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A stochastic model for runs of extreme days 
for a daily meteorological variable

Warwick Grace
Grace Research Network

(Manuscript received February 2013; revised September 2013)

The expected frequency of runs of extreme days is modelled with a seasonal au-
toregressive representation using two site-specific scalar parameters—autocor-
relation and an index of seasonality. Extreme days for a meteorological variable 
such as temperature, evaporation, sunshine and wind run are defined as days 
when the variable in question exceeds an arbitrary upper threshold or fails to 
exceed a lower threshold. The model estimates the frequency of runs as a function 
of duration (in days) and percentile or absolute threshold.

The model is applied to several types of daily variable such as wind run, evapo-
ration, sunshine and pressure, and tested extensively on datasets of daily maxi-
mum and minimum temperature for 60 to 70 sites in each of Australia and Europe. 
Using a priori parameter values of autocorrelation and seasonality, the model of-
ten provides fair agreement with the observed frequency of runs of extreme days. 
With the parameter values tuned to fit the observed frequency of runs, the agree-
ment is typically fair to good. It is concluded that the model has the potential to 
estimate frequency (or return period) of unusually long runs with very low or high 
percentile thresholds. 

Introduction

Extremes of many meteorological variables are of interest 
because of their impact on society and the environment. 
An extreme day is here defined as one where the variable 
concerned exceeds some chosen upper threshold or fails to 
exceed a chosen lower threshold; and a run of extreme days is 
a sequence of consecutive extreme days. To avoid ambiguity 
regarding the duration, the duration of a run is equal to the 
maximum number of extreme days in the run. Most studies 
of climate extremes have focussed on temperatures or 
rainfall: for instance, the World Meteorological Organization 
Commission for Climatology/Climate Variability and 
Predictability/Joint Technical Commission for Oceanography 
and Marine Meteorology Expert Team on Climate Change 
Detection and Indices (ETCCDI) have 27 indices of extremes 
most of which are related to temperature or rainfall, either 
as single events or as a run of such events (see http://etccdi.
pacificclimate.org/list_27_indices.shtml).

However, the stochastic model to be presented here is 
intended to be general and applicable to any meteorological 
variable which is measured daily and which exhibits an 
annual cycle. The model’s output—the frequency of runs of 

extreme days—is not necessarily the best metric to typify 
spells of extremes: for example, although the model may be 
applied to the temperature record to model the frequency 
of runs of extremely hot days, there are other more suitable 
metrics for heatwaves (Perkins and Alexander 2013).

Stochastic modelling of runs of extreme days has been 
mostly related to heatwaves and wet or dry spells. Stochastic 
time series modelling using first-order autoregressive (AR) 
models with a knowledge of the monthly mean, standard 
deviation and autocorrelation provide characteristics of 
heatwaves that are in good agreement with observations in 
mid-latitude areas (Mearns et al. 1984, Kysely 2010, Grace 
2011). Grace (2011) found that an analytical Markov model 
with one empirical coefficient was comparable to the AR 
model. The theory of AR models is described and illustrated 
with several climate examples in the texts of von Storch 
and Zwiers (1999) and Wilks (2011). Stochastic modelling 
of runs of wet and dry days (not specifically for extremes) 
and synthetic weather generation has been performed 
using Markov models (Wilks 2008, Wilks 2011) and these too 
usually require separate parameters for each month.

There appears to be no simple analytical or parametric 
model of frequency of runs of extremes of a daily variable 
in the literature other than the analytically expressed 
Markov model of Grace et al. (2009) and Grace (2011). The 
purpose of this paper is to present an autoregressive model 
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missing daily observations were substituted with linearly 
interpolated values. Only complete or near-complete years 
were used.

For simplicity the confounding effect of global warming 
was avoided by using only years up to 1970 in the 
temperature datasets. The period of up to 1970 was chosen 
as being approximately stationary since it is known that most 
of the warming trend in maximum temperatures in Australia 
in the recent past has occurred since 1970 (Commonwealth 
of Australia 2012). For the Australian dataset, with two 
exceptions noted later, only sites with at least 25 years of 
complete or near-complete data up to 1970 were used. For 
the European dataset, only sites with at least 70 years of 
complete or near-complete data up to 1970 were used. The 
numbers of sites are shown at Table 1.

Temperature-percentile relationships were constructed 
for each site for the whole period of record (up to 1970) and 
calculated over the entire record regardless of the annual 
cycle. Thus it is always straightforward to convert runs in 
terms of percentile thresholds to runs in terms of absolute 
temperatures. For example, the 90th percentile maximum 
temperature for Melbourne for the period up to 1970 was 
29.4 °C while 30 °C corresponds to 91.2th percentile.

of runs frequency which is effectively parametric in that it 
is fully described by a few parameters (two in the case of 
this model) and is general enough to apply to many typical 
weather variables over a wide range of designated threshold 
percentiles and run durations. The testing datasets are 
described then the model theory developed. The model is 
then applied and model performance assessed qualitatively 
and quantitatively. Discussion and conclusions follow. 

Data considerations

For wind run, evaporation, pressure and sunshine hours, all 
available daily data as at July 2011 (Bureau of Meteorology 
2011) for Adelaide Airport were used to investigate the 
model’s performance. Adelaide Airport was used in 
preference to the city’s near-CBD site to avoid possible 
trends from urbanisation effects.

Other data used are the daily maximum and minimum 
temperature record from the Australian Bureau of 
Meteorology’s ACORN-SAT High Quality Temperature 
dataset (Bureau of Meteorology 2012, Trewin 2013) and 
the quality-controlled daily maximum and minimum 
temperature dataset for sites in Europe, including Russia, 
and the Mediterranean available from the European Climate 
Assessment Dataset (Klein Tank et al. 2002 and Klok and 
Klein Tank 2009). The data were allocated to either calendar 
or ‘Austral summer’ years (from July to June) depending as 
to what time of year the extremes in question tend to occur. 
A complete, or near-complete, year of record at a station is 
regarded as one with no more than two missing observations. 
For the years with one or two missing observations, the 

Table 1. 	 Mean performance measures of correlation coefficient r, the χ2 test, and RMSEA (see p478) for each dataset for runs of days 
with maximum temperatures above the 90th, 95th and 98th percentiles and minimum temperatures below the 10th, 5th and 
2nd percentiles for Australian and European datasets for years up to 1970. Australian (European) dataset was restricted to 
sites with at least 25 (70) years of continuous record. F is percentage of sites for which null hypothesis is accepted, under 
the χ2 test at 0.05 significance level. RMSEA values up to 0.05 indicate ‘close approximate fit’ and up to 0.08 ‘reasonable 
approximate fit’. Measures for the untuned model are shown in normal type, and those for the tuned model in bold.

Dataset Sites

For runs of maximum temperatures above the 90th, 95th and 98th percentiles

r F % RMSEA
Australian  up to 1970   67 0.95    0.95 29    68 0.07    0.04

European up to 1970
with  ≥ 70 years

65 0.93    0.94 22    70 0.07    0.03

Overall ‘heatwaves’ 132 0.94    0.94 25    69 0.07    0.04

For runs of minimum temperatures below the 10th , 5th and 2nd percentiles

r F % RMSEA
Australian  up to 1970 70 0.96    0.96 21    70 0.11    0.05

European up to 1970
with  ≥ 70 years

62 0.93    0.94 11    37 0.12    0.07

Overall ‘cold spells’ 132 0.95    0.95 16    54 0.11    0.06

Overall mean for ‘heat 
waves’ and ‘cold spells’ 

264 0.94    0.95 22    61 0.08    0.05

Fig. 1.	 Schematic of a sequence of days with three runs 
of extreme days. Extreme days are represented as 
grey. From the left, the three runs are of length one, 
three and two days.
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features of the real observations. The two parameters are 
autocorrelation and an index of seasonality which is the 
amplitude of the seasonal cycle scaled by the standard 
deviation. To illustrate this, Fig. 2 shows the time series 
of daily maximum temperature for the year 1899–1900 at 
Adelaide (West Terrace city site) compared to an idealised 
simulation with standard deviation set to unity and with 
two constant parameters—daily autocorrelation of 0.6 and 
a seasonal sinusoidal variation of amplitude 1.5 standard 
deviation units with these parameters being close to values 
calculated in the manner detailed later. Firstly, the observed 
seasonal cycle is approximately sinusoidal. Secondly, 
extremes (those days exceeding 90th percentile maximum 
temperature in this illustration) tend to occur in and around 
a peak season. Although both the observed standard 
deviation and the autocorrelation vary throughout the 
year (not shown), the seasonal shift in the mean reduces or 
eliminates their importance in producing extremes outside 
of the summer period. Nevertheless extremes can still occur 
outside of peak season both in the observations and in the 
simulation. Overall, the three most important parameters 
are assumed to be the autocorrelation in peak season, 
the standard deviation in peak season and the seasonal 
amplitude of the mean. It will be shown later that the last 
two parameters can be combined to form a dimensionless 

Model description and theory

Assumptions and definitions
For a variable T of a meteorological nature, a stationary 
climate is assumed, and taken to mean cyclostationary, that 
is, stationary after seasonal adjustment (Wilks 2011). An 
extreme day is one where T exceeds (or remains below) a 
specified upper (or lower) threshold, Tp. The threshold Tp 

is the pth percentile value calculated over the entire record 
regardless of the annual cycle. Extreme days and non-
extreme days are mutually exclusive, and a run is a sequence 
of extreme days bounded by non-extreme days (see Fig. 1). 

Stochastic simulation
Autoregressive models of order one have been used to 
model heatwaves in mid-latitudes (Mearns et al. 1984, Kysely 
2010, Grace 2011). Von Storch and Zwiers (1999) and Wilks 
(2011) provide mathematical theory and examples of climate 
applications of stochastic AR models. In this paper the 
focus is on an idealised stationary time series with constant 
standard deviation and autocorrelation and with a seasonal 
mean of a sinusoidal nature. 

The underpinning idea of the idealisation is shown 
schematically at Fig 2. The assumption is that only 
two parameters are sufficient to capture the essential 

Fig. 2.	 (a) A typical annual cycle of daily maximum temperature (thin black line) for Adelaide (West Terrace). The period shown is 1 
July 1899 to 30 June 1900. Day 183 is 1 January 1900. The mean (thick black line) and 90th percentile (thick red line) are com-
puted from the 30-year period 1887–1916. The grey shading presents ±1 standard deviation about the seasonal cycle (thick blue 
line), computed over the period 1887-–1916. (b) A simulation using Equation 2 with an overall mean of 0, a standard deviation 
of 1.0, an autocorrelation of 0.6 and a sinusoidal seasonal variation of the mean with an amplitude equal to 1.5. For both ob-
servations and the simulation, occurrences above the 90th percentile tend to occur in and around summer or its equivalent.
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this model, two) parameters and the family of curves either 
‘predicts’ observed outcomes or the parameters can be set so 
that the family of curves approximates empirically observed 
outcomes. 

In estimating the runs frequency an alternative algorithm 
is to simulate a daily sequence of 100 years and then to 
average the results of 1000 such sequences. The potential 
advantage is that a secular trend over the 100 year period 
could be incorporated. This would then enable a comparison 
of runs frequency between the early decades and the later 
decades of a century subject to a warming trend.

Although Equation 2 is stochastic, if M is sufficiently large 
then in practice R is a deterministic function. Obtaining R 
from the stochastic algorithm is computationally intensive 
but the disadvantage may be offset by the one-time creation 
of a look-up table. This was done by nesting incrementing 
values of a and s and conducting separate simulations to 
determine R for suitable ranges of x and p. The resulting 
look-up table is four-dimensional in x, p, a and s and capable 
of interpolation. A diagrammatic representation in Fig. 3 of 
R, as a family of curves in x and p for nine selected value-
pairs of a and s, shows the response as autocorrelation and/
or seasonality vary. On these diagrams, the vertical axes are 
logarithmic. For small a and/or s the model lines are steeper 
and straighter. The simplest case where both a and s are 
zero reduces to a series of independent Bernoulli events and 
the model lines are expected to be exponential, that is, to 
plot as straight lines on a log-linear graph (see Appendix 
A). As a and/or s increase for a given p, the lines become 
less steep implying that longer runs of extremes occur more 
frequently and shorter runs occur relatively less frequently. 
Also the lines develop a concave upward curvature with 
increasing a and/or s implying that an additional feature to 
the exponentiality is involved.

Estimating the model parameters (a priori)
Although the autocorrelation varies on a seasonal basis, it 
is intuitively apparent that the autocorrelation in the peak 
season is most relevant since outside of the peak season 
the extremes are much less likely to occur. To simplify the 
discussion, the notional peak period is assumed to be the 
month of January. Sample autocorrelations (at lag of one 
day) are calculated for each January; the mean of these is 
taken as the estimate of autocorrelation for the peak period.

For a measure of seasonality we use the following non-
dimensional index

where TJmean is the mean during the peak month of 
January, TAmean is the mean over the whole year and σJ is 
the standard deviation of the daily values during January. 
As with the estimation of autocorrelation, s is estimated 
as the mean of the individual January values of s. A value 
of s = 0 corresponds to a seasonless regime while large s 
implies a short peak period. If the standard deviation were 

...(4)

seasonality index so that only two parameters are required 
for the simulation. 

The assumption that a time series conforms to an AR(1) 
model is articulated as (Wilks 2011): 

 

where Tm represents the daily variable at day m = 0, 1, 2, 
3,…, M, and a is the autocorrelation at lag 1, µ is the mean of 
the variable T, ϕ is a standard normally distributed random 
(noise) variable and σ is the standard deviation of T about µ. 
We begin with the simpler case where µ is held constant. 
Without loss of generality we can set µ = 0 and σ = 1. A set 
of simulations each covering 100 000 years (M = 36 500 000 
days) is undertaken. To initialise the simulations, T0 is set 
equal to the mean, which here is zero.

From these simulations R is estimated as the number of 
occurrences per century for runs of length x = 1, 2, 3,… days 
when the variable exceeds thresholds of p = 75, 76, 77,…98, 
99th percentiles. In other words, R is a function of run 
length (x days) and the percentile threshold, p, for a given 
autocorrelation, a. Von Storch and Zwiers (1999, their Fig. 
10.8) present a similar example of runs frequency against 
run length for a = 0, 0.3, and 0.9 but using a threshold at the 
50th percentile. 

Idealised seasonality 
A more realistic regime is provided by the inclusion of a 
seasonal variation of the mean. Here the model continues to 
have constant autocorrelation a, constant standard deviation 
(σ = 1) but the mean µ varies sinusoidally over the annual 
cycle with amplitude of s about a long term mean of zero. 
Thus the mean µ oscillates about zero from -s in off-peak to 
+s in mid-peak and is set equal to -s cos(2πm/365) where s 
is essentially a multiple of the standard deviation which 
remains set at 1. 

So the daily variable is simulated stochastically with two 
inputs, a and s, by Equation 2:

The start and end of the series will be during the off-
peak period (when m = 0 or a multiple of 365, the first 
right-hand term will be at its lowest) so edge effects from 
incomplete runs at the start or end are avoided. As before, 
from these simulations R is tabulated in relation to x and p 
for any combination of a and s which allows the model to be 
expressed as

where the semicolon indicates that x and p are regarded as 
variables in the usual mathematical sense and the a and s 
terms are parameters. R is a family of probability functions 
scaled by the number of days in a century. 100/R may be 
interpreted as the return period in years. Equation 3 is a 
parametric function in the sense that a family of curves is 
described by some mathematical procedure involving (in 

...(1)

...(2)

...(3)
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constant over the seasonal cycle and the monthly means 
followed a sine curve then the expression for s is equivalent 
to the seasonality measure used in the idealised regime 
above. The calculation of the parameters is still practical 
for incomplete datasets. It is also noted that a secular trend 
in T would not affect the calculation of a or s.

Bias adjustment for autocorrelation and standard deviation 
The estimation of autocorrelation and standard deviation 
is as the mean of the sample estimates as described above. 
However, autocorrelation in a series has the effect of 
biasing the sample estimates of moments (other than the 
mean) and of the autocorrelation itself (see Appendix B). 
To de-bias the sample estimates of standard deviation and 

autocorrelation, the expected bias needs to be taken into 
account. The expected bias can be determined from the 
sample autocorrelation and the sampling size (in this case 
30) and the procedure to do this is detailed in Appendix 
B. In the model assessment process it was found that 
neglecting the bias usually caused apparent deterioration in 
model performance. 

Estimating the model parameters (a posteriori)
A second approach to estimate the parameters a and s 
is to compare the model output of runs frequencies to 
observations and find the best fit of model to observations. 
These tuned, or effective, values are denoted as a* and s* 
and the fitting is by maximum likelihood estimation. 

Fig. 3.	 Model curves for selected pairings of autocorrelation a and seasonality s shown by plots of R against runs duration in days 
x with selected thresholds at percentiles p (top to bottom: 90, dark blue; 95, green; 99 per cent, red).
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Fig. 4.	 For Adelaide Airport, comparisons of runs of upper extremes (90 per cent thresholds) for (a) Wind run, (b) evaporation, 
and lower extremes (10 per cent thresholds) for (c) sunshine, and (d) mean sea level pressure at 9.00 am. Observed (filled 
circles), untuned model (lines).
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Generality 
In principle, the model applies to any daily variable that 
has daily persistence and is seasonal. Further, by invoking 
symmetry it is clear that runs of days below percentile 
thresholds may be characterised in a similar way. Thus for a 
run of low extremes, we would use ceiling thresholds of the 
25, 24, 23,…2, 1st percentiles instead of floor thresholds of 
the 75, 76, 77,… 98, 99th percentiles. 

Model performance 

Several graphical examples of runs of extreme days for a 
range of meteorological variables are presented to provide 
a qualitative assessment of the model, before a quantitative 
assessment based on runs of extremely hot days and cold 
nights for Australian and European sites. 

Adelaide: wind run, evaporation, sunshine and pressure
For Adelaide Airport (at Fig. 4), the untuned model is 
compared to observed runs for upper extremes (above the 
90th percentiles) for (a) wind run, (b) evaporation, and lower 
extremes (below 10th percentiles) for (c) sunshine, and (d) 
mean sea level pressure at 9.00 am. Subjectively, Fig. 4 shows 
good agreement between model and observations. Also 
shown are the absolute values corresponding to the given 
percentiles. Although not presented here, corresponding 
graphical comparisons for other capital city airport 
sites appear to have similar level of agreement between 
observations and model.

Some Australian sites using temperature time series up 
to 1970
Using the available daily maximum and minimum 
temperatures up to 1970, eight Australian sites (Alice 
Springs and seven capital cities) were analysed. Canberra 
and Brisbane are shown although they are exceptions to the 
requirement for at least 25 years of complete data. Model and 
observed frequency of runs for daily maximum temperatures 
exceeding the 90th percentiles (informally described here as 
heatwaves) and likewise for daily minimum temperatures 
below the 10th percentiles (informally described here as 
cold spells) are shown graphically at Figs 5 and 6. The model 
estimates use the a priori values of a and s. Several of the 
plots show very good agreement although the comparisons 
at Canberra for heatwaves and Alice Springs for cold spells 
are poorer. Also shown are model estimates using the 
tuned values of a* and s* which are shown in brackets. A 
performance score, RMSEA, which is described below, is 
also shown together with a value for the tuned model in 
brackets. The fine lines represent the untuned model and the 
bold line represents the tuned model, so it can be seen that 
the comparisons are improved for some sites. Confidence 
intervals (of 95 per cent) derived from Monte Carlo 
simulations (10 000 simulations of the model) are plotted to 
provide an appreciation of the sampling variability expected 
from the model given the number of years of observational 

data. They also give a graphical impression as to how well 
the model fits the observational data. Plots (not shown) for 
all other Australian sites and for detrended time series up to 
2010 are subjectively similar.

Some European sites with long temperature records up 
to 1970
At Fig. 7 are similar comparison plots for eight European 
sites, for heatwaves based on daily maximum temperatures 
above the 90th percentiles. These sites were selected 
because they had the most years of available record. As 
with the Australian sites, the plots show good model fits 
with sometimes only marginal improvement between the 
untuned and tuned model. Plots (not shown) for runs based 
on daily minimum temperatures below the 10th percentiles 
are similar. These plots cover up to 200 years of record and 
indicate that the observations agree reasonably with the 
model in the tail area out to runs lengths of 15 or more days. 

Although it is impractical to present the corresponding 
graphs for all Australian and European sites in the datasets, it 
is remarked that the comparisons between observations and 
model are subjectively very similar to those of the previous 
Figs. This comment applies to other thresholds such as 95th, 
98th and 5th and 2nd percentiles.

Quantitative assessment
Quantitative assessment of the model’s accuracy and 
reliability is performed for each of the temperature datasets 
for heatwaves (cold spells), for thresholds of 90, 95 and 98 
per cent (ten, five and two per cent) for the untuned model 
and the tuned model. Performance measures were the 
correlation coefficient r, the χ2 test, and RMSEA. 

The χ2 goodness of fit test (following Conover 1999) gives 
a binary outcome of ‘acceptance or rejection’ at the 0.05 
significance level for the null hypothesis, in this case, that 
the observed number of runs has the distribution described 
by Equation 3. The percentage of sites for which the model is 
accepted (strictly, ‘not rejected’) is the performance measure 
and is denoted F. A disadvantage of this measure is that the 
χ2 goodness of fit test tends to over-reject with large sample 
sizes, more than a few hundred (Kline 2011), as is the case 
here. For example, for the Australian cities with 60 years of 
record, the sample size ~ 1200 for thresholds of 90 per cent. 

RMSEA (root mean square error of approximation) is 
a measure popular in the structural equation modelling 
community that is based on the χ2 value but is adjusted for 
sample size N (Kline 2011). A value up to 0.05 is regarded 
as indicating a ‘close approximate fit’, a value between 0.05 
and 0.08 indicates a ‘reasonable approximate fit’ and more 
than 0.1 indicates a poor fit. RMSEA is defined in Equation 5 
(adapted from Kline, 2011) as

where ν is the number of degrees of freedom. The tuned 
model has two fewer degrees of freedom on account of the 

...(5)
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Fig. 5.	 Frequency of runs of days hotter than the 90th percentile, informally referred to here as heat waves. Observed (filled 
circles), untuned model (fine lines), tuned model (solid lines), for eight Australian sites with data up to 1970. The use of the 
90th percentile as a threshold is arbitrary and the model is applicable to other percentiles. Monte Carlo-simulated confi-
dence intervals (CI) are represented by the vertical bars: fine lines offset slightly left for the untuned model and thick lines 
offset right for the tuned model. CI are for 95 per cent (lower and upper limits of 2.5 and 97.5 per cent respectively). Tx refers 
to maximum temperature.
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Fig. 6.	 Similar to Fig. 5 but for frequency of cold spells based on minimum temperatures below the 10th percentile. Tn refers to 
minimum temperature.
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Fig. 7.	 Similar to Fig. 6 but for eight European sites with long records (100~200 years).
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The overall F values are 22 per cent and 61 per cent for 
untuned and tuned model respectively implying that the χ2 
test rejects the untuned model about 80 per cent of the time 
while the tuned model is accepted about 60 per cent of the 
time. The overall mean RMSEA values for the untuned and 
tuned model respectively are 0.08 and 0.05. Using Kline’s 
suggested RMSEA criteria above, then the untuned model is 
a reasonable approximation while the tuned model is usually 
a close approximation. The tuned model outperforms the 
untuned model. Performance between datasets is broadly 
comparable: however, the performance for heatwaves 
is better than that for cold spells, and for cold spells the 
performance with the European dataset is slightly worse 
than that of the Australian dataset. Bearing in mind r, F, 
and RMSEA then it is concluded that the untuned model is 
typically fair while the tuned model is typically fair to good. 

A consistency check was performed on the spatial 
variability of the parameters a and s on the assumption 
that for physically meaningful parameters there should be 
spatial coherency. Contour plots of the parameters a and s 
for heatwaves are provided at Fig. 8. These show that each of 
a and s tend to increase inland or with greater continentality 
and a tendency for the lowest values to occur on the southern 
coasts. Tryhorn and Risbey (2006) used gridpoint data from 
NCEP/NCAR Reanalysis and GCM (global climate model) 
projections in their study on the distribution of heatwaves 
over Australia. They defined a heat wave as a run of days 
with maximum temperature exceeding the 90th percentile. 
They found longer heatwaves in central Australia and 
shorter heatwaves along the south coast of Australia which 
they attributed to the relatively static character of the central 
Australian weather and to the high-frequency frontal nature 
of weather in the southern regions respectively. This is 
consistent with the expectation from the model for higher a 
and s in central Australia and lower values about the southern 
coats. Using Fig. 3, as a and s increase we move right and 
down and see that the short runs become fewer and the 
longer runs become more common; as a and s decrease, we 
move toward the upper left where the short runs are more 
frequent and the long runs are rarer. A practical application 
for contour plots like Fig. 8 might be to interpolate to a site 
with little or no data.

Discussion and conclusions

The model is based on the idea that, in a descriptive statistical 
sense, the two most important causes of runs of extreme 
days for any meteorological variable are the autocorrelation 
during the peak season for extremes and the seasonality. The 
importance of autocorrelation is self-evident: the importance 
of seasonality is readily apparent when it is considered that 
regardless of autocorrelation, if the ‘quota’ of extreme days 
is confined to a short peak season then there is more chance 
of longer runs of extremes than otherwise. This is in part 
because the threshold for extremity is defined with respect 
to the whole year. Over and above the assumption of first 

Fig. 8.	 Contours of (a) autocorrelation a and (b) seasonal-
ity index s for heat waves as calculated for Austra-
lian sites. Each of autocorrelation and seasonality are 
maximum in central Australia and minimum about 
southern coasts.

b)

a)

two fitted parameters. The term χ2/ν is called the normed chi-
square and a convenient rule of thumb suggested by some 
authors is that if it is less than two or three then the fit is 
acceptable, but Kline advises against this practice.

For each of the sites, with very few exceptions, the 
correlation coefficients between observed and modelled 
frequencies are about 0.97 or more. This tendency to be 
apparently over-generous arises because the correlation 
process favours a straight line fitted through the two 
largest values—the other values are one or more orders 
of magnitude smaller and therefore contribute little to the 
error terms. Even using transformed variables (square root 
values or logged values provided the observation counts are 
at least one) results in correlation coefficients that are rarely 
below 0.9. The correlation coefficient for the logged values of 
model and observed runs is used here: at about 0.95 they are 
quite high as reported at Table 1. 
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Complications due to global warming trends were avoided 
by restricting the quantitative testing of the model to the 
period up to 1970, however, it is suggested that appropriate 
detrending of the relevant time series would allow the model 
to be applied to quantities exhibiting a secular trend. If this 
were done then the percentile thresholds of the detrended 
time series would be used and the modelled frequency of 
runs would be applicable to any era of the time series. For the 
untuned model, the values of a and s are initially calculated 
yearly and then meaned over the period of record. As noted 
earlier, these yearly values are not affected by a secular 
trend in the variable concerned. This opens the possibility 
of investigating a and s for trends. If they were found to be 
increasing then the implication would be that longer runs of 
extremes of the variable would become more frequent at the 
expense of shorter runs (see Fig. 3), regardless of any trend 
in the variable itself. 

Quantitative tests of the model used approximately 
70 Australian sites from a high quality daily maximum 
and minimum temperature dataset and approximately 60 
European sites—many with records of 100 years or more. For 
each site, separate tests were performed for runs of extreme 
days, hot and cold, for thresholds of 90, 95 or 98 per cent and 
ten, five or two per cent respectively. Judged on performance 
measures of correlation coefficient, the percentage accepted 
by the χ2 goodness of fit test, and RMSEA, the untuned 
model typically gave fair agreement with the observations, 
while the tuned model typically gave fair to good agreement. 
It is concluded that the model has the potential to estimate 
frequency (or return period) of unusually long runs—those 
with duration at least up to ~15 days. In principle, the 
meteorological quantities of interest are general and may 
potentially include many meteorologically related quantities 
such as lake level, pollen counts and fire danger indices.
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order autoregression, the presented model disregards the 
following factors or complications:
(a)	The mean only approximately follows a sine curve. 
(b)	The peak periods for the extremes do not necessarily 

occur in January or July.
(c)	The standard deviation is not constant through the year.
(d)	The autocorrelation is not constant through the year.
(e)	Higher order autoregression may be more appropriate.
(f)	 The stochastic shock element is drawn from a normal 

distribution. At least for summer-time maximum 
temperatures for southern Australia the observed 
distribution is better fit by a bi-normal distribution (Grace 
and Curran 1993, Trewin 2001).

(g)	The seasonality index is a ratio of two independent 
component measures and therefore is more prone to 
error (10 per cent errors in each of the components could 
result in 20 per cent error in the ratio). 

(h)	Clustering of extremes could occur due to larger scale 
influences such as ENSO.

(i)	 Local or regional scale feedbacks might temporarily 
alter the autocorrelation. An example might be the grass 
and soil drying effect from a run of hot dry days which 
then preconditions a subsequent day to be hotter than 
it would have been otherwise. Similarly for winter time 
cold spells in the European locations, snow cover or ice 
formation associated with a run of extremely cold days 
could increase the chances of the subsequent day(s) 
being extremely cold.

(j)	 The values of autocorrelation and seasonality were 
assumed constant in the long term but could vary under 
climate change. For example, the autocorrelation of 
summer-time temperatures would rise if anticyclonic 
blocking increased or if summer-time cold fronts became 
less prevalent. 
For the untuned model, these complicating factors are 

ignored or assumed self-cancelling; for the tuned model, 
it is assumed that all or most of the complications can be 
accommodated by adjustments to a and s to form effective 
parameters, namely, effective autocorrelation a* and 
effective seasonality s*.

Applying the model to the particular variable of maximum 
temperatures in Australia, it was shown that the untuned 
parameters have a spatial coherence. The model implication 
of the spatial pattern of the a and s parameters is for longer 
duration heatwaves in central Australia and shorter duration 
heatwaves about southern coastal regions which is as 
observed by Tryhorn and Risbey (2006) for both historical 
and GCM projections. 

A set of graphical comparisons of the untuned model 
and observed runs frequency of extreme days of high wind 
run, high evaporation, low sunshine hours and low pressure 
at Adelaide showed good qualitative agreement. For the 
heatwaves and cold spells at the eight Australian sites the 
model, when tuned, showed very good agreement. This was 
also true for a set of European sites, selected as those eight 
with the longest available record—about 100 to 200 years. 
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Appendix A

The distribution of runs of extreme days is shown to 
be of an exponential nature in the special case when 
the meteorological quantity concerned is without 
autocorrelation and seasonality. In such a case its time series 
may be represented as a random variable. Let the threshold 
of an upper extreme be taken as the pth percentile quantity 
from a very long stationary sequence. 

The fraction f of days when the quantity exceeds pth 
percentile is f = 1– 0.01p, and where   0 < f < 1 in practice. Now 
f is independent of all previous days. Thus f is the probability 
that a given day is extreme and 1– f is the probability that a 
given day is not extreme.

In the example at Fig. 1, the probability P of a run of three 
days starting from any arbitrary day is given by the product 
(1 − f) f 3(1– f) arising from the constraint that a run of three 
extreme days must be preceded by a non-extreme day and 
succeeded by a non-extreme day. Generalising to a run of x 
days (x = 1,2,3…), then

The probability function P is easily shown to be exponential 
in x. Taking logarithms, rearranging and exponentiating 
Equation A1 gives

Casting Equation A2 into expected runs in a period of a 
century then

Replacing f with 1 – 0.01p, then Equation A3 becomes

where R is the number of occurrences per century for runs 
of length x = 1, 2, 3,… days when the variable concerned 
exceeds percentile thresholds of p as in the main text. Since 
p <100, then ln(1– 0.01p) is negative and thus R reduces 
exponentially with x. The simulation plots of the top-left 
panel in Fig. 3 are reproduced by Equation A4.

...(A1)

...(A2)

...(A3)

...(A4)
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Appendix B

It is known that the sample autocorrelation and sample 
standard deviation of an autocorrelated variable is biased 
(Law and Kelton 1991, Seaman 1992, Kirchner 2001, Arnau 
and Bono 2002). Generally for positive autocorrelation 
the bias is negative (under-estimation occurs). Kirchner 
(2001) suggests the following viewpoint. Since the data are 
not independent then the residuals from a mean or any 
model are largely redundant (i.e., not independent of one 
another). Therefore the effective degrees of freedom are 
far fewer than the number of observations. Then for those 
statistical parameters (other than the mean) where the 

Fig. B1.	 Plots of bias correction against sample autocorrelation for (a) autocorrelation and (b) standard deviation derived from 
Monte Carlo simulation for sample sizes of 30 and 61.

sample size appears as a denominator, the sample estimate 
of the parameter concerned will be an under-estimate of the 
population parameter. 

Arnau and Bono (2002) provide a Monte Carlo simulation 
method to estimate the bias of the sample autocorrelation 
as a function of the sample autocorrelation and sample 
size. The method is easily modified to provide the bias for 
the sample standard deviation. Following their method, the 
results for sample sizes of 30 and 61 are shown at Fig. B1. 
From the curves of sample size 30, empirical rational linear 
expressions for the bias corrections were easily obtained.


