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The stretched exponential distribution is used to create a statistical model for the 

frequency and duration of runs of extreme days. Extreme days are regarded here 

as those days when the meteorological variable concerned exceeds an upper 

threshold of any chosen ranking percentile or does not reach a lower threshold. 

This stretched exponential model represents a generalisation of a simpler model-

ling framework applied previously to Australian and international data. The 

model requires only two parameters and these parameters are location-specific 

and independent of the percentile of the threshold. Using the records of daily 

maximum and minimum temperatures in Australia and Europe, agreement be-

tween model and observations is shown to be good to very good. 

Introduction 

Extremes and runs of extremes of many meteorological variables have an impact on society and the environment and their 

frequency of occurrence is of interest. An extreme day is here defined as one where the variable concerned exceeds some 

chosen upper threshold or remains below a chosen lower threshold; and a run of extreme days is a sequence of consecutive 

extreme days. The duration of a run is defined here as the maximum number of extreme days in the run. 

There appears to be no simple analytical or parametric model of frequency of runs of extremes of a daily variable in the 

literature other than the Markov model of Grace et al. (2009, hereafter GSH) which has an analytical expression as a geo-

metric or exponential distribution.  

Stochastic modelling of runs of extreme days has been related mostly to heatwaves and wet or dry spells. Stochastic time 

series modelling using first-order autoregressive (AR) models with a knowledge of the monthly mean, standard deviation 

and autocorrelation provide characteristics of heatwaves that are in good agreement with observations in mid-latitude areas 

(Mearns et al. 1984, Kysely 2010, Grace 2011). Grace (2013) presented an idealised stochastic autoregressive model re-

quiring only two parameters, which provides fair to good representation of runs of extremes in the form of heatwaves, cold 

spells, and runs of days with high evaporation, high wind run, low pressure, and low sunshine hours. A disadvantage of the 

stochastic models is that they have no analytical expression.  

The stretched exponential function has been used in physics to model relaxation phenomena such as capacitor discharge, 

and decay in luminescence and fluorescence (Sornette 2006, Laherrere and Sornette 1998) and in biochemistry to model 

catalytic activity of enzymes (Flomenbom et al. 2005). The stretched exponential function has been used as (a) a probabil-

ity density distribution and (b) a complementary cumulative distribution to model a diverse range of phenomena in nature 

and the economy.  For the former, Luevano (2013) cites over 20 papers: for the latter, Laherrere and Sornette modelled 

distributions of radio and light emissions from galaxies, oilfield sizes, city sizes, currency variations, biological extinction 

events, earthquakes and journal citations, and showed that the stretched exponential (complementary cumulative) distribu-
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tion is superior to commonly used power-law distribution models for their examples. In this paper the stretched exponen-

tial distribution (SED) is used in the probability density form and will be formally defined later.  

The purpose of this paper is to show that the SED model provides a good approximation to the frequency of observed runs 

of extremes of daily maximum and minimum temperatures. It has a relatively simple two-parameter analytical function. 

The testing datasets are described; then the SED model described and developed. Model performance is assessed qualita-

tively and quantitatively, with discussion and conclusions following.   

Data considerations 

The data used are the daily maximum and minimum temperature record since 1910 from the Australian Bureau of Meteor-

ology’s Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) High Quality 

Temperature dataset (Bureau of Meteorology 2012, Trewin 2013) and the quality-controlled daily maximum and minimum 

temperature dataset for sites in Europe, including Russia, and the Mediterranean available from the European Climate As-

sessment Dataset (Klein Tank et al. 2002 and Klok and Klein Tank 2009). The data were allocated to either calendar (i.e., 

January to December) or ‘Austral summer’ years (from July to June) so that the peak period for the extremes is mid-year: 

this avoids any problems due to incomplete runs occurring at the starts or ends of the records used. A complete, or near-

complete, year of record at a station is regarded as one with no more than two missing observations. For the years with one 

or two missing observations, the missing daily observations were substituted with linearly interpolated values. For exam-

ple, if the observation for a day is missing, then the missing observation is replaced by the linear interpolation based on the 

adjacent days. Only complete or near-complete years were used. 

For simplicity the confounding effect of global warming was avoided by using only years up to 1970 in the temperature 

datasets. The period of up to 1970 was chosen as being approximately stationary since it is known that most of the warm-

ing trend in maximum temperatures in Australia in the recent past has occurred since 1970 (Commonwealth of Australia, 

2012). For the Australian dataset only sites with at least 25 years of complete or near-complete data up to 1970 were used. 

For the European dataset, only sites with at least 70 years of complete or near-complete data up to 1970 were used.  The 

numbers of sites are shown at Table 1. 

Temperature-percentile relationships were constructed for each site for the whole period of record (up to 1970) and calcu-

lated over that entire period regardless of the annual cycle. Thus it is always straightforward to convert runs in terms of 

percentile thresholds to runs in terms of absolute temperatures. For example, the 90
th

 percentile maximum temperature for 

Melbourne for the period up to 1970 was 29.4°C, while 30°C corresponds to the 91.2
th

  percentile. 

Model description and development 

Assumptions and Definitions 

An extreme day is one where a daily meteorological variable, T, exceeds (or remains below) a specified upper (or lower) 

threshold, Tp. The threshold Tp is the pth percentile value calculated over entire record regardless of the annual cycle. Ex-

treme days and non-extreme days are mutually exclusive, and a run is a sequence of extreme days bounded by non-

extreme days (see Figure 1 for a schematic illustration of the idea). If T happens to equal Tp the day is taken as non-

extreme.  

Figure 1 Schematic of a sequence of days with three runs of extreme days. Extreme days are represented as grey. 

From the left, the three runs are of length 1, 3 and 2 days. 

             

 

For thresholds at the p
th

 percentile, there is a corresponding expected fraction f of extreme days. For upper and lower 

thresholds respectively, then 

               (1) 
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and 

 f =  0.01p. (2) 

Earlier models 

Grace (2013) showed that for the simplest case, that of a series of a random variable that is stationary and not serially cor-

related, the runs are anticipated to follow an exponential form, so that 

 R(k, f ) = 365(1- f )2 exp ln( f ) k[ ] (3) 

where R is the expected number of runs per annum, and k = 1,2,3,… is the number of days in the run, and f is the fraction 

of extreme days. The coefficient 365 is a rounding of 365¼ days per annum. The quantity ln(f) is necessarily negative, 

indicating an exponential decline in the number of runs compared to their duration (from Equation A3 in Grace, 2013). 

GSH presented a Markov model for runs of hot days predicated on the concept of regime switching (between continental 

and maritime air-mass influences). Their expression for the number of runs is 

 R(k, f ) = 365 f 1-M (1- f M )2 exp M ln( f ) k[ ]  
(4) 

where M is a location-specific coefficient or parameter and k and f are regarded as independent variables (from Equation 

12a in GSH). If M =1 then Equation 4 reduces to Equation 3.  M is well correlated with the skewness of the January daily 

maximum temperature (r = 0.91) and M ~0.5 near the coast and ~0.25 inland: the letter M being chosen to indicate the 

relevance of the maritime influence. This Markov model, referred to as the M model by GSH,  performed best for sites on 

the southern coasts such as Robe and Hobart, and (unpublished) Eucla and Cape Leeuwin. The exponential form of Equa-

tion 4 implies that runs against duration tend to plot as straight lines on log-linear axes. Further assessment of this model 

once the ACORN-SAT dataset became available showed that long runs occur more frequently than the straight-line ex-

trapolation (on the log-linear plot). In other words, in a graphical context a convex curvature was always evident in the 

plotted data, albeit sometimes only slightly for coastal locations and small f. Examples of the convex curvature are evident 

in Figures presented later.  

Stretched exponential distribution (SED) 

The general normalized form of the stretched exponential function is 

 

 

(5) 

where t is the independent variable and α and β are parameters with α viewed as a shape parameter and the recipocal of β 

as a scale parameter (Flomenbom et al 2005). Special cases are α = 2 yielding the probability density function for a normal 

distribution, and α = 1 the probability density function for an exponential distribution. If t is continuous from t = 0, then  

 

 

(5a) 

provides the normalisation constraint for Equation 5 to be a probability density function for a random variable constrained 

to positive values. 

 

Using Equation 5, Equations 3 and 4 are generalised to 

 
R(k, f ) = 365 cexp - -b ln( f ) k( )
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ù
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y(t) = cexp - b t( )
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where the additional minus sign is introduced so that β > 0. The selection of Equation 6 is arbitrary: the only constraints 

are parsimony and simplicity and that Equations 3 and 4 are recoverable as special cases (α  = 1 and β = 1 for Equation 3; 

and α  = 1 and β = M  for Equation 4), as is shown later. 

Equation 6 is a two-parameter expression in that the coefficient c is not a free parameter and, as shown below, is itself a 

function of α, β and f. Values of the duration variable k are positive integers and therefore Equation 5a does not apply. 

However, the expected number of extreme days per annum is always 365f and therefore the coefficient c is constrained by 

the equation 

 

 

(7) 

which leads to 

 

c(a ,b, f ) = f k exp - -b ln( f ) k( )
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(8) 

Generally this equation has to be approximated numerically, but closed forms exist for some special cases. For the special 

case α  = 1 and β = 1  then 

 

c(1,1, f ) = f k exp ln( f ) k[ ]
k=1

¥

å
ì
í
î

ü
ý
þ

-1

 

(9) 

which can be recast as 

 

 

(10) 

Using the summation identity (Jolley 1961) 

 

 

(11) 

we have 

 
 

(12) 

which is consistent with Equation 3. A similar process shows that for the special case α  = 1 and β = M  then 

 
 

(13) 

which is consistent with Equation 4. Thus, the Stretched Exponential Distribution model (SED model) for the probability 

density distribution of runs of extreme days is represented by Equation 6 and the subsidiary Equation 8. 

Model fitting – finding α and β 

Assume that observed values of R(k,f) are available. From an initial guess of α = 1 and β = 1, the corresponding model 

values of R(k,f) are calculated. The general procedure is then to determine values of α and β which minimize the difference 

between the observed and modelled R(k,f). The particular method used here is a numerical method to minimize the ex-

tended likelihood ratio chi-square statistic, χ
2
 (defined below). It became apparent that sometimes a local minimum was 

365 f = k R(k, f )
k=1
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, if f <1,

c(1,1, f ) = (1- f )2,

c(1,M , f )= f 1-M(1- f M )2
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found rather than a global minimum and to avoid this, multiple (~20) randomised starting estimates for α and β were used 

and the final α and β selected from the best of the 20 fits. 

A more direct method is to recast Equation 6 as 

 ln ln(365c)- ln(R)[ ]-a ln - ln( f )[ ]=a ln(k)+a ln(b),
 

(14) 

and then utilise the fact that Equation 14 is in the slope-intercept form of a linear equation (y = mx+b) where y corre-

sponds to the left hand side of Equation 14, x corresponds to ln(k), the slope m corresponds to α and the intercept b corre-

sponds to α ln(β). Starting with initial values of α and β, Equation 14 is solved to give updated values α and β and the 

process reiterated to an acceptable level of convergence. This ordinary least squares fitting of a double logarithm quantity 

will generally be inferior to the minimization method above. A similar, and simpler, method is also applicable to the M 

model. 

Cowan (1998, see Ch 6) provides a detailed description of the extended likelihood ratio chi-square statistic, χ
2
 for Ex-

tended Maximum Likelihood Estimation (EMLE) defined as   

 

 

(15) 

where Ok and Ek refer to the observed counts and model expected counts respectively in the kth  bin of K bins. For models 

normalized on the total number of O then the total E must equal total O, and the extended likelihood ratio chi-square statis-

tic reduces to the usual Maximum Likelihood Estimation (MLE) likelihood ratio chi-square statistic given by 
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(16) 

However in our case the normalizing is by the total number of extreme days which by definition is invariant at 365f per 

annum. In other words, the model necessarily produces the same total number of extreme days as observed, but not neces-

sarily the same number of runs. There are two ramifications. Firstly, the EMLE statistic is appropriate. Secondly, the num-

ber of degrees of freedom is equal to the number of non-zero bins minus the number of parameters estimated in fitting the 

model, which here is two (being one each for α and β).  In comparison, for the MLE statistic there is further reduction of 

the degrees of freedom by one for each row. 

Cowan (1998) notes that the binned MLE or EMLE techniques above do “not encounter any difficulties if some of the bins 

have few or no entries.”  In the expression for the extended χ
2
 statistic, a row of K bins corresponds to a specified value of 

f. We can increase the number of rows (designated r) to three to accommodate f  = [0.01, 0.05, and 0.1], thus  
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(17) 

The use of the extended χ
2
 statistic at Equation 17 provided fast and reliable convergence. 

 

Model Performance 

Qualitative assessment 

Some graphical examples of runs of extreme days provide qualitative assessment of the model: heatwaves can in some 

respects be regarded as a run of days with extremely high maximum temperatures, and cold spells as a run of days with 

extremely low minimum temperatures.  In Figures 2 to 5, observed runs rates (shown as per century rather than per annum 
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for convenience) are shown as dots; the full line curve is the SED model with the α,β parameters tuned so as to provide the 

best fit. 95% confidence intervals for the observed number of runs are shown by vertical bars: if no runs of a duration have 

been recorded then no confidence interval is plotted. It is reasonable to expect that the runs of any given duration occur 

randomly among the years of record (although not within the years). For rare events (corresponding to runs of longer dura-

tion and/or small f) randomly distributed across time it is appropriate to calculate confidence intervals for runs per annum 

using the Poisson distribution.  For larger numbers, one would usually use the normal distribution but the Poisson distribu-

tion still applies. 

The two Australian stations of Figures 2 and 3 are chosen because they are geographically and climatically different. The 

two European stations of Figures 4 and 5 are selected on the grounds that their data records are the longest in the database 

(~200 years). These plots and others in the European dataset covering over 100 years of record show that the observations 

agree reasonably with the model in the tail area out to runs lengths of 15 or more days. The SED models shown at these 

Figures are qualitatively similar in the quality of agreement for all other stations in the datasets. This comment applies to 

other percentile thresholds above 90% and below 10%, not just 90, 95 and 99% and 1, 5 and 10%. 

Quantitative assessment 

Quantitative assessment of the SED model’s accuracy and reliability is performed for each of the temperature datasets for 

heatwaves and cold spells, for f  = [0.01, 0.05, and 0.1]. Performance measures used were the χ
2
 test and normed chi-

square, C. C is defined as  

 
C =

c 2

n  

(18) 

where ν is the number of degrees of freedom, with χ2 and ν being calculated using Equation 17.  The χ
2
 test is whether to 

reject or accept (strictly, to reject or not reject) the null hypothesis that the observed and model distributions of runs fre-

quencies are equivalent at a 5% level of significance. There is good agreement between model and observations if the null 

hypothesis is not rejected. To apply this test, both the χ2 statistic and ν are required. The C value serves as a useful single 

number guide to goodness-of-fit and this is illustrated by the contour plot of the acceptance level of significance with re-

spect to C and ν at Figure 6. For the region below the 5% contour, there is good agreement between model and observa-

tions. For example, if C< 1 the χ
2
 test is passed regardless of v. With ν ~ 20 to 50, then the χ

2
 test is passed if C is less than 

about 1.3.  

Of 264 χ
2
 tests of the SED model (see Table 1 and Figure 7 for details), the median C was 1.05 and 83% passed the χ

2 
test. 

For the separate classes of heatwaves and cold spells for Australian and European stations, the results were similar or bet-

ter other than that the model performed worse for the class of cold spells at European stations. From these results of the 

measures of C and the χ
2
 tests, it is concluded that the SED model is typically good to very good in its estimation of the 

frequency of runs and duration of runs. 

The performances of the stochastic model of Grace (2013) and the M model of GSH were re-assessed for comparison us-

ing the same dataset and methodology as for the SED model (Table 1). It is clear that the SED model greatly out-performs 

the other models: compared to an overall 83% acceptance for the χ
2
 tests for the SED model, the stochastic model and M 

model rated 29 and 19% respectively.  The stochastic model is superior to the M model although not uniformly so with the 

M model having marginally better acceptance rate (36% compared to 34%) for heatwaves at Australian stations. 
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Figure 2 Runs frequency versus runs duration for daily maximum temperature (Tx) exceeding the 90
th

 (top), 95
th

 

(middle) and 99
th

 (bottom) for Melbourne (left) and Alice Springs (right). The observed numbers of runs are 

shown as dots, and their associated 95% confidence intervals as vertical lines. The fitted SED model is 

shown as a thick line, with the fitted parameters α and β being given on each plot: note that these are always 

independent of the threshold percentile p. For Alice Springs there is a significant number of years discarded 

due to insufficient data – see earlier comments regarding data considerations. 
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Figure 3 As per Figure 2, but for the 10th (top), 5th (middle) and 1st (Bottom) percentiles of minimum daily tempera-

ture (Tn) at Melbourne (left) and Alice Springs (right). For Alice Springs, 14 years were discarded due to in-

sufficient data. 
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Figure 4 As for Figure 2, but for Milan (left) and Prague (right).  
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Figure 5 As for Figure 3, but for Milan (left) and Prague (right). 
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Table 1  Performance measures of F and median C for each dataset for runs of days with maximum temperatures 

above the 90
th

, 95
th

 and 99
th

 percentiles and minimum temperatures below the 10
th

, 5
th

 and 1
st
 percentiles for 

Australian and European datasets for years up to 1970. Australian (European) datasets were restricted to 

sites with at least 25 (70) years of continuous record. C is normed χ
2
, F is percentage of sites for which null 

hypothesis is accepted, under the χ
2
 test at 0.05 significance level. “Stoch” refers to the stochastic model of 

Grace (2013); “M” refers to the M model of GSH. On all measures SED model is superior to the other mod-

els for all datasets examined.  

Dataset 
Number 

of Sites 
Performance Measure 

  F % Median C 

Models      SED Stoch M  SED Stoch M  

Heatwaves        

-  Australian   67 85 34 36 1.10 1.65 1.72 

-  European  65 89 28 3 0.99 1.56 3.38 

        

Cold spells        

Australian   70 95 46 36 0.96 1.57 1.67 

European  62 63 12 1 1.23 1.91 3.53 

        

Combined or 

grand median 
264 83 29 19 1.05 1.72 2.49 

        

 

Figure 6 Normed χ
2
, C, and ν, degrees of freedom, with contours of the corresponding levels of significance (ex-

pressed as percentage). Generally for a level of significance of 5%, the region below the 5% contour indi-

cates acceptance of the null hypothesis that the model and observations have the same distribution. 
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Discussion and Conclusions 

The theoretical grounds for choosing the stretched exponential distribution (SED) model are limited. Firstly, it was formed 

as an arbitrary generalisation of an exponential expression applicable to runs of independent random variables (Equation 3, 

in particular). On the other hand, a wide range of other natural phenomena is well described using the stretched exponen-

tial distribution. However, the empirical support as presented here is strong although not comprehensive.  

The advantages of the SED model are that it has a straightforward analytical expression (Equation 6); it is potentially ap-

plicable to a wide range of meteorological variables; it has only two free parameters, which are location-specific; and in 

arriving at those parameters information from all of the thresholds at percentiles of 90, 91, …, 99% may be used, not just 

from any single threshold. Therefore, with some caution the model may be used in data sparse areas of very high or very 

low thresholds (low f) and/or long duration (large k).  

The disadvantages are that the parameters of the model have no clear physical meaning other than being scaling or shape 

parameters; and that determination of the parameters requires the counting and compilation of observed runs and durations 

from records with no gaps, or at least, very few.  

 For a daily meteorological variable, an empirical two-parameter stretched exponential function model of the frequency of 

runs of extremes in relation to duration (in days) and intensity (as measured by ranking percentiles of the variable) was 

presented and shown to provide a good to very good approximation to the frequency of observed runs of extremes of daily 

maximum and minimum temperatures in Australia and internationally. It is possible that the SED model could be applied 

to a variable exhibiting a long term trend by transforming the variable to a departure from trend.  

 

Figure 7 Bar plots of F (top) and C (bottom) for heatwaves (HW)  and cold spells (CS) for Australian (Aus) and 

European (Eu) stations, and combined. Median shown by red line, quartiles by box-ends, and whiskers are 

1
st
  and 99

th
 percentiles.  For C, the normed χ

2
, values below about 1.5 indicate an acceptable model. 
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