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Abstract

Effective two nucleon (NN) interactions in the nuclear medium have been defined from an
accurate mapping of NN g matrices obtained by solving the Brueckner–Bethe–Goldstone
(BBG) equations for infinite nuclear matter. Those effective interactions have been used in
fully microscopic calculations of proton–light nuclei (nonlocal) effective interactions from which
predictions of the elastic scattering differential cross sections and analysing powers have been
obtained. Results for incident proton energies of 65 and 200 MeV are considered in particular
herein. The associated relative motion wave functions have been used as the distorted waves
in distorted wave approximation (DWA) studies of select inelastic scattering events. The same
effective interactions were used as the transition operators in those calculations. The relevant
nuclear spectroscopy for the elastic and DWA (p, p′) calculations has been found from full
(0 + 2)h̄ω shell model evaluations of the nuclear structure; wave functions of which give good
descriptions of form factors obtained from electron scattering.

1. Introduction

Understanding the nature and specifics of the potential energy of interaction
between two colliding nuclei is central in almost all studies of their possible
reactions. It remains so now that (secondary) radioactive beams can be produced
and used to study collisions and structure of systems off the stability line with
the results having relevance, for example, to modern studies of stellar processes.

Conventionally, elastic scattering data have been used as the measure of the
candidate form of any such (nonrelativistic) interaction and it has long been
a goal to ascertain that interaction with a proper direct approach in which
underlying NN g matrices are folded with the density matrix elements of the
colliding systems. The optical potential so defined is then nonlocal due to
proper antisymmetrisation of the projectile and target nucleons, and to any
nonlocality in the actual form for the chosen g matrices. The study of proton
scattering from nuclei (or the equivalent, inverse kinematic scattering of nuclei
from protons) is then favoured with such an approach as the antisymmetrisation
is least problematic in the theoretical development of the optical potential. That
is also the case for inelastic scattering when scattering amplitudes are specified
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in the DWA with appropriate, large basis space spectroscopy specifying the one
body density matrix elements (OBDME) of each transition considered. The g
matrices used to specify the nonlocal optical potentials should also be used as the
transition operator effecting the inelastic events. But, to date, there have been
few calculations made using such a stringent specification of a fully microscopic
description of nucleon–nucleus (NA) scattering.

2. The N N t and g Matrices

A realistic microscopic model of NA reactions is one that is based upon
realistic NN t matrices fully off the energy shell; i.e. with E = k2 and in each
channel α ≡ {L′, L, J, S, T}, we seek solutions of

t
JST (+)
L′L (p′, p;E) = V JSTL′L (p′, p)

+
2
π

∑
`

lim
η→0

∫
V JSTL′` (p′, q)

(
1

k2 − q2 + iη

)
t
JST (+)
`L (q, p;E) q2 dq . (1)

Input to these equations are the NN interactions, (V JSTL′L (p′, p)), which should be
chosen from one of the ‘realistic’ set in the literature [1]. For convenience, in most
of our studies we have used the Paris interaction. Contour plots of full-off-shell
values of the t matrices have been published [2], as have the Kowalski–Noyes
f -ratios which emphasise the half-off-shell properties.

But if the struck nucleon is embedded in a nuclear medium, then theoretical
calculations of the NA optical potential, for example, should be based upon
appropriate, medium modified NN g matrices, which are solutions of the BBG
equations

gJSTL′L (p′, p; k, kf ) = V JSTL′L (p′, p) (2)

+
2
π

∑
`

lim
η→0

∫ ∞
0

V JSTL′` (p′, q)

[
Q̄(q,K; kf )

Ē(q,K; kf )− Ē(k,K; kf ) + iη

]
gJST`L (q, p; k, kf ) q2dq,

wherein Q̄(q,K; kf ) is the (angle averaged) Pauli operator and K is the average
centre of mass momentum as defined previously [3, 4], with the latter specified at
a laboratory incident momentum p0 and for a Fermi momentum kf . The energies
in the propagators of the BBG equations include (real) auxiliary potentials U ,
and are defined by

Ē(q,K; kf ) = (q2 +K2) + U(|q + K|) + U(|q−K|) . (3)

Details of the calculations have been given previously [4] and the result is tables
of complex numbers for each incident energy, Fermi momentum value and set
of relative momenta for each NN channel. In a free NN collision the struck
nucleon initially has zero momentum. Now, as it is embedded in (local) nuclear
matter, that struck nucleon can have a range of momentum values; the major
effect of which is to vary the on-shell values from those of free NN scattering [4].
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3. Effective N N Interaction

The tables of g matrix elements are the input database for an effective interaction
parametrisation scheme [5]. Specifically we have selected the half-off-shell t and g
matrix elements in the procedure to find an optimum effective interaction which,
in coordinate space, has the form

g
(i)ST
eff (r, E; kf ) =

ni∑
j=1

S
(i)
j (E; kf )

e−µ
(i)
j r

r
. (4)

This form is used in the optical potential and DWA calculations performed
by the computer program DWBA91 [6] where the index identifies the central
force {I , (σ · σ) , (τ · τ) , (σ · σ)(τ · τ)} , the tensor force {S12} and the two body
spin–orbit force {L · S}. In this specification, S(i)

j (E; kf ) are complex, energy
and density (kf (r)) dependent strengths.

Across a large energy spectrum (to 800 MeV protons), we have selected the
inverse ranges µi to be independent of both the energy and density. Specifically,
values of 0 ·71, 1 ·758, 2 ·949 and 4 ·0 fm−1 have been used for the central
components and 1 ·25, 2 ·184, 3 ·141 and 4 ·0 fm−1 for both the tensor and two
body spin–orbit attributes. Excellent reproduction of the NN g matrices has
been found, although the system of equations in the mapping scheme is grossly
overdetermined so that other possible ‘optimal’ sets of parameters exist. But
the key factor which we have stressed is that the resultant effective interaction
chosen must be a good representation of the NN (t and) g matrices central in
a microscopic theory of the optical potential. Effective interactions have been
found in that way for protons (on light nuclei to 16O) with energies in the range
60 to 800 MeV [7]. This has not been the case generally with other effective
interactions, especially those predicated upon fitting many nucleon data.

4. A Fully Microscopic Model of Elastic and Inelastic Proton Scattering

To date there have been few calculations made using a fully microscopic
description of NA scattering as stringent as that given in the Introduction.
To do so one must have very good specifications of three primary ingredients.
First, one must make a large basis space calculation of the structure of the
target and its excited states, from which one obtains the individual state
density distributions (needed to specify the optical potentials) and the OBDME,
S
JiJf
j1j2I

= 〈ΨJf || [a†j2×aj1 ]I ||ΨJi〉. These we have obtained by making full (0+2)h̄ω
shell model calculations of the structure of various light nuclei. The single
nucleon wave functions are the second ingredient in these studies. For the bound
states we have used either harmonic oscillator or Woods–Saxon functions; the
parametric values for which have been set, wherever possible, from analyses of
elastic electron scattering form factors. They are not varied thereafter. The
continuum (distorted) wave functions were obtained from the nonlocal optical
potentials formed by folding the third ingredient, the effective NN interaction as
discussed above, with the target state density matrices. The nonlocalities of the
optical potentials arise in part as we properly antisymmetrise the total (A+ 1)
state wave functions. The resultant (fully microscopic) spin dependent, nonlocal
forms for the optical potentials have been used in the Schrödinger equation, the
solution of which enabled us to predict differential cross sections and analysing
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powers for elastic scattering of protons from various light nuclei. The scattering
waves obtained from these nonlocal interactions were then used as the distorted
wave functions in DWA analyses of various inelastic scattering cross sections
and analysing powers. The same effective interactions were used therein as the
transition operators. In all cases, with both the elastic and inelastic transitions,
a single calculation has been made from which the results are compared with
the data. No scaling or variation of details has been made to ‘improve’ the
comparisons that will be shown later.

(4a) Some Details of the Calculations

The spectrum and OBDME for 6,7,9,11Li, 12C, 14N and 16O have been calculated
using the code OXBASH [8] and a standard MK3W force [9]. The spectrum of
12C so obtained up to 20 MeV excitation energy has been displayed and discussed
in some detail [10]. With the exception of the known strongly deformed states
[the 3−; 0(9 ·64 MeV) and 0+; 0(7 ·65 MeV) states], our spectrum agrees with
observation to better than an MeV for all states up to 20 MeV excitation. From
that spectrum, the OBDME for all transitions have been found to facilitate a
complete analysis of electron scattering form factors, longitudinal and transverse,
from which excellent agreement with observation was found, by and large,
especially when meson exchange current effects are taken into account [11].

(4b) The Optical Potentials and Elastic Scattering

With the chosen form of the effective interaction folded with the target density
matrices and upon antisymmetrising the NA wave function, a complex nonlocal
spin dependent optical potential results in the form

U(~r1, ~r2;E) = δ(~r1 − ~r2)
∑
n

ζn

∫
ϕ∗n(~s)v

D(~r1s, E; ρ[kf (s)])ϕn(~s) d~s

+
∑
n

ζnϕ
∗
n(~r1)vEx(~r12, E; ρ[kf (r2)])ϕn(~r2)

⇒ UD(~r1, E) + UEx(~r1, ~r2;E) , (5)

wherein vD and vEx are appropriate combinations of the NN ST channel
elements of the effective interaction, ϕj(~r) are the single nucleon bound state
wave functions and ζn are the shell occupancies of the target nucleus. The leading
term has been used alone in the past, or the nonlocal (exchange) elements have
been approximated by ‘equivalent’ local interactions. Neither is a satisfactory
approach for the analyses of data from the scattering of intermediate energy
protons (200 MeV herein) let alone the results for 65 MeV protons.

Results for the elastic scattering of 200 MeV protons from 12C are presented in
Fig. 1. The solid and dashed curves shown were obtained by using Woods–Saxon
and harmonic oscillator (HO) wave functions respectively and the results shown
in the left panels were obtained using our effective interactions but with the
restriction that they are only those mapping the free NN t matrices (i.e. kf = 0).
It is evident that the medium modifications are essential to give a good fit to the
data, especially the analysing power. We have also analysed the elastic scattering
data from many other nuclei in this energy region including that of 160 MeV
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Fig. 1. The 200 MeV proton elastic scattering cross section and analysing
power data compared with the results found using the (nonlocal) microscopic
optical potentials built using the free NN t matrices (left) and the full
interaction (right).

Fig. 2. Differential cross section and analysing power for the elastic
scattering of 160 MeV protons from 14N .

protons from 14N , the results of which are given in Fig. 2. In this case the
results found using WS and HO functions are shown in the right and left panels
respectively, while the solid and dashed curves display the results we have obtained
using our effective interaction (based at 160 MeV) throughout and the density
dependent Love–Franey (LF) force [12] respectively. The results found with our
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force compare much more favourably with the data, especially the analysing
power.

Fig. 3. Differential cross section
and analysing power for the elastic
scattering of 65 MeV protons from
12C.

At 65 MeV, the results of our calculations are not in as good agreement with
data as are those at 200 MeV. The deficiency lies mainly with the current
specification of the 65 MeV NN g matrices, and with the average potentials
that enter the energy propagators in particular. However, despite the lack of
total strength required, there are signatures of medium effects in data that
indicate a propriety in form of the present effective interaction. As we shall
demonstrate, with but a small scale enhancement, we have a good model effective
interaction. The cross section and analysing power for the elastic scattering of
65 MeV protons from 12C are displayed in Fig. 3. The data are compared with
the results obtained by folding the effective interactions found from the free t
matrices (dashed curves) and from the mapping of the NN g matrices (solid
curves). Clearly our (65 MeV) interaction is too weak as both cross sections lie
below the data at the larger scattering angles. But the medium modifications
give a mix of operator terms that lead to the observed shape of the measured
analysing power. Likewise, and as displayed in Fig. 4, the cross section from the
elastic scattering of 65 MeV protons from 7Li is underpredicted by calculation,
whether made using the free or the medium modified effective interactions. The
analysing powers of the two calculations are again noticeably different with the
calculations made using the effective interaction built upon the NN g matrices
again giving the better agreement with experiment. Finally, so far as the elastic
scattering study is concerned, we show in Fig. 5 the differential cross sections
found recently from the elastic scattering of 60 MeV/A 9Li and of 62 MeV/A
11Li ions from protons. The results displayed were obtained using the medium
modified effective interaction, Woods–Saxon bound state wave functions and
(0 + 2)h̄ω spectroscopy. The 9Li calculated result underpredicts the data as was
the case for the 7Li scattering, but the result for the ‘halo’ nucleus 11Li is
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Fig. 4. Differential cross section
and analysing power for the elastic
scattering of 65 MeV protons from
7Li.

Fig. 5. Differential cross sections for
the elastic scattering of 60 MeV/A
9Li and 62 MeV/A 11Li ions from
protons.

quite good. This is fortuitous however and we expect that to retain such a good
fit when a proper effective interaction for this energy regime has been defined,
we may need to have a quite different matter distribution for 11Li, i.e. much
more of a ‘halo’ than the current spectroscopy suggests.

(4c) DWA Analyses of Inelastic Scattering
In the DWA, transition amplitudes take the form

TJi,Jf (θ) = 〈χ(−)(~kf , 0)|〈ΨJf (1 · · ·A)|Aveff (0, 1)A01{|χ(+)(~ki, 0〉|ΨJi(1 · · ·A)〉} , (6)
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where the distorted waves are denoted by |χ(±)〉 and A01 is an antisymmetrisation
operator. By using a cofactor expansion of the A–nucleon wave functions, the
dependence upon coordinate ‘1’ can be isolated so that

TJi,Jf (θ) =
∑

(j1j2)

〈ΨJf |a†(j1) × a(j1)|ΨJi〉

× 〈χ(−)(0)|〈ϕj2(1)| veff (01)A01{|χ(+)(0)〉|ϕj1(1)〉} . (7)

The Wigner–Eckart theorem then relates the multi-nucleon aspects of these
transition amplitudes to the OBDME one obtains from structure calculations.
More details are given in ref. [9].

Fig. 6. Differential cross section and analysing power from the inelastic
scattering of 200 MeV protons from 12C leading to the 2+

1 ; 0 (4 ·44 MeV)
state. The data are compared with the results of our DWA calculations
made using the microscopic optical model interactions for the free and
density dependent interactions (left and right panels) and the (0 + 2)h̄ω
and CK (0p) models of spectroscopy (solid and dashed curves).

In Fig. 6 the results of our DWA calculations for the cross sections and
analysing powers from 200 MeV protons on 12C and exciting the 2+

1 ; 0 (4 ·44 MeV)
state are compared with the data. With both the free and density modified
effective interactions, the larger basis structure calculations increase the predicted
magnitudes above those found using the CK wave functions and bring them
into quite good agreement with measurement. The results reflect the similar
effects noted when those same structure functions were used in calculations of
electron scattering form factors. The medium modified effective interaction leads
to very good results (in comparison with the data) reproducing the shape and
magnitude of cross section data to 50◦. The analysing powers are likewise better
reproduced by the medium modified effective interaction calculations. Recall that
the effective interaction has been used to define the optical potentials (initial and
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Fig. 7. Differential cross sections (top) and analysing powers (bottom) for the inelastic

scattering of 200 MeV protons from 7Li leading to the 1
2

−
state at 0 ·478 MeV excitation (left

panel) and to the 7
2

−
state at 4 ·63 MeV excitation (right panel). The results found using the

0h̄ω and (0 + 2)h̄ω structures are displayed by the dashed and solid curves respectively.

final channels) in these DWA calculations and we stress again that no arbitrary
scaling has been used nor have the bound state wave functions been adjusted
seeking better fits to data. Similarly good results have been found with a number
of other transitions in 12C, not only at 200 MeV but also for energies up to
800 MeV [9].

Finally, we display results from calculations of the differential cross sections
and analysing powers from the inelastic scattering of 200 MeV protons from
7Li. In Fig. 7 the data from the excitation of the 1

2

−, (0 ·478 MeV) and 7
2

−,
(4 ·63 MeV) states are compared in the left and right panels respectively, with the
results of calculations made using Woods–Saxon bound state wave functions and
our density dependent effective interaction. The differential cross sections and
analysing powers are shown in the top and bottom segments respectively. Two
sets of OBDME, from the 0h̄ω and (0 + 2)h̄ω spectroscopies, were used to obtain
the results displayed by the dashed and solid curves respectively. These results
clearly demonstrate that a large basis spectroscopy is required to understand the
observations with the 7

2

− state excitation at least. Not only are the shape and
magnitude of that differential cross section much better reproduced but so also,
and more dramatically, are those of the analysing power. The analysing power
prediction for the 1

2

− excitation shows the need for a large basis spectroscopy in
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that case. The major effect of the extended basis is to enhance the E2 character
of the transitions; notably in the cross sections of the 7

2

− case.

5. Conclusions

Fully microscopic model calculations of elastic and (select) inelastic scattering
data taken with incident protons at energies of 200 and 65 MeV have been made.
Both differential cross section and analysing power data have been analysed.
The elastic scattering data have been analysed by forming optical potentials via
folding effective NN interactions with the density matrices of the ground states
of various light nuclei. The results are complex, nonlocal potentials with which
good to excellent fits were found to both the elastic cross sections and analysing
powers, although there remains a need to improve the details of the effective
NN interactions, especially 65 MeV.

The same NN effective interactions were used as the transition operators in
a DWA study of various inelastic scatterings wherein the distorted waves were
found consistently by folding the interactions with the initial and final state
density matrices. With OBDME given by large basis shell model calculations,
the cross sections and analysing powers for those transitions to discrete excited
states have been fit very well.
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