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We assess the performance of 30 CMIP5 and two CMIP3 models using metrics 
based on an all-Australia average rainfall and NINO3.4 sea surface temperatures 
(SSTs). The assessment provides an insight into the relative performance of the 
models at simulating long-term average monthly mean values, interannual vari-
ability and the seasonal cycles. It also includes a measure of the ability to capture 
observed rainfall–NINO3.4 SST correlations. In general, the rainfall features are 
reasonably simulated and there is relatively little difference amongst the models 
but the NINO3.4 SST features appear more difficult to simulate as evidenced by the 
greater range in metric scores. We find little evidence of consistency in the sense 
that a relatively good metric score for one feature does not imply a relatively good 
score for another related (but independent) feature. The assessment indicates that 
more recent models perform slightly better than their predecessors, especially with 
regard to the NINO3.4 metrics. We also focus on the ability of models to reproduce 
the observed seasonal cycle of rainfall–SST correlations since this is a direct indi-
cator of a model’s potential utility for seasonal forecasting over Australia. This in-
dicates some relatively good models (CNRM, HadGEM2-ESM, MPI-ESM-LR and 
MPI-ESM-MR) and some relatively poor models (CSIRO-Mk3.5, FGOALS, GISS-
E2-HP1 and INMCM4). We find that the ACCESS1.3 and CSIRO-Mk3.6 models 
rank as near median performers on this metric and represent improvements over 
their predecessors (ACCESS1.0, CSIRO-Mk3.0 and CSIRO-Mk3.5).

Introduction

Australia (mainly via the CSIRO and the Bureau of 
Meteorology) has had a long and successful track record in 
climate model development and contributions to international 
modelling endeavours (Smith 2007) and this has continued 
with contributions to the latest International Climate Model 
Intercomparison Project (CMIP5). Analyses of CMIP5 results 
will underpin the next (fifth) Intergovernmental Panel on 
Climate Change (IPCC) Assessment Report which is due for 
release in late 2013. Compared to its predecessor (CMIP3), 
CMIP5 has involved a much more coordinated approach 
to climate modelling experiments resulting in uniform 
inputs (atmospheric greenhouse gas, aerosol and ozone 
concentrations etc.), standardised outputs and a better 
systematic storage of the results. Details of the experiments 

and access to the datasets are provided by the Program for 
Climate Model Diagnosis and Intercomparison (PCMDI) 
website1.

One major function of model assessment is to ensure a 
degree of quality control for coordinated projects such as 
CMIP3 and CMIP5 since it is quite possible that some model 
results can suffer from undetected errors (or ‘bugs’) that 
degrade the results while it is also possible that errors can 
creep in during the archiving of the results (e.g. the use of 
incorrect units). Next, assessments can provide a basis for 
analysing climate change projections, although there is not 
a great deal of evidence that model skill affects these (e.g. 
Santer et al. 2009). Similarly, they can also inform studies 
which may rely on specific models to generate results such 
as downscaling studies which rely on plausible host models. 
However, one of the most compelling reasons is to document 
the improvement (or lack of) that accompanies various 
model developments. Intercomparison can therefore serve 
to identify which parameterisation schemes, numerical 
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techniques etc. are most appropriate for making progress. 
Reichler and Kim (2008) performed one of the first 

systematic assessments of climate models and were able 
to demonstrate a steady improvement over time. However, 
as noted by Knutti (2010), ‘metrics and criteria for model 
evaluation must be demonstrated to relate to the projection’. 
If we consider just the Australian region, previous model 
assessment studies include: Hope (2006a, b), who pointed 
to problems with simulations of the winter trough over 
the southwest of the continent; Suppiah et al. (2007), who 
assessed the performance of models with respect to how well 
they reproduced patterns of seasonal average temperature, 
mean sea level pressure (MSLP) and rainfall; Watterson 
(1996, 2008), who used a statistic determined from simulated 
and observed patterns of seasonal average temperature, 
mean sea level pressure (MSLP) and rainfall over the 
continent; Perkins et al. (2007) and Maximo et al. (2007), who 
considered the ability to simulate daily rainfall and daily 
minimum and maximum temperatures for different regions; 
Charles (2007), who focussed on the ability to simulate both 
daily MSLP patterns and the seasonal cycle of monthly 
average MSLP; Colman et al. (2011), who noted large model 
biases in simulating features of the monsoon; and Smith and 
Chandler (2010), who focussed on the Murray Darling Basin 
of southeastern Australia and assessed models in terms of 
their ability to simulate key features of both rainfall and the 
El Niño Southern Oscillation (ENSO). 

In choosing which features of the models to address in 
this study, we can begin by asking what are the key features 
that would indicate a model is capable of providing skilful 
seasonal rainfall predictions for Australia. This question 
is highly relevant since there are strong arguments for 
developing a unified or ‘seamless’ approach to the problem of 
weather forecasts, seasonal predictions and climate change 
projections (Brown et al. 2012). We are not in a position to 
test the models with regard to weather forecasts and, since 
we cannot test the skill of any climate change projections, 
it is logical to focus the assessments on features which are 
relevant to Australian rainfall and the ENSO phenomenon. 
While the Indian Ocean Dipole has also been implicated 
in Australian rainfall fluctuations, Smith and Timbal (2012) 
showed that this is relatively minor compared to the role of 
Pacific Ocean SSTs.

We firstly compare how well models reproduce the 
present day mean, interannual variability and seasonal 
cycle of monthly all-Australian average rainfall and monthly 
NINO3.4 sea surface temperatures (SSTs). All-Australian 
average rainfall provides a convenient indicator since it tends 
to represent the northern tropics during the relatively wet 
summer months and the southern regions during the winter 
months and (as will be shown) its variability is dominated by 
ENSO events. The NINO3.4 index is the standard operational 
index used by NOAA’s Climate Prediction Center to monitor 
ENSO (McPhaden 2012). 

Secondly, we compare how well the models can 
reproduce the seasonal cycle of correlations between the 

monthly rain and monthly SSTs. This study therefore focuses 
on the ability of models to capture the variability of rainfall 
and SSTs at both the seasonal and interannual timescales. 
For assessments focussing on Australian models, spatial 
patterns, or other variables, we refer the reader to other 
papers in this issue (e.g. Bi et al. 2013, Dix et al. 2013, Irving 
et al. 2012, Rashid et al. 2013, and Watterson et al. 2013).

Models

The Australian models that contributed to CMIP3 are 
referred to as the CSIRO-Mk3.0 and 3.5 models, while the 
contribution to CMIP5 includes the CSIRO-Mk3.6 model and 
the ACCESS1.0 and 1.3 models. The CSIRO-Mk3.6 model 
differs from CSIRO-Mk3.5 model (Gordon et al. 2010) by 
the inclusion of an interactive aerosol scheme, an updated 
radiation scheme and other changes to the atmospheric 
physics package. The model also includes dynamic sea 
ice and a soil–canopy scheme with prescribed vegetation 
properties, but no carbon cycle. For further details of the 
model see Rotstayn et al. (2011, 2012) and, for preliminary 
assessments of its performance see Rotstayn et al. (2010) and 
Syktus et al. (2011).  

The two ACCESS models were developed after a decision 
was made in 2004 to combine the operational and climate 
modelling requirements of both CSIRO and the Bureau of 
Meteorology. It has also involved collaboration with the 
UK Meteorological Office. A major feature of ACCESS 
model development is that it takes a so-called ‘unified 
model’ approach in which the core model is designed for 
adaptation to weather forecasting, seasonal forecasting 
and climate variability and climate change simulations. The 
atmospheric component for ACCESS1.0 is based on the Met 
Office Hadley Centre model HadGEM2 (version r1.1) while 
the component for ACCESS1.3 is based on the Met Office’s 
subsequent Global Atmosphere (GA) 1.0. For further details 
see Bi et al. (2013), Dix et al. (2013), Rashid et al. (2013), and 
Watterson et al. (2013).

We assess the results from a total of 32 models comprising 
30 CMIP5 models and the two CMIP3 models (CSIRO-Mk3.0 
and CSIRO-Mk3.5) which are included in order to estimate 
evidence of improved performance over time. Similarly, 
the performance of the ACCESS1.3 model relative to the 
ACCESS1.0 model also provides an indication of the effect 
of model improvements. (Note that the 30 sets of CMIP5 
model results represent a large sample of the almost 60 sets 
of results that had been, and were still being generated, on 
1 March 2013). Each assessment is based on the results from 
just one ensemble member from each model.

Data and methodology

The GPCP dataset (version 2.2) is based on data from over  
6 000 rain gauge stations and satellite observation which 
have been merged to estimate monthly rainfall on a 2.5° 
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global grid from 1979 to the present (Adler et al. 2003). A 
separate dataset known as GPCC (version 6.0) comprises 
gridded, monthly land surface rainfall values based on 
rain gauge observations beginning in 1901 (Schneider et 
al. 2011). All-Australian average (1901 to 2000) monthly 
average values have been calculated using GPCC values 
averaged over the box region defined by 39°S to 14°S and 
113°E to 153°E. Similarly, monthly averages for the NINO3.4 
SST values have been calculated using observed grid point 
values for the box region 5°S to 5°N and 170°W to 130°W 
from the HadISST dataset2.

Figure 1 shows maps of the distribution of the GPCP 
estimates for Australian mean January and July rainfall and 
highlights the relatively wet northern regions in summer 
and the relatively wet southern regions in winter while 
Fig. 2 shows the long-term (1901 to 2000) monthly average 
values (and associated standard deviations) for both the 
all-Australian rainfall and the NINO3.4 SSTs. The seasonal 
cycle for rainfall is characterised by a maximum in February, 
corresponding to the middle of the tropical wet season, 
and a minimum in August, corresponding to the middle 
of the dry season for much of the continent. The standard 
deviations indicate that interannual variability is closely 
related to the mean rainfall. The seasonal cycle for NINO3.4 
SSTs is characterised by maxima in April/May and minima in 
November/December/January but, in contrast to the rainfall, 
the standard deviations are higher during the cooler months 
and lower during the warmer months. 

Figure 3 shows the correlations (r) between monthly 
rainfall and monthly NINO3.4 SSTs. The average value 
is –0.28 and it can be seen that a significant (p>.05, |r| > 
.2) relationship exists for all months except March, April 
and May. These minima corresponds to the so-called 
‘predictability barrier’ that characterises ENSO events 
(Barnston et al. 2012).

In assessing climate models there are obviously a large 
number of metrics that can be used depending on the feature 
of interest or the intended purpose for the models. For 
example, Watterson et al. (2013) describes the assessment 
of models using metrics related to the spatial features, the 
variability and teleconnection patterns for several variables. 
Perkins et al. (2012) and Rashid et al. (2013) use metrics based 
on ENSO-related features such as frequency, the spatial 
SST anomaly patterns and links between ENSO and other 
climate variables. Here we focus on metrics which provide 
some insight into how well the models simulate key features 
of Australian rainfall and ENSO as revealed in Figs 2 and 3. 
We compare simulated and observed bias, variability, and 

Fig. 1. 	 Average (1979 to 2010) Australia region rainfall totals 
(mm) for (a) January and (b) July.

Fig. 2. 	 Observed monthly values (bars) and associated stan-
dard deviations (grey bars) for (a) all-Australian aver-
age rainfall (mm per day) and (b) NINO3.4 sea surface 
temperatures (°C).

Fig. 3. 	 Observed correlations between all-Australian month-
ly rainfall and NINO3.4 SSTs.

2http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_hadisst
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cycle

std 
seasonal 

cycle
mean seasonal 

cycle

mm day–1 % degC %

ACCESS1.0 –0.01 92 0.89 0.86 –0.81 78 0.75 0.97 –0.17 –0.16

ACCESS1.3 0.36 123 0.91 0.91 –0.79 87 0.23 0.54 –0.23 0.30

BCC-CSM1-1 0.69 122 0.95 0.92 –0.39 171 0.58 0.76 0.04 –0.07

BNU-ESM –0.11 101 0.76 0.96 –1.38 173 0.67 0.78 –0.37 0.47

CanESM2 0.00 93 0.99 0.89 –1.09 128 0.89 0.94 –0.02 0.38

CCSM4 1.03 111 0.98 0.93 –0.88 121 0.77 0.90 –0.30 0.34

CESM1-BGC 0.95 113 0.98 0.93 –0.81 105 0.67 0.71 –0.29 0.20

CESM1-CAM5 0.73 102 0.98 0.94 –1.95 106 0.87 0.96 –0.35 –0.02

CNRM 0.83 105 0.97 0.95 –1.35 121 0.86 0.85 –0.32 0.57

CSIRO-Mk3.0 0.23 110 0.97 0.97 –2.14 185 0.34 0.06 –0.02 –0.33

CSIRO-Mk3.5 0.07 111 0.98 0.95 –0.32 143 0.66 –0.47 –0.27 –0.21

CSIRO-Mk3.6 0.16 107 0.97 0.97 –3.23 109 0.96 –0.40 –0.34 0.27

EC-EARTH 0.51 101 0.97 0.96 –2.81 53 0.84 0.76 0.02 –0.13

FGOALS 0.40 106 0.98 0.92 –1.59 85 0.85 0.90 0.03 –0.56

FIO-ESM 0.21 103 0.98 0.93 –0.52 129 0.54 0.56 –0.25 –0.19

GFDLCM3 0.26 107 0.95 0.94 –1.82 136 0.06 0.73 –0.27 0.58

GISS-E2-HP1 0.22 95 0.92 0.92 0.26 68 0.73 0.86 –0.12 –0.37

GISS-E2-RP1 0.00 72 0.93 0.89 0.48 73 0.88 0.86 0.00 0.20

HadGEM2-AO 0.14 99 0.96 0.95 –1.32 108 0.56 0.57 –0.17 0.02

HadGEM2-CC –0.16 91 0.85 0.94 –1.95 109 0.54 0.53 –0.21 0.09

HadGEM2-ESM –0.03 93 0.92 0.96 –1.84 103 0.52 0.51 –0.19 0.68

INMCM4 0.33 94 0.97 0.95 –2.67 67 0.29 0.30 –0.18 –0.30

IPSL-CM5A-LR –0.60 62 0.82 0.85 –2.57 97 0.74 –0.27 –0.20 –0.25

IPSL-CM5A-MR –0.61 61 0.86 0.91 –2.08 107 0.56 –0.04 –0.20 0.36

IPSL-CM5B-LR –0.21 86 0.88 0.88 –1.12 83 0.03 0.43 –0.07 –0.03

MIROC5 1.10 132 0.98 0.91 –1.26 134 0.94 0.94 –0.29 0.43

MIROC-ESM 1.20 112 0.79 0.92 –2.98 63 0.90 0.86 –0.23 –0.01

MPI-ESM-LR 0.19 103 0.99 0.92 –2.60 112 0.87 0.57 –0.35 0.72

MPI-ESM-MR 0.26 109 0.98 0.98 –2.38 97 0.92 0.45 –0.24 0.57

MRI-CGCM3 0.22 95 0.92 0.92 –1.94 87 -0.35 0.46 –0.13 0.21

NorESM1-M 1.23 118 0.98 0.93 –1.33 96 0.72 0.90 –0.33 0.32

NorESM1-ME 1.24 123 0.98 0.95 –1.52 98 0.85 0.87 –0.35 0.33

Table 1.	 CMIP5 model scores for ten metrics (see text for details). In column 1, the Australian models are highlighted in colour: 
ACCESS1.0 (light green), ACCESS1.3 (dark green), CSIRO-Mk3.0 (orange), CSIRO-Mk3.5 (dark orange), CSIRO-Mk3.6 (red). 
Within the main body of the table, the colour coding indicates relatively ‘good’ (blue), relatively ‘mediocre’ (white) and 
relatively ‘poor’ (yellow) scores.

		  In column A, ‘good’ scores are those within ten per cent of the observed mean (1.7 mm per day) while the ‘poor’ scores are 
those in excess of +/– 50 per cent.

		  In column B, the ‘good’ scores lie between 90 per cent and 110 per cent while the ‘poor’ scores are either less than 80 per 
cent or greater than 120 per cent.

		  In columns C, D, G and H the ‘good’ scores are greater than 0.90 while the ‘poor’ scores are less than 0.80.
		  In column E the ‘good’ scores lie within 0.5 ºC of the observed value while the ‘poor’ scores differ by more than 1.0 ºC.
		  In column F the ‘good’ scores lie between 90 per cent and 110 per cent while the ‘poor’ scores are either less than 70 per 

cent or greater than 130 per cent
		  In column I, the ‘good’ scores lie between –0.18 and –0.28, while the ‘poor’ scores are greater than zero.
		  In column J, the ‘good’ scores are greater than +0.50 while the ‘poor’ scores are less than zero.
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the seasonal cycle for both the all-Australian average rainfall 
and the NINO3.4 SST and also calculate and compare the 
monthly correlations between these variables.

The ten metrics are evaluated in this study are:
•	 (A): the annual rainfall bias (mm per day);
•	 (B): the ratio (per cent) of the 12-month average 

interannual standard deviation of rainfall relative to the 
observed average;

•	 (C) and (D): the correlation between the 12 long-term 
average monthly values and standard deviations for 
rainfall and observed values (i.e. a measure of how well 
the seasonal cycle is captured);

•	 (E) the annual bias for the NINO3.4 SST (ºC);
•	 (F), (G) and (H): as for (B), (C) and (D) except for the 

NINO3.4 SST;
•	 (I): The average correlation between the 12 average 

monthly rainfall totals and the NINO3.4 SSTs (the 
observed average = –0.28);

•	 (J): the correlation between the 12 monthly correlations 
and observed correlations (i.e. a measure of how well the 
relationships evident in Fig. 3 are simulated). 

Results

The results for each of the 32 models across the ten metrics 
are listed in Table 1 with the Australian models highlighted 
and the colour coding chosen to indicate relatively ‘good’ 
and relatively ‘poor’ performers. The definition of relatively 
‘good’ or relatively ‘poor’ is subjective, but serves to provide 
a visual impression of overall model performance.

In the case of rainfall bias (column A), nine models have 
values within ten per cent of the observed value (1.68 mm per 
day) while six models have values in excess of 20 per cent. In 
the case of interannual variability, column B indicates that 
most model values fall within ten per cent of the observed 
value while six have values in excess of 20 per cent. There 
is a tendency for the biases to be similar in both cases. The 
models do reasonably well at simulating the seasonal cycle 
of rainfall (column C) with the poorest performers being 
BNU-ESM (r = 0.76) and MIROC-ESM (r = 0.79). The seasonal 
cycle of variability of rainfall is also very well simulated by 
the models with the lowest correlation (r = 0.85) associated 
with the HadGEM2-CC model. All the models do well at 
capturing the seasonal cycle of variability in monthly rainfall 
(column D), with values ranging from between 0.85 to 0.98. 

Figure 4 shows the time series of seasonal rainfall for the 
Australian models compared to several other models. The 
GISS-E2-RP1 model has a near zero bias but has a relatively 
weak seasonal cycle. The IPSL-CM5A-MR model has a 
negative bias, particularly during the spring and summer 
months. The NORESM1-ME model overestimates rainfall, 
but has a realistic seasonal cycle. Figure 5 shows that the 
EC-EARTH model closely matches the observed monthly 
variation in rainfall variability, the CSIRO-Mk3.6 model tends 
to underestimate variability through the winter and spring 
months, while the IPSL-CM5a-MR model underestimates 

it during spring and summer. The MIROC5 model tends to 
overestimate variability in all months. In general, there is not 
a great deal of difference between the models when it comes 
to simulating the basic features for rainfall.

In the case of NINO3.4 biases (column E), all models bar 
two (GISS-E2-HP1, GISS-E2-RP1) are too cool and reflect the 
fact that most models still suffer (to varying degrees) from 
the cold tongue bias problem which afflicted the CMIP3 
models (Vanniere et al. 2012). The GISS-E2-HP1 model yields 
the least biased (+0.26 °C) result while the CSIRO-Mk3.6 
model yields the most biased (–3.23 °C) result. 

Unlike rainfall, the degree to which the models can 
capture interannual variability (column F) ranges from 
as low as 53 per cent (EC-EARTH) to as high as 185 per 
cent (CSIRO-Mk3.0). Eleven models capture the observed 
variability to within about ten per cent. Not many models do 
very well at capturing the seasonal cycle of NINO3.4 SSTs 
(column G). The GFDLCM3 (0.06), IPSL-CM5-LR (0.03) and 
MRI-CGMCM3 (–0.35) models are particularly ‘poor’ while 
the CSIRO-Mk3.6 (0.96), MIROC5 (0.94) and MPI-ESM-Mr 
(0.92) models are particularly ‘good’. The ability to simulate 
the seasonal cycle of NINO3.4 variability (column H) is quite 
variable. The values vary from as low as –0.47 for the CSIRO-
MK3.5 model to as high as +0.97 for the ACCESS1.0 model.

Figure 6 compares simulated and observed seasonal 

Fig. 4. 	 A comparison between simulated and observed 
monthly average all-Australian rainfall values from 
selected models.

Fig. 5.	 A comparison between simulated and observed inter-
annual standard deviation of monthly all-Australian 
rainfall values from selected models.
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cycles for NINO3.4 SST and shows that, despite possessing 
a relatively large cool bias the CSIRO-Mk3.6 model does 
extremely well at capturing the seasonal cycle. The GISS-E2 
-HP1 and –RP1 models are slightly too warm while the 
MRI-CGCM3 model performs very poorly and is almost 
completely out of phase with the observations. 

Figure 7 compares the monthly values for interannual 
variability and indicates that one of the better performing 
models according to this metric is the NORESM1-ME 
model, while the EC-EARTH model both underestimates the 
observations and shows very little seasonal variation. Unlike 
the two ACCESS models, all three CSIRO models tend to 
both overestimate variability and fail to capture the observed 
seasonal cycle.

Finally, the ability to simulate the rainfall–SST relationship 
(columns I and J, Fig. 8) also varies considerably. The MPI-
ESM-LR model does best (r = +0.72) at capturing the 
seasonal cycle while the FGOALS model (r = –0.56, not 
shown) does worst. The BCC-CSM1-1 model (r = –0.07) does 
poorly, mainly because it simulates near zero or positive 
correlations in all months. The ACCESS1.0 (r = +0.30) and 
CSIRO-Mk3.6 (r = +0.23) models perform moderately well 
whereas their predecessors perform relatively poorly on this 
metric.

How well do the Australian models perform? Irving et 
al. (2012) found a slight improvement in the performance of 
CMIP5 models at simulating spatial features of Australian 
rainfall and noted that both CMIP3 and CMIP5 models 
experienced difficulties in capturing features of the seasonal 
cycle at regional scales. Here we note a slight improvement 
in the rainfall metric scores for ACCESS1.3 compared to the 
earlier version ACCESS1.0, but no similar improvement is 
evident with the CSIRO models,

Both sets of models have cool biases with respect to 
the NINO3.4 SST but while the ACCESS models tend to 
underestimate SST variability, as also noted by Watterson 
et al. (2013), the CSIRO models tend to overestimate. The 
CSIRO-Mk3.6 model performs best of all five models at 
capturing both the magnitude of the SST variability and the 
seasonal cycle, but the ACCESS models do much better at 
capturing the seasonal variation of SST anomalies. 

Despite having the coldest bias (–3.23 °C), the CSIRO-
Mk3.6 model does well at simulating the magnitude of 
NINO3.4 interannual variability (109 per cent) and does 
best (of all the models) at capturing the seasonal cycle (r = 
+0.96) and certainly represents a significant improvement 
over that of its CMIP3 predecessors. The ACCESS.1.0 model 
also captures the seasonal cycle relatively well (r = +0.75) 
whereas the ACCESS1.3 model performs relatively poorly (r 
= 0.23), a finding also reported by Rashid et al. (2013). These 
differences are consistent with the findings of Guilyardi et 
al. (2012) who found that CMIP5 models exhibited a clear 
improvement over CMIP3 models in simulating key ENSO 
features. Rashid et al. (2013) also note that the ACCESS 
models simulate key ENSO better than most of the previous 
generation models. 

Finally, in terms of capturing the seasonal cycle of 
the rainfall–SST relationship, the early versions perform 
relatively poorly, with correlations less than zero. However, 
the more recent versions (ACCESS1.3 and CSIRO-Mk3.6) 
perform moderately well with positive correlations (+0.30 
and +0.27) that place them close to the median (+0.20) of all 
values.

Can we rank the models based on these metrics? This is 
a difficult question to answer since it depends very much 
on the relevance of each metric to any particular problem 
that is being addressed. Almost all models provide a 
reasonable estimate of the seasonal cycle of rainfall, so this 
does not provide much discrimination. On the other hand, 
the NINO3.4 SST results show little evidence of consistency 
in that it is difficult to identify models which either perform 
well or perform poorly across all metrics. As a consequence, 
we conclude that it is difficult to attempt a ranking of the 
models based solely on any one of the first eight metrics.

If we are interested in the potential for producing seasonal 

Fig. 6. 	 A comparison between simulated and observed 
monthly average NINO3.4 SST values from selected 
models.

Fig. 7. 	 A comparison between simulated and observed 
NINO34 interannual standard deviation of monthly 
NINO3.4 SST values from selected models.

Fig. 8. 	 A comparison between simulated and observed 
monthly all-Australian rainfall – NINO3.4 SST correla-
tions from selected models.
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rainfall predictions, then a focus on capturing the observed 
relationships between the NINO3.4 SSTs and rainfall could 
be expected to be relevant. On this basis, we can use the 
results to suggest that the CNRM, HadGEM2-ESM, MPI-
ESM-LR and MPI-ESM-MR models can be ranked high, and 
the CSIRO-Mk3.5, FGOALS, GISS-E2-HP1 and INMCM4 
models ranked low. By the same criterion, the ACCESS1.0 
and CSIRO-Mk3.5 models can also be ranked relatively low, 
while the ACCESS1.3 and CSIRO-Mk3.6 can be ranked as 
near-median performers.

Conclusions

An assessment of 30 CMIP5 and two CMIP3 models has been 
conducted based on metrics related to all-Australian region 
average rainfall and ENSO. The main findings are that: 
•	 most models simulate both the mean and the interannual 

variability of rainfall reasonably well, but with a tendency 
to overestimate;

•	 all models capture the seasonal cycle of rainfall (the 
minimum correlation being +0.76);

•	 almost all models underestimate the annual mean value 
for the NINO3.4 SST due to a persistent cool tongue bias;

•	 simulated values for the interannual variability of NINO3.4 
SSTs vary widely (the ratio of model to observed values 
varies from a minimum of only 53 per cent to a maximum 
of 185 per cent); and

•	 most models can capture the seasonal cycle of the SSTs, 
but several yield very poor correlations.
We find little consistency across the metrics which makes 

it difficult to combine the different scores in any meaningful 
way. For example, BNU-ESM model performs relatively 
poorly at representing the seasonal cycle of rainfall (r = 0.76), 
but captures the rainfall–SST relationship reasonably well (r 
= 0.47). The CSIRO-Mk3.6 model has a severe cool bias (–3.23 
°C) in representing the NINO3.4 SSTs, but represents the 
seasonal cycle quite well (r = +0.96). However, if we choose 
the ability to capture the seasonal cycle of the rainfall–
NINO3.4 SST relationship as a potential indicator of the skill 
of the models at performing seasonal predictions, then it is 
possible to identify relatively strong and weak performers. 
We can rank four models (CNRM, HadGEM2-ESM, MPI-
ESM-LR and MPI-ESM-MR) high and four models (CSIRO-
Mk3.5, FGOALS, GISS-E2-HP1 and INMCM4) low. Amongst 
the Australian models, while the ACCESS1.3 and CSIRO-
Mk3.6 can only be ranked as near median performers, we 
note that they both represent improvements over their 
predecessors.

It is important to note that these findings relate to the 
chosen metrics only, and do not necessarily imply anything 
about the performance of models in other regards. They do, 
at least, provide indications of where some models may need 
to be closely scrutinised before they are used for seasonal 
predictions or climate change studies.
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