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Introduction to special issue

Cyanobacteria in freshwater environments are a natural part of
the phytoplankton community but can cause human health and

ecosystem issues through the production of toxins (Paerl et al.
2001). The toxins produced by cyanobacteria (cyanotoxins) are
varied, and include hepatotoxins, neurotoxins, cytotoxins
and skin irritants (Bartram and Chorus 1999; Wiegand and

Pflugmacher 2005). Cyanotoxins can have adverse effects on
human health, particularly by exposure through drinking water
(Carmichael et al. 2001) or recreation (such as swimming;

Pilotto et al. 1997). Cyanotoxins are also known to affect live-
stock and native animals drinking contaminated water (Stewart
et al. 2008) and aquatic organisms such as fish (Drobac et al.

2016), zooplankton (Bownik 2016) and aquatic macrophytes
(Mitrovic et al. 2004, 2005). The risks from cyanotoxins
increase with the density of cyanobacterial blooms, so under-
standing the drivers of cyanobacterial growth and dominance, as

well as the risks of cyanotoxins, is important for management.
Cyanobacterial blooms are anticipated to expand and change

their distribution, frequency and intensity in inland waters

with increasing global warming and climate change (Paerl and
Huisman 2009). This is concerning due to the potential impact
of blooms in new locations and increased bloom intensity in

previously affected areas. This special issue of the Journal
brings together papers that use new and diverse scientific tools
available for monitoring, reporting and modelling cyanobacter-

ial growth, as well as ecological research on cyanobacteria and
their toxins that can help expand our research and management
capabilities. These approaches to the monitoring of cyanobac-
teria within waterways may give further insights into risks and

management approaches.

New ways of monitoring for cyanobacteria

Remote sensing technology and algorithms continue to

mature, enabling more accurate monitoring of cyanobacteria
over large spatial scales with higher-frequency observations
(e.g. Ogashawara et al. 2013; Kudela et al. 2015; Cicerelli et al.

2017). Semi-analytical modelling techniques, where water-
leaving radiance is linked to inherent optical properties and in-
water photopigment concentrations, have also been developed

(Mishra et al. 2013; Li et al. 2015). In this special issue, Borges
et al. (2020) explore the performance of different semi-
analytical algorithms for chlorophyll (Chl)-a. Using Sentinel-2
Multispectral Instrument imagery and its atmospheric correc-

tion algorithms, Borges et al. (2020) found that phycocyanin
concentration is strongly correlated to Chl-a concentration and
that the Inversion Model of Inland Waters semi-analytical

algorithm was the best performing. Interestingly, Borges et al.
(2020) found that an algorithm using top-of-atmosphere
reflectance performs better than an algorithm using atmo-

spheric correction, showing that even without an adequate
atmospheric correction, monitoring of cyanobacteria can be
achieved using semi-analytical bio-optical models.

Cyanobacterial blooms are changing in relation to climate

change (Paerl et al. 2020). By using new and diverse scientific
tools, various temporal and spatial scales of monitoring and
detection of cyanobacterial blooms will be important to water

resource managers. In this special issue, Drozd et al. (2020)
provide a novel analysis of hyperspectral remote sensing data,
resulting in semi-empirical models for large spatial- and

temporal-scale monitoring of cyanobacteria. Their results show
the importance of the red and near-infrared spectral region for
identifying cyanobacteria in hypereutrophic waters. In a more

targeted approach, Stoyneva-Gärtner et al. (2020) report a
valuable case study of cyanobacterial blooms using a drone as
a remote observational tool to choose sampling points, together
with the laboratory analysis of marker algal pigments by HPLC.

Although the use of drones is weather dependent, themonitoring
approach of Stoyneva-Gärtner et al. (2020) shows considerable
potential for speedy and efficient data acquisition. In a rare study

of soil microbial distribution in semi-arid floodplain wetlands,
Kobayashi et al. (2020) examined the relationship between
historical inundation frequency and cyanobacteria in soils based

on high-throughput sequencing, targeting the bacterial 16S
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rRNA gene. Kobayashi et al. (2020) report no significant effect
of historical inundation frequency on the proportional abun-

dance of cyanobacteria and suggest that cyanobacteria occupy a
different hydrological niche from the other microbes, such as
Proteobacteria and Actinobacteria, in those environments.

Understanding what drives cyanobacterial blooms

Understanding the drivers of cyanobacterial blooms can be
useful in determining appropriate management actions. For
example, if thermal stratification is important in bloom devel-

opment, artificial mixing may be a useful tool in a reservoir or
lake to mitigate blooms (Visser et al. 2016). Similarly, nutrient
management of waterways also benefits from an understanding
ofwhich nutrient, or combination of nutrients, is limiting growth

(Paerl et al. 2014; Müller and Mitrovic 2015). Cyanobacterial
blooms are a major issue in China, with some lakes showing
extreme eutrophication. For example, Lake Taihu, China’s third

largest freshwater lake, has experienced massive cyanobacterial
blooms dominated byMicrocystis spp. (Chen et al. 2003) and it
has been suggested that both N and P reductions are required to

reduce biomass (Paerl et al. 2014). In another area of China,
namely Jinan City, Zhao et al. (2020) examined the drivers of
cyanobacterial blooms in lakes and reservoirs and found that

nutrients (both P and N) and water temperature were important
predictors of cyanobacterial growth. In the areas where human
populations were greater, P and N had a greater effect on the
cyanobacterial community. Nutrient management may be a

potential management tool for this area of China.
Wilk-Wozniak (2020) reviews the factors involved in the

development of blooms with a focus on the often-overlooked

interactions between cyanobacteria and zooplankton, ciliates,
heterotrophic bacteria, viruses and fungi. The review shows a
complex food web and suggests that cyanobacterial blooms are

not an ecological endpoint, but rather the mid-point. In another
study challenging our understanding of cyanobacteria blooms,
Grover et al. (2020) explored eco-evolutionary trade-offs
between the costs of heterocyst formation and the production

of cyanotoxins. Through numerical modelling, Grover et al.

(2020) suggest that major taxa of cyanobacteria are differen-
tially adapted to varying N and P supplies, and that biomass

stoichiometry is related to toxin production. They note that this
modelling approach can be extended into models of community
and ecosystem dynamics to explore implications of N fixation

for cyanobacterial biomass and toxin production.

Cyanobacterial toxins

Toxin production by cyanobacteria is a primary concern for

water resource management. Understanding the concentrations
of cyanotoxins in waters is important for risk management and
adherence to various guideline recommendations, such as the

World Health Organization (WHO) guidelines for drinking
water (Bartram and Chorus 1999). Porojan et al. (2020) exam-
ined microcystin concentrations across 17 reservoirs in Singa-

pore for a 12-month period. Tropical areas are less studied for
cyanobacterial research and more knowledge on cyanobacterial
blooms and toxin production is needed for these areas (Mowe
et al. 2015). Porojan et al. (2020) found that cyanotoxins were

usually low but, on one occasion at one reservoir, were close to

the WHO guideline of 1.0 mg L�1, whereas four reservoirs had
concentrations above 0.3 mg L�1. Porojan et al. (2020) also

examined the factors affecting microcystin concentrations at
these four reservoirs and found total monthly rainfall and total N
were most important.

The concentrations of cylindrospermopsins (CYNs) and
anatoxins was also examined in Singapore by Abbas et al.

(2020) after developing a method using liquid chromatogra-

phy–tandem mass spectrometry (LC-MS/MS) using a triple-
stage quadrupole mass spectrometer with a turbo-assisted ion
spray source. Abbas et al. (2020) found that cylindrospermopsin
was more prevalent than anatoxin-a and that intracellular

cylindrospermopsin concentrations exceeded 0.4 mg L�1 in six
reservoirs surveyed, and slightly exceeded the provisional CYN
drinking water guidelines on one occasion in one reservoir.

These authors found the most important environmental
factors affecting CYN concentrations were total N, nitrate and
total P concentrations. Anatoxin-a concentrations were low

(,0.1 mg L�1) for all reservoirs (Abbas et al. 2020).
Lovin and Brooks (2020) focused on anatoxin-a and its

analogues and examined published data from around the world
to identify exceedances of guideline values. These authors found

that when blooms occurred, recreational and potable source
waters exceeded guidelines of 0.1, 1 and 300 mg L�1 for 79.62,
48.37 and 1.42% of the time respectively. Of the occurrences,

66% were from lacustrine ecosystems compared with reservoir,
river, coastal and other systems, with almost all data from Asia–
Pacific, Europe and North America (Lovin and Brooks 2020).

This latter point underscores the need for more monitoring
efforts in diverse systems and in developing regions.

In addition to hepatotoxic microcystins,Microcystis aerugi-

nosa is known to produce a variety of other secondary metabo-
lites (SMs), which may have adverse effects on aquatic
ecosystems (Janssen 2019). Pearson et al. (2020) characterised
the distribution, composition and conservation of the 9 different

SM biosynthesis gene clusters by analysing the 27 M. aerugi-

nosa genomes derived from different climate zones. Their
results highlight the potential chemical diversity inherent within

this species and multiple factors for shaping the evolution of
such pathways. The only cyanotoxin biosynthesis gene cluster
identified in their screening study was the mcy cluster, suggest-

ing that the production of non-microcystin cyanotoxins by this
taxon is either absent or rare (Pearson et al. 2020).

Management and mitigation of blooms

Management and mitigation of blooms requires sound knowl-
edge of the factors driving bloom formation and toxin produc-

tion. Approaches to manage blooms have included reductions in
nutrients to inland and coastal waters to limit the biomass of
cyanobacteria (Willén 2001; Jeppesen et al. 2005); artificial

mixing to prevent thermal stratification in lakes and reservoirs
(Visser et al. 2016); flow management to reduce thermal strat-
ification in rivers (Mitrovic et al. 2003, 2011); food web

manipulation to increase the grazing of cyanobacteria (Mehner
et al. 2002) and macrophyte recovery to promote clear water
states through allelopathy (Song et al. 2019), among other
techniques. Paerl et al. (2020) discuss the confounding effects

and challenges posed by climate change on toxic cyanobacterial
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blooms. Paerl et al. (2020) suggest that rising temperatures and
the increasing frequencies and magnitudes of extreme weather

events will promote cyanobacterial blooms and affect the effi-
cacy of remedial measures, and suggest the setting of stricter
nutrient reduction targets for bloom control. Further, Paerl et al.

(2020) suggest the efficacy of current methods for control will
need to be re-evaluated considering climate change effects.

Guidelines and approaches to the management of cyanobac-

teria also need to be regularly reviewed for best practice, and
ideally using the most up-to-date information. Moustaka-Gouni
et al. (2020) discuss some of the potential issues with sampling,
estimation of biomass and the use of cyanobacteria when

calculating phytoplankton indices to assess water quality. They
discuss some of these issues from the viewpoint of Greece and
using theWater FrameworkDirective as an example, considered

the most innovative European environmental legislation. Pro-
blems discussed concern the exclusion of most chroococcalean
taxa from cyanobacterial biovolume estimations in lakes and

reservoirs of the Mediterranean region, treatment of the muci-
lage of colonial chroococcalean taxa in biovolume estimations
and the overlooking of deep-water cyanobacterial blooms due to
sampling depth (Moustaka-Gouni et al. 2020). This highlights

the need for regular review and discussion of the current state of
knowledge in cyanobacterial research and the improvement and
better application of guidelines.

Collectively, the papers in this special issue provide an
interesting range of new information and perspectives on
cyanobacteria in inland waters, focussing on new monitoring,

modelling and ecological research. These papers contribute to
further our knowledge about freshwater cyanobacterial blooms,
which will help manage their ongoing issues for water manage-

ment.With climate change predicted to increase the number and
intensity of blooms in the future (Paerl and Huisman 2009), new
knowledge and approaches are required to best manage the
human and ecological risks of cyanobacterial blooms and

associated toxins.
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