10.1071/PC23032

Pacific Conservation Biology

Supplementary Material

Defining humpback whale (*Megaptera novaeangliae*) potential distribution in the Great Barrier Reef Marine Park: a two-way approach

Consuelo M. Fariello^{A,B,*}, Jan-Olaf Meynecke^{A,B,C}, and Jasper de Bie^{A,B,C}

^AWhales & Climate Research Program, Griffith University, Gold Coast, QLD, Australia.

^BCoastal and Marine Research Centre, Griffith University, Gold Coast, QLD, Australia.

^cCities Research Institute, Griffith University, Gold Coast, QLD, Australia.

^{*}Correspondence to: Consuelo M. Fariello Whales & Climate Research Program, Griffith University, Gold Coast, QLD, Australia Email: consufariello@gmail.com

Supporting Information

Table S1: ENMevaluate Results for Model C. The optimal model, indicated in bold, exhibits the lowest AICc, with a RM of 0.5 and the feature class combination LQH. Delta AICc denotes the difference between the AICc of each model and the smallest AICc across all models. FC (Feature Class), RM (Regularization Multiplier), AICc (Corrected Akaike Information Criterion).

Model ID	FC	RM	AICc	delta.AICc
1	L	0.5	2886.554	87.10503
2	LQ	0.5	2852.066	52.6171
3	Н	0.5	2813.013	13.56488
4	LQH	0.5	2799.449	0
5	LQHP	0.5	2810.247	10.79846
6	LQHPT	0.5	2851.962	52.51358
7	L	1.5	2886.848	87.39944
8	LQ	1.5	2890.566	91.11723
9	Н	1.5	2824.764	25.31548
10	LQH	1.5	2808.93	9.48097
11	LQHP	1.5	2818.234	18.7853
12	LQHPT	1.5	2817.673	18.22488
13	L	2.5	2887.402	87.95355
14	LQ	2.5	2889.166	89.71704
15	Н	2.5	2825.565	26.11633
16	LQH	2.5	2808.779	9.330468
17	LQHP	2.5	2816.363	16.91487
18	LQHPT	2.5	2821.745	22.29627
19	L	3.5	2888.207	88.75827
20	LQ	3.5	2890.172	90.72315
21	Н	3.5	2839.108	39.65949
22	LQH	3.5	2813.149	13.70019
23	LQHP	3.5	2821.235	21.78683
24	LQHPT	3.5	2822.73	23.28091

Table S2: ENMevaluate Results for Model D. The optimal model, indicated in bold, exhibits the lowest AICc, with a RM of 0.5 and the feature class combination LQH. Delta AICc denotes the difference between the AICc of each model and the smallest AICc across all models. FC (Feature Class), RM (Regularization Multiplier), AICc (Corrected Akaike Information Criterion).

Model ID	FC	RM	AICc	delta.AICc
1	L	0.5	3872.803	85.73958
2	LQ	0.5	3845.644	58.5805
3	Н	0.5	3840.337	53.27367
4	LQH	0.5	3806.982	19.91861
5	LQHP	0.5	3808.669	21.60565
6	LQHPT	0.5	3826.447	39.38378
7	L	1.5	3873.16	86.09699
8	LQ	1.5	3873.352	86.28944
9	Н	1.5	3807.663	20.59966
10	LQH	1.5	3787.063	0
11	LQHP	1.5	3791.433	4.369695
12	LQHPT	1.5	3791.273	4.210336
13	L	2.5	3873.848	86.78545
14	LQ	2.5	3874.273	87.20971
15	Н	2.5	3809.146	22.08329
16	LQH	2.5	3787.086	0.022679
17	LQHP	2.5	3792.218	5.155453
18	LQHPT	2.5	3788.68	1.61729
19	L	3.5	3874.834	87.77076
20	LQ	3.5	3875.617	88.55373
21	Н	3.5	3814.354	27.29131
22	LQH	3.5	3793.891	6.827699
23	LQHP	3.5	3794.306	7.242731
24	LQHPT	3.5	3791.608	4.544829

Figure S1: Monthly distribution of HW sightings within the GBRMP after filtering, comparing the periods 2000-2014 (Blue) and 2000-2020 (Orange). A total of 3,682 (93.5%) records were removed from the 2000-2020 dataset, leaving 254 records.

Figure S2: Results of the jackknife test of variable importance to AUC for (a) Model A and (b) Model B. Blue bars represent the AUC values when each model uses only a single variable. Turquoise bars depict the

AUC values when each model removes a single variable from the general model. Red bars represent the average AUC value across all test iterations for each model.

Figure S3: Response curves from Maxent for Model A (left) and Model B (right). These curves show how the shape of the response changes for a given variable, using only one variable at a time. Each of the graphs illustrates the relationship between the environmental

suitability for Humpback whales (y-axis) and (a) Distance to the reef, (b) SST, (c) Salinity, (d) Bathymetry, (e) Distance to the coast, in the x-axes.

Figure S4: Results of the jackknife test of variable importance for models C-H. Blue bars show each model's results using only a single variable; turquoise bars show each model's results when removing a single variable from the general model; red bars show each model's AUC results.

Figure S5: Environmental suitability for HW in the GBRMP with (I) spatial rarefying, (II) bias file in Maxent, (III) two correcting methods, (IV) after tuning. Colour scale denotes habitat suitability ranging from 0 (light blue) to 1 (dark red). Models based on sightings between 2000 and 2014 (Models C, E, G, and

I) showed slightly smaller areas of high environmental suitability (>0.7) along the east coast of the GBRMP compared to those using data from 2000 to 2020 (Models D, F, H, and J). Furthermore, models E to H showed larger areas of habitat suitability above 0.5 between latitudes 12°S to 15°S than models C, D, I and J. Models with both bias corrections exhibited the broadest distribution among models C to J.

Figure S6: Environmental suitability for HW in the GBRMP between 2003 to 2007. Model prediction of average environmental suitability using an approximation of the BPC dataset and the environmental predictors SST, Sal, Bathy, DC, and DR (Left). Model prediction of average environmental suitability developed in research from Smith et al. (2012), including sightings of HWs from the BPC aerial surveillance program and the environmental variables of Bathy, SST, DC and seafloor slope (Right).

Figure S7: Response curves depicting the relationship between the predicted probability of humpback whale occurrence and three environmental variables—SST, Bathymetry, and Distance to the coast. (a) Response curves for Model X. (b) Response curves for Smith et al.'s (2012) model.

Figure S8: Variable contributions from the jack-knife test to AUC of the (a) Model X and (b) Model by Smith et al. (2012) research. Blue/white bars represent the AUC values when each model uses only a single variable. Turquoise/black bars depict the AUC values when each model removes a single variable from the general model. Red/grey bars represent the average AUC value across all test iterations for each model.

Figure S9: Distribution of HW sightings as utilized in Model C, compared to Smith et al. (2012) within GBRMP.