that inclusion of information that
examines the interactions between species can greatly benefit
our understanding of community ecology, and how communi-

ties respond to change (Valiente-Banuet et al. 2015).
An interaction between bacterial species involves three main

exchanges: food transfer, information transfer, and gene transfer
(Fuhrman 2009). Food transfer inmicroorganisms creates a food

web that is at the centre of the marine ecosystem, allowing the
exchange of energy and biochemical compounds (Steele et al.
2011). Information transfer also occurs in microbes since they

can receive information cues from the external environment
(such as a chemical signal from other microbes) and are able to
respond (Westerhoff et al. 2014). Gene transfer can happen both

in the form of gamete exchange and lateral gene transfer, e.g.
resistance cassettes and antibiotic resistance genes (Gillings
et al. 2008; Fuhrman 2009).

Nodes

Nodes represent the first fundamental component of a network.
Nodes, are the objects at the start and ends of the connection, and

are commonly represented as Operational Taxonomic Units
(OTUs), Amplicon Sequence Variants (ASVs), taxa, species,
genera, families, classes, phyla or kingdoms, or functional

groups (Karimi et al. 2017). The role of the node in relation to

the rest of the network allows us to understand the dynamics of
the system. ‘Hubs’, ‘bottle necks’ and ‘keystone’ species rep-
resent the three main node roles. A ‘hub’ defines a node that has

a high level of degree centrality (a high number of connecting
neighbouring nodes) (Paine 1995; Delmas et al. 2019), whereas
a ‘bottleneck’ is a node that has a fundamental role in connecting
other nodes (Peura et al. 2015). Usually, ‘bottlenecks’ are

between nodes and get crossed by many pathways inside the
network; they have a high betweenness centrality and high
transitivity (Peura et al. 2015; Delmas et al. 2019). Common

marine and freshwater taxa are typically ‘hub’ and or ‘bottle-
neck’ species likely due to their ability to adapt to environmental
change (Peura et al. 2015; Lin et al. 2019). Species that have a

large effect on the community are called ‘keystone’ species,
they are less abundant than other organisms in the community,
but the other nodes depend on their effect (Power and ScottMills
1995; Berry and Widder 2014). These keystone species play a

critical role in the stability of the system (Peura et al. 2015).
Apex predators are an example of a keystone species in macro-
ecology, their predatory behaviour assists in the control of the

population size of their prey (Berry and Widder 2014). ‘Key-
stone’ species can be ‘hubs’ but ‘hubs’ are not always ‘keystone’
species. A ‘hub’ species is one that when eliminated can be

Fig. 1. Graphical representation of a scale-free network. Nodes are represented by green dots and edges

are represented by grey lines between the nodes. The graph was plotted with Mathematica (ver. 12.1, see https://

www.wolfram.com/mathematica/) using the function Barabasi Albert Graph Distribution (Wolfram 1999).
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substituted by another competitor species occupying the same
nichewith the same or similar function (Berry andWidder 2014;

Delmas et al. 2019). However, when a ‘keystone’ species is
eliminated, the system undergoes significant redistribution and
potential collapse (Valiente-Banuet et al. 2015). It has been

hypothesised that in a fragile network, the removal of 25%
or less of the highly connected nodes should result in
collapse, whereas in a robust and stable network the removal of

half of the nodes would not change the network topology
(Estrada 2007).

Collectively, rare organisms can influence important bio-
geochemical processes, thus, in some instances they can also be

considered ‘keystone’ species. Although rare taxa may also be
important, it should be emphasised that in most cases these taxa
do not become nodes as they are only found in a small proportion

of the samples used to create the network, and are therefore
removed during the initial filtering period, or fail to have robust
statistical relationships with node, they must be other taxa

(Fuhrman 2009).
Environmental factors can also be incorporated in the net-

work structure as a type of node where the edge exemplifies the

effect of the factor on themicrobial species node (Li et al. 2018).
In seawater samples, a strong archaeal–bacterial associationwas
found due to environmental pressure (Parada and Fuhrman
2017), whereas in thawed ponds and lakes, the importance of

environmental factors was highlighted by dissolved organic
carbon and conductivity being the most connected nodes
(Comte et al. 2016). The inclusion of environmental factors is

a powerful characteristic of network analysis that can help to
describe ecological niches and discern what factors have the
greatest influence over the microbiome (Chaffron et al. 2010;

Gao et al. 2019; Mikhailov et al. 2019).

Interactions

The second fundamental component of networks are edges,

which represent interactions between nodes. These can be
broadly categorised in accordance with their co-occurrence
interactions (see Fig. 3): positive interactions, combination of
positive or negative with neutral interactions and negative

interactions (Lidicker 1979). Theoretically, positive interac-
tions suggest commensalism and mutualism (Bronstein 2009).
Commensalism describes a cooperation between microbes

where only one of the two gains an advantage and the second is
not affected at all (Lidicker 1979). However, mutualism
describes a cooperation where both organisms benefit from the

interaction. For example, the bacteria Bacteroides thetaiotao-

micron is found in the human distal intestinal microbiome,
where it assists in the breakdown of indigestible poly-
saccharides, making them bioavailable to humans (Bäckhed

et al. 2005). In this example, The B. thetaiotaomicron benefits
by obtaining its energy from the polysaccharides, whereas the
host (human), mutually benefits as the polysaccharides are now

converted to digestible form. Mutualism can also be symbiotic,
i.e. when both microorganisms are required to survive
(Bronstein 2009). Organisms can also have mutual relationships

that are syntrophic, that is, when the metabolism of the two
organisms is complementary (Barton and Northup 2011). For
example, in marine gas–hydrate-rich sediments with high rates

of methane-based sulfate reduction, Archaea grow in highly
populated conglomerates and are surrounded by sulfate-
reducing bacteria, thereby creating a syntrophic consortium
that mediates methane oxidation (Boetius et al. 2000).

Positive–negative interactions occur when one taxon
gains an advantage and the partner is negatively affected,
e.g. predation and parasitism (Barton and Northup 2011).

Species 1 Species 2
Positive

co-occurrence pattern

Negative
co-occurrence pattern

Mutualism

Comensalism

Parasitism or Predation

Amensalism

Competition

Benefit Benefit

Not affected Benefit

Harmed Benefit

Not affected Harmed

Harmed Harmed

Fig. 3. Schematic classification of the biotic co-occurrence interactions

based on the relationship between Species 1 and Species 2. These interac-

tions were organised along the co-occurrence patterns gradient: at the top

there are positive co-occurrence interaction patterns and, at the bottom, the

negative co-occurrence interaction patterns. The colour of the dot represents

if a species benefitted (green), was harmed (red) orwas not affected (blue) by

the interaction with the other species. Green arrows represent positive

interactions, red arrows represent negative interactions.

Fig. 2. A graphical representation of an aquatic sediment microbiome co-

occurrence network (Codello 2021). Nodes are represented by green dots,

and edges with grey lines. The network was calculated with SpiecEasi and

represented with iGraph.
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In predator–prey interactions, the predator improves its condi-
tion by altering the condition of the prey (Lidicker 1979). For

example, inmarine sediments,Pseudoalteromonaswas found to
prey on Gram-positive bacteria by secreting pseudoalterin.
Pseudoalterin binds to and degrades the glycan strands of

Gram-positive bacterial peptidoglycan. This causes the cell to
die and release nutrients used for the growth of the predator
(Tang et al. 2020). Parasitism represents a host–parasite inter-

action where the parasite is physically associated with the host
and it is in the privileged position to gain an advantage at the
expense of the host (Lidicker 1979). In marine environments,
abundant viruses can infect cyanobacteria such as Synechococ-

cus sp. Electron microscopy analysis showed that 1–3% of the
native cyanobacteria contained viruses close to the end of the
lytic cycle. It seems that cyanophages are probably responsible

for the death of up to 3% day�1 of Synechococcus in temperate
Atlantic waters (Fuhrman 1999). Finally, negative interactions
suggest amensalism or competition (Barton and Northup 2011).

Amensalism is characterised by an interaction where one
organism is affected by the presence of the other, but the second
does not gain any advantage (Garcı́a et al. 2017). This type of
interaction has been observed in the fermentation of residual

cheese whey by the Pseudomonas taetrolens and Lactobacillus
casei collaboration. During their interaction there was no varia-
tion inLactobacillus, whereas thePseudomonas community had

reduced growth (Garcı́a et al. 2017). Within the co-occurrence
context, competition is an interaction where both nodes are
adversely affected, for example, when they directly compete for

the same resources (Barton and Northup 2011). An interesting
example of bacterial competition was studied between Pseudo-
monas sp. and Scenedesmus quadricauda, which competed for

inorganic phosphorus under laboratory conditions. The dynam-
ics between the two bacteria suggested that, at a steady state with
sufficient carbon, Pseudomonas sp. reduced phosphorus below
the level required by S. quadricauda, whereas when Pseudomo-

nas sp. did not have enough available carbon S. quadricauda

prevailed (Grover 2000).
Although the interpretations of statistically derived inter-

actions observed in co-occurrence networks are driven by
ecological theory, in reality, biological relationships between
interactions and co-occurrences are often ambiguous (Blanchet

et al. 2020). This is particularly true for aquatic microbial
communities, where some species are naturally rare or transient,
and therefore only interact under specific situations (Blanchet
et al. 2020). Furthermore, macro-ecological networks have

shown that co-occurrences reflect more niche preferences rather
than biotic interactions (Freilich et al. 2018). It is safe to assume
that bacteria can reside in the same habitat without interacting

so, inference based on network associations, in some instances,
may result in erroneous results (Röttjers and Faust 2018).
Another issue is that, although the gradient of diversity is

continuous, the categories we are describing are discrete.
Specifically, it is challenging to discern between parasitism
and predation, as well as understanding the difference between

mutualism and commensalism, or between amensalism and
competition. This is because it is difficult to capture the positive
gradient betweenmutualism and commensalism and the negative
gradient between amensalism and competition (Röttjers and

Faust 2018). Originally, most networks were inferred from

presence–absence data; however, now abundance (count) data
provide more information to refine the inferences (Blanchet et al.

2020).
In networks based on metabarcoding data, edges represent

the correlation value between OTUs or ASVs. The network

edges can be calculated using a wide range of methods from
simple correlations that are quick to calculate, to more complex
approaches, which require higher computational power. The

simplest methods are based on dissimilarities, such as Bray–
Curtis and Kullback–Leibler dissimilarity indices, and correla-
tions, such as Pearson and Spearman correlation coefficients
(Layeghifard et al. 2017). Multiple regression and probabilistic-

basedmethods, such as Bayesian networks orMarkov networks,
can also be used to capture more complex interactions
(Layeghifard et al. 2017). One of the great challenges, espe-

cially when using NGS-derived bacterial data, is addressing
biases associated with composition. There are a number of
packages specifically designed to minimise the artefacts of such

data, including SparCC, MIC, SPIEC-EASI, CoNet and others
(Faust and Raes 2012; Layeghifard et al. 2017). An additional
important component of network analysis is the capacity to
visualise the data. Again, there are numerous approaches,

including Cytoscape (Shannon et al. 2003) and iGraph (Csardi
and Nepusz 2006), as well other functions within R. The choice
of approaches used to produce and analyse a network may

influence the overall metrics produced by a network and subse-
quent interpretation. This is highlighted in Codello (2021),
where the same system was examined using SPIEC-EASI and

CoNet. Although the findings were not conflicting, they
highlighted that the metrics produced from the two approaches
varied in their sensitivity to detect stress.

Network structure

In the aquatic environment, environmental factors play a key
role in shaping microbial communities (Mikhailov et al. 2019).
These include water stratification (Zaccone and Caruso 2019),

different levels of light penetration (Parada and Fuhrman 2017),
temperature gradient, seasonal turnover (Gilbert et al. 2012;
Mikhailov et al. 2019), spatial heterogeneity (Fuhrman 2009),

and disturbances present in thewater (Liu et al. 2015), which can
change the structure or topology of the network. For example, in
eutrophic freshwater Lake Taihu, water temperature, chloro-

phyll a and phytoplankton density were the main factors driving
the variation of bacterial community composition and structure
between seasons (Zhu et al. 2019). Co-occurrence networks

formed larger networks with more nodes in spring and summer
than in autumn and winter. Other studies confirmed that warmer
seasons support the activity of more bacteria than colder months
in water systems (Crump and Hobbie 2005; Gilbert et al. 2012;

Kara et al. 2013). However, after the summer network, the
autumn network had the largest number of edges, suggesting
that the microbial community transition from warmer temper-

ature to colder temperature stimulates the creation of new
interactions, be it positive or negative (Zhu et al. 2019). Con-
sequently, the overall structure and topology of networks may

provide insight into how a community changes.
Environmental networks are modular but contain a hierar-

chical structure. At the lowest level are individual nodes.
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A group of nodes can form small subgraphs called motifs,
together motifs create modules and finally modules form a

complete network (Mason and Verwoerd 2008). It has been
suggested that this hierarchical structure could be the result of
co-evolution, natural selection, habitat heterogeneity, the spec-

ificity of interaction and phylogenetic relatedness (Deng et al.

2012). For example, Liao et al. (2019) found co-occurrence
networks derived from sediments within the tidal zone produced

distinctive modular structures that could visually differentiate
them from non-tidal and inter-tidal networks. Hence it has been
suggested that the structural modularity of a network may also
reflect the stability and resilience of the system (Pavlopoulos

et al. 2011; Deng et al. 2012; Delmas et al. 2019; Di Battista
et al. 2020). In planktonic prokaryotic community profiles from
the Taihu Watershed in China, the co-occurrence network was

grouped into four major ecological modules where the OTU
nodes had a robust co-occurrence correlation (Liu et al. 2020a).
The different modules performed various functions, for exam-

ple, the first module was attributed to have four functions:
methanotrophy, aerobic ammonia oxidation, nitrification and
ureolysis; the second module had functional groups related to
metabolism and human health; and the third module had an

association with chlorate reduction, methanol oxidation and
methylotrophy. Hereby, clearly demonstrating that in this case,
functional groups were linked by ecological associations (Liu

et al. 2020a). The analysis ofmicrobial networks can be coupled
with specific functions, which allows us to have a general
understanding of the microbial phylogenetic distribution, their

correlations, and their collective functions (Bohan et al. 2017).
The analysis can be integrated with genetic, biochemical, and
chemical functions (Bowen et al. 2013). Genes with known

functions can profoundly influence the structure of networks,
and consequently, in some incidents where the function of a
gene is unknown, its role might be revealed by the taxa it
interacts with (Galand et al. 2018). For example, if a taxon is

highly connected with a group of nitrogen-fixing microorgan-
isms, there is a high probability that it too will be a nitrogen
fixer, thus creating a direct link between the taxon’s role in a

network and their functional role (Bohan et al. 2017). Hence,
determining the network structure of co-occurrence interactions
can help define ecological niches and characterise microbial

ecotypes.

Network properties

Mathematical approaches are not only used for network

graphical representations, but to understand the behaviour of
networks, enabling the properties of a network to be sum-
marised using a range of metrics (Proulx et al. 2005). Network
properties are features that can provide information on the

biological system at the base of the network. There are specific
properties to describe and measure network topologies, and
can be used to reveal patterns, and inform the structure of the

microbial co-occurrence network within aquatic ecosystems
(Steele et al. 2011; Röttjers and Faust 2018). The subsequent
section provides an overview of some of the key network

properties, and how these properties specifically relate to
microbial communities, and where possible, in response to
disturbance. The basic properties that can describe the whole

network and have potential to be applied within a biomoni-
toring framework include: the number of nodes, number of

edges, number of components, diameter or radius, degree
distribution, average path length, density, cluster coefficient
and centrality measures.

The number of nodes and number of edges measures the total
number of nodes and the total number of connections between
nodes respectively. In the lake sediment bacterial community

during a toxic bloom event caused by untreated sewage, algal
bloom and aquaculture, the network structure increased its
dimensions. Before the bloom, the network had 100 nodes and
1851 edges, compared to 200 nodes and 3193 edges after the

bloom. This expansion highlighted the interference of the toxic
bloom on the bacterial community composition (Zhou et al.

2021). It is possible that at first the bacterial community formed

a structure that was disrupted by the toxic bloom. The toxic
event and the proliferation of the algal bloom increased the
microbial complexity with more nodes and increased the num-

ber of negative interactions between the bacterial community
and the algal bloom (Zhou et al. 2021).

The number of components is the number of modules or
groups of nodes that are connected between each other but not to

other nodes of the same network, i.e. there are no possible paths
between nodes from different components (Newman 2010). In
essence, it is a measure of completeness. When there is the

fragmentation, former relatively larger networks become disso-
ciated into smaller disconnected networks, resulting in an
increase in the number of components (Pavlopoulos et al.

2011). This phenomenon was seen in a river system where the
number of components increased downstream compared to
upstream because of hydrological changes and metacommunity

dynamics (Widder et al. 2014). In this example, it was hypothe-
sised that the elevated physical disturbance related to flow
patterns and sedimentary dynamics in the downstream river,
caused the loss of keystone taxa, thereby increasing fragmenta-

tion in downstream sites (Widder et al. 2014).
The diameter or radius is a measure of the dimension of the

network and it is the longest of all the path lengths. It measures

howquickly a community can respond to a stimulus (Pavlopoulos
et al. 2011). The network constructed with river bacterial com-
munities data changed diameter length according to seasons:

spring had the shortest diameter, describing a very efficient and
quick to respond community; and autumn had the longest
diameter, indicating a slowing down of community collabora-
tions (Lin et al. 2019). These changes suggest that seasonality

interferes with the structure of the bacterial network community
and with the efficiency to collaborate (Lin et al. 2019).

The average path length (Nij) (Eqn 1) of a pair of nodes is the

average number of edges (E) that have to be crossed between two
nodes (i, j) to have the shortest distance (dij) (Newman 2010).

Nij ¼ 2

E E � 1ð Þ
XE

i¼1

XE

j¼1

dij ð1Þ

The average path length is another measure of the expedi-
ency of the network reaction to a change in the environment or to
a change in the node composition (Newman 2010). The length

informs how fast two nodes connect and pass information
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between them, a short path means that the system is ready to
react (Mason and Verwoerd 2008). In network experiments

from five aquatic time series in dystrophic and eutrophic lakes
and open ocean sites, the average path lengths between nodes
were shorter in empirical than in random networks (Peura et al.

2015; Liu et al. 2020b). This suggests that in aquatic environ-
ments, the average path length maybe comparatively shorter
than the whole network dimension (Newman 2010).

Density (D) (Eqn 2) describes how compact or crowded the
network is in relation to the number of connections per nodes,
and thereby is a measure of complexity (Landi et al. 2018).

D ¼ 2E

n n� 1ð Þ ð2Þ

where E is the number of edges and n is the number of nodes
(Newman 2010).

A sparse network has fewer interactions, lower complexity

and needs less energy to bemaintained, but a dense network has
more interactions, higher complexity and higher energy require-
ments (Pavlopoulos et al. 2011). Experimental data has shown
that biological networks have a lower density than random

networks. In the ‘Domino hypothesis’ a less dense network is
considered to be more resilient and efficient, with lower costs to
maintain the system than a dense network (Leclerc 2008). By

contrast, the ‘Insurance hypothesis’ suggests that a denser
network has more redundant nodes, which could make the
network more resistant to change (Yachi and Loreau 1999). In

benthic microbial networks produced from affected offshore oil
and gas drilling sites, the densitywas higher in non-affected sites
than those closer to the drilling operations (Laroche et al. 2018).

This suggests that there was a reduced complexity in the
microbial co-occurrence network when the environment was
disturbed by human activities and small spills of oils (Laroche
et al. 2018). These two hypotheses highlight the contrary view-

points when extrapolating the ecological relevance of variations
in some network properties.

The cluster coefficient (Cl) (Eqn 3) represents the predispo-

sition to form clusters or modules (Newman 2010). In a graph, a
cluster is formedwhen one or more nodes have a high number of
edges E and a low node degree k.

Cl ¼ 2E

k k � 1ð Þ ð3Þ

Clusters are common in natural environment networks more
than in random networks (Newman 2010). There are network
subsets in which species frequently interact between them-

selves; however, the subset interacts infrequently with species
outside of the cluster (Pavlopoulos et al. 2011). A study in
agricultural soils, where a single application of alkaline stabi-

lised biosolid (used to destroy pathogens) was applied 10 years
prior to sampling, found a 39% increase in the clustering
coefficient, in comparison to the control soils (Price et al.

2021). This suggested that the agricultural additive (alkaline-
stabilised biosolid) had a strong legacy effect on the soils and on
the network structure increasing its complexity.

Centrality measures are properties that can quantitatively

describe microbial interactions and identify the most important

taxa and offers suggestion on the role or function of the taxa in
relation to the rest of the network (Zamkovaya et al. 2021). They

are: degree centrality, closeness centrality, betweenness central-
ity, eigenvector centrality and transitivity (Girvan and Newman
2002). They can be studied as mean values at the level of the full

network, or singularly for each node.
The node degree or degree centrality (ki) (Eqn 4) is the

number of edges or connections that a node (i) has with other

nodes, where n is the total number of nodes (Newman 2010)

ki ¼
Xn

j¼1

Aij ð4Þ

A node with high degree has many connections to other

nodes, with a lower degree, inferring a sparsely connected node
(Pavlopoulos et al. 2011). Owing to the characteristic distribu-
tion of scale-free networks, most microbial communities have

many nodes with few links and few nodes having a large number
of links, also called ‘hubs’, making the network possibly more
resistant to random failure, but also vulnerable to organised

attacks to the key nodes (Barabasi and Bonabeau 2003). An
example of degree centrality in aquatic sediment environment is
represented in Fig. 4.

Closeness centrality (Ci) (Eqn 5) describes how close a node

is to other nodes. It is defined as:

Ci ¼ nP
jdij

ð5Þ

where n is the total number of nodes and dij the shortest distance
between i and j (Pavlopoulos et al. 2011). A node has a high

Fig. 4. Representation of degree centrality in co-occurrence network from

aquatic sediment microbiome calculated with SpiecEasi and plotted with

iGraph (Codello 2021). The red colour gradient represent the degree

centrality measure (from low degree centrality in white to high degree

centrality in dark red).
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closeness when it can communicate quickly with another node
(Newman 2010). A key player in a network has high closeness

centrality, because it has to quickly interact with many network
components (Pavlopoulos et al. 2011). An example of closeness
centrality in an aquatic sediment network is illustrated in Fig. 5.

Betweenness centrality (xi) (Eqn 6) is the degree of an
individual node that lies on a path between other nodes. It is
defined as:

xi ¼
X

st

nist ð6Þ

where nist is 1 if the node i lies on the shortest path from s to t and

0 if it does not (Pavlopoulos et al. 2011). Nodes with high
betweenness connect nodes in the network that otherwise would
not be connected (Newman 2010). Between centrality identifies

nodes that are intermediates between neighbours and belong to
many network pathways (Pavlopoulos et al. 2011). For example,
species that act as a bottleneck have high betweenness. An
example of betweenness centrality in aquatic sediment environ-

ment is represented in Fig. 6.
Eigenvector centrality rank (xi) (Eqn 7) measures the impor-

tance of the neighbouring connection. In some instances, a

node’s importance is increased by the connection to other nodes
that are important themselves (Newman 2010). It is defined as:

xi ¼
X

j

Aijxj ð7Þ

where xi is the centrality with i nodes and the adjacent matrix Aij

(Newman 2010).
Katz centrality and Page rank are also specific types of

eigenvector centrality. They are relevant for identifying key

populations and a higher order of organisation (Deng et al.

2012). Not all nodes have the same importance, a high eigen-
vector centrality node does not have to be highly linked, and it

can have less connections with more important nodes (Newman
2010).

The transitivity (T) (Eqn 8) is the probability that two nodes

are connected directly or indirectly.

T ¼ 2li

m m� 1ð Þ ð8Þ

where li is the number of links of node i and m is the number of
neighbours of i (Newman 2010). For example, hub nodes have
high transitivity because of their many connections (Girvan and

Newman 2002).
Collectively, these centrality measures are important com-

ponents of network structure and integrity (Banerjee et al.

2018). For example, in the co-occurrence networks from a large
eutrophic Lake Taihu (China), rare taxa, although being low in
abundance, showed relatively higher values of degree centrality,
closeness centrality and eigenvector centrality than abundant

taxa (Zhou et al. 2021). Consequently, rare species can have
important roles in the network, supporting the idea that rare
species harbour genetic variability with the metabolic potential

and capacity to gain a dominant role under specific conditions
(Lynch and Neufeld 2015). Also, Zhang et al. (2020) identify
rare bacteria as a keystone component of the community

network in biochemical processes and community assemblies
presenting high degree centrality and low betweenness central-
ity values. The keystone taxa wereDenitratisoma, which played
a role in the removal of nitrogen, Anaeromyxobacter, which

affected the mobility of metal contaminants, and Candidatus

Fig. 5. Representation of closeness centrality in co-occurrence network

from aquatic sediment microbiome calculated with SpiecEasi and plotted

with iGraph (Codello 2021). The red colour gradient represent the closeness

centrality measure (from low closeness centrality in white to high closeness

centrality in dark red).

Fig. 6. Representation of betweenness centrality in co-occurrence network

from aquatic sediment microbiome calculated with SpiecEasi and plotted

with iGraph (Codello 2021). The red colour gradient represent the between-

ness centrality measure (from low betweenness centrality in white to high

betweenness centrality in dark red).
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Microthrix, which was involved in the removal of total nitrogen
(Zhang et al. 2020).

Biomonitoring

Environmental change is reshaping biodiversity and the provi-
sion of ecosystem processes and services globally. The use of

metabarcoding and sequencing technologies provides a new
generation of biomonitoring tools, which not only capture
microbial communities, but also their interactions by network-

based approaches (Bohan et al. 2017; Cordier et al. 2020).
Co-occurrence networks and their properties can offer new
insights into ecosystem degradation and could characterise the
system-level responses of environmental change, including

pollution, land use, climate change, overexploitation and species
invasions (Bohan et al. 2017). An added advantage of using
networks is that they can be independent of taxonomy (Makiola

et al. 2020), which may be particularly useful for biomonitoring
in novel environmentswhere taxonomyof biota is poorly known.

The microbial co-occurrence network is a dynamic system

that changes over time and space creating or losing interactions
due to abiotic and biotic pressures such as oil spills (Laroche
et al. 2018), reductions in the availability of water (Hernandez

et al. 2021), and longitudinal changes in rivers (Widder et al.
2014). As described above, specific network properties can
indicate different responses in communities and are thus valu-
able for detecting and potentially revealing causality in a

biomonitoring context.
The type of interactions in a network can provide information

on the nature of changes in a microbial community (Liu et al.

2020c). Network properties revealed a change in soil micro-
biome interactions due to the water availability (Hernandez
et al. 2021). Specifically, positive associations between taxa

dominated the high-stress environments whereas the negative
associations dominated in the lower stressed environments
(Hernandez et al. 2021).

One of the most obvious changes in network structure is

fragmentation. Fragmentation occurs when a single large,
well-connected network degenerates to several smaller,
weakly connected networks (Delmas et al. 2019). This phe-

nomenon can be caused by anthropogenic contamination and
ecological conditions. In rivers, a gradient of contamination
had a gradual effect on the microbiome reflected in the

disappearance of organisms (Li et al. 2018). These changes
were evident in the network structure as loss of connections
between microorganisms and reduction of path length. When

the average path length of a network is reduced, it has been
proposed that the perturbation canmore rapidly spread through
the network, increasing the suspectability of the network to
fragmentation (Laroche et al. 2018).

Fragmentation can also occur in the network constructed
from marine biofilm (Lawes et al. 2016). The biofilm has a
biological structure where microorganisms stick to each other

creating an extracellular matrix, building a multispecies struc-
ture to keep beneficial partners close and share functional ability
(Little et al. 2008). General microbial survival rules can change

when the microbes are involved in a biofilm community and
they could also influence the bacterial interaction structure
(Marti et al. 2013). In a study on a young marine biofilm

co-occurrence network representation, composition and con-
nectivity changed with the availability of nutrients (Lawes et al.

2016). The biofilm with ambient nutrients showed stronger
connectivity, whereas the biofilm with enriched nutrients
showed a fractured co-occurrence pattern (Lawes et al. 2016).

These findings demonstrated a change in how the biofilm used
the local resources, from a more collaborative state, where the
microbiome used the energetic allocations from within the core

microbiome efficiently using local resources; to a fracture
network to avoid the unfavourable conditions (exposure to
enriched nutrients) and did not exploit local resources to obtain
energy (Lawes et al. 2016).

To be able to understand changes in the network topology it is
important to use more than one property at a time. For example,
Li et al. (2019) and Wu et al. (2019) used the number of nodes,

number of edges, density, degree and modularity together to
signal a decrease in bacterial community complexity in response
to increasing pollution. Wu et al. (2019) showed that the

networks of communities at the more polluted sites in the
Jinchuan River (China) had the smallest edges to node ratio,
cluster coefficient, average degree and density, which
highlighted the reduction in complexity relative to the least

and moderate polluted sites. Similarly, in Lake Taihu (China)
networks from the least nutrient enriched system contained the
highest number of nodes and edges. (Li et al. 2019). However, as

in the case of Di Battista et al. (2020), Li et al. (2019) these
network attributes did not respond in a dose dependent manner,
with both studies observing a lower number of nodes and edges

in moderately disturbed systems.
Microbial community networks are dynamic structures that

can change over a period of time or along a space gradient, so

comparing them can provide insight into how environmental
conditions and population variation influence the structure of
the microbial population (Pellissier et al. 2018). However, there
are some major challenges when comparing multiple systems

samples due to being a snapshot in the time and space of the
community and because of the absence of a delineated start or
end of the ecosystem, they are a continuum. The sample size has

to be large enough to capture the entire community of interest,
otherwise, the network would not represent all possible inter-
actions and would be misleading (Faust and Shorter 1981;

Tylianakis and Morris 2017). It is crucial to control for network
properties co-variation during the normalisation step, to enable
linear regression measurement between network properties and,
to study the residual variation (Pellissier et al. 2018). Although

comparing networks usually includes only comparing two rela-
tions mapped on the same population during the same period,
Faust and Shorter (1981) describe a general way to compare

networks using network properties when those networks differ
widely in size, type of relation, species of the units, and time and
space of the observations (Faust and Shorter 1981). For exam-

ple, Williams et al. (2014) found that co-occurrence relation-
ships occurring in different environments could be ecologically
relevant, such as the relationship between Solirubrobacterales

and Acidomicrobiales and the related families, Acidimicrobia-
ceae and Conexibacteraceae, that are found in soils and the
human body (Williams et al. 2014).

Network analysis have an important role in risk assessment,

as they allow for modelling outcomes of changes to community
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structure. A microbial community network is robust when its
structure remains stable following a disturbance (Bissett et al.

2013). To test the robustness of a network, a node can be
removed or altered to affect the network structure (Barnes
et al. 2016). Generally, the removal of the most connected

species, hubs, causes more secondary extinctions than a random
species (Sheykhali et al. 2019). However, when the system
returns to the original state after a perturbation the network is

considered resilient (Mandakovic et al. 2018). For example,
most denitrifiers are resistant to hydrocarbon pollution because
they are insensitive to many toxicants and can adapt to various
abiotic factors (Powell et al. 2006).

Challenges and pitfalls

Co-occurrence networks have great potential as a tool for bio-
monitoring of aquatic systems, with network properties being

potential metrics of change in the underlying community. How-
ever, there is still a lack of examples of how to apply this predictive
model experimentally in aquatic ecosystems.Most applications of
co-occurrence networks have been field-based, where it is often

difficult to separate the effect of contamination from other
environmental factors, and many studies have contradictory
information (Weiss et al. 2016; Hirano and Kazuhiro 2019).

Consequently, there is the need for more experimental studies in
which confounding factors can be controlled, and the sensitivity of
communities and networks to specific stressors can be tested.

The advent of next-generation sequencing has provided an
unprecedented capacity to describe microbial communities, but
with the limitation that we can now identify many taxa about
whichwe know little of their ecological roles and functions. This

provides a challenge to the interpretation of co-occurrence
networks because, although we infer interactions between taxa
from the networks, there is little empirical evidence to inform

(and confirm) the specific nature of those interactions. Further
knowledge of microbial interactions under real-world condi-
tions would enhance our ability to understand the particular

network elements.
To date, there are only a few examples of co-occurrence

network used to test if they respond to a stressor (Pauvert et al.

2019), but none in aquatic environments. Moreover, sample size
affects co-occurrence networks (Kolaczyk et al. 2015), a range
between 25 and 300 samples per network has been recom-
mended for obtaining reliable networks (Berry and Widder

2014; Faust et al. 2015). Decreasing costs and increasing
analytical power of next generation sequencing means that such
levels of replication are now feasible, but this remains a

potentially limiting factor because of the time and resources
required to observe, collect and process the numerous samples
necessary, which is well beyond that used in most current

monitoring programs (Bohan et al. 2017).
Although in the last decade there has been an increase in the

development of technologies, laboratory procedures and bio-

informatics pipelines, the workflow should be optimised to
reduce handling steps such as extraction, amplification, or
sequencing bias (McGee et al. 2019). Moreover, the quality of
taxonomy assigned to current OTUs or ASVs references

databases varies greatly, some gene databases are well popu-
lated and have robust information, and other gene coverage is

still incomplete or has incorrectly assigned sequences. Also, it
is important to include unknown taxa, as seen by Zamkovaya

et al. (2021) the frequent dominance of unknown taxa as hubs
stresses the need for further exploration and functional char-
acterisation of all taxa (Zamkovaya et al. 2021) and capture the

full taxonomic diversity or the ecological processes being
investigated (Zinger et al. 2019). However, co-occurrence
network analysis can avoid these issues with taxonomy

enabling the possibility to look at the system as a whole and
not focusing only on specific nodes.

Conclusions

Networks and their associated properties are new types of
indicators that can evaluate the quality of aquatic ecosystems
and are promising environmental biomonitoring tools.

Co-occurrence network analysis provides a suite of relevant
measures that are frequently used in network studies, albeit in
various ways, they all use more than one property at a time to

understand changes in the network topology.
Two approaches have been found to be most popular. The

first approach described the whole network and reveals patterns

allowing comparisons between the entire networks. When
looking at the whole network topology, the most used properties
are the number of nodes, number of edges and the ratio between

positive and negative associations that give an idea of the
network dimensions. The number of components is used when
comparing networks visually giving a piece of information on
the integrity of the network, for example, an increased number

of components is typical of fragmentation. However, character-
istic path length, cluster coefficient and network density are
usually used to describe community cohesion and complexity.

The second approach used centrality measures such as degree
centrality, betweenness centrality, closeness centrality and
transitivity, to look at the role of nodes in relation to the rest

of the network and allow for comparison of specific nodes, taxa,
roles and functions. Moreover, centrality measures are very
informative when studying a network’s robustness while remov-

ing nodes to affect the network structure. Although there are
some examples of network analysis in aquatic ecosystems, they
are all field based, therefore, there is still a need to validate the
co-occurrence network analysis approach. Consequently, there

is an urgency for more experimental studies that are designed to
prove whether co-occurrence networks are indeed sensitive to
particular stressors or conditions. Owing to the variety of uses,

applications and outcomes obtained from previous studies, there
is a further need to develop a common standardised approach
with clear indication on the sample size, the number of replicates

for the same environment and which program to use.
Ultimately, this field is advancing rapidly and we foresee

increasing developments in the technical aspects of network
analysis with experimental validation to clarify the statistical

results, increase our knowledge of the aquatic microbiome and
the use of network analysis as a biomonitoring tool.
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