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Abstract

The tensor charge of the nucleon, which will be measured in Drell–Yan processes in polarized
proton–proton collisions at the RHIC, is studied in a quenched lattice QCD simulation. On
the 163× 20 lattice with β = 5 ·7, connected parts of the tensor charge are determined with
small statistical error, while the disconnected parts are found to be small with relatively large
error bars. The flavour-singlet tensor charge (δΣ = δu+ δd+ δs) is not suppressed, as opposed
to the flavour-singlet axial charge (∆Σ = ∆u+ ∆d+ ∆s).

1. Introduction

The parton structure of the nucleon in the twist 2 level is known to be
characterized by three structure functions f1(x, µ), g1(x, µ) and h1(x, µ) with x
being the Bjorken variable and µ being the renormalization scale (see e.g. [1]).
Here f1 and g1, which represent the quark-momentum distribution and quark-
spin distribution respectively, can be measured by deep inelastic lepton–hadron
scattering (DIS). On the other hand, h1, which represents the quark-transversity
distribution, can only be measured in the polarized Drell–Yan processes, since it
is related to the matrix element of the chiral-odd quark operator. Although such
experiments are not yet available, they are planned for the Relativistic Heavy Ion
Collider at Brookhaven National Laboratory. Therefore, theoretical prediction of
h1 has some importance. Also, whether there is a ‘transversity crisis’ in the first
moment of h1, as in the case of ‘spin crisis’ in g1, is an interesting question to
be examined. In this paper, we will concentrate on the first moment of h1(x)
and report our recent studies using lattice QCD simulations [2].

2. Tensor Charge versus Axial Charge

The first moments of g1(x, µ) and h1(x, µ) are called ∆q(µ) and δq(µ)
respectively. They are related to the nucleon matrix elements of the axial current
and tensor current as follows:
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〈ps | qγµγ5q | ps〉 = 2Msµ ∆q , (1)

〈ps | qiσµνγ5q | ps〉 = 2(sµpν − sνpµ) δq , (2)

where pµ is the nucleon’s four momentum, M is the nucleon’s rest mass, and sµ
is the nucleon’s covariant spin-vector.

In the light cone frame, ∆q is interpreted as the total quark-helicity in the
nucleon, while δq is a total quark-transversity in the nucleon [1]:

∆q(µ) =

∫ 1

0

[g1(x, µ) + ḡ1(x, µ)]dx

=

∫ 1

0

[N+(x, µ)−N−(x, µ) +N+(x, µ)−N−(x, µ)]dx , (3)

and

δq(µ) =

∫ 1

0

[h1(x, µ)− h1(x, µ)]dx

=

∫ 1

0

[N↑(x, µ)−N↓(x, µ)−N↑(x, µ) +N↓(x, µ)]dx . (4)

Here N+(x) [N−(x)] denotes the momentum distribution of quarks having the
same (opposite) helicity with the nucleon, while N↑(x) [N↓(x)] denotes that having
the same (opposite) transverse polarization with the nucleon. The quantity with
bar is the distribution for anti-quarks.

On the other hand, in the rest frame of the nucleon, ∆q (δq) denotes the
quark-spin + anti-quark-spin (quark-spin–anti-quark-spin), which can be seen by
taking µ = i (µ = 0, ν = i) in equations (1, 2). In this frame, estimates by using
hadron models are possible. For example, relativistic quark models which can
reproduce gA = 1 ·25 correctly give simple inequalities;

| δu | >| ∆u | , | δd | >| ∆d | . (5)

The lower component of the Dirac spinor of the confined quarks plays an essential
role for the above inequalities.

Drawbacks of such model calculations are (i) the renormalization scale where the
matrix elements are evaluated is not clear, and (ii) the strange quark contribution,
which originates from the OZI violating processes, is hard to estimate in a reliable
manner. Lattice QCD simulations can overcome these problems even within the
quenched approximation. In particular, ∆u, ∆d and ∆s have been studied by two
groups [3, 4] and their results are consistent with the recent experimental data on the
spin structure of the nucleon [5]. At the quenched level, two kinds of diagrams arise:
one is the connected amplitude (Fig. 1a) inwhich the external operator is connected to
one of the valence nucleon lines, and another is the disconnected amplitude (Fig. 1b)
where the quark line coming from the external operator is closed by itself. The latter
gives an OZI violating amplitude leading to the strangeness content in the nucleon.
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Fig. 1. (a) Connected matrix element of the nucleon where
the cross denotes the operator insertion. (b) Disconnected
matrix element of the nucleon.

3. Matrix Elements on the Lattice

(3a) Mass and Matrix Elements

We use the standard Wilson action in our simulation in which two basic
parameters read β ≡ 6/g2 (g being the bare gauge coupling) and the hopping
parameter K. In the following, instead of K, we use the ‘quark–mass’
ma ≡ (1/K−1/Kc)/2 where a is the lattice spacing and Kc is the critical hopping
parameter at which the pion becomes massless.

Hadron masses are obtained by the correlation function of composite operators
for large time t. For example, the nucleon mass is obtained from

〈N(t)N(0)〉 → const.× e−mN t , (6)

with N(t) being the spatially integrated interpolating operator for the nucleon
N(t) =

∫
d3x(qC−1γ5q)q. On the other hand, the matrix element of the local

operator is obtained as

R(t) ≡

〈N(t)
∑
t′,x

O(t′, x)N(0)〉

〈N(t)N(0)〉
→ const.+ 〈N | O | N〉 t . (7)

Namely, the linear slope of R(t → large) gives matrix elements defined on the
lattice.

(3b) Some Remarks

In our actual simulation, the following points have been considered [3]. (i) To
get a large overlap of N(0) with the real nucleon, we use a wall source at initial
time slice t = 0. To do this, we made Coulomb gauge fixing only at t = 0. (ii) To
avoid a mirror source at the final time slice t = tf , we set the Dirichlet boundary
condition at tf . (iii) To compare the matrix element on the lattice with that in
the MS scheme, we multiplied the data obtained by a renormalization factor
Z(µa). For the tensor charge, Z calculated for µ = 1/a using tadpole improved
perturbation theory [6] reads

Z =

(
1− 3K

4Kc

)
[1− 0 ·44 αs(1/a)] . (8)
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4. Results

We have done simulations in three cases: 123×20 (β = 5 ·7), 163×20 (β = 5 ·7)
and 163×20 (β = 6 ·0). In this paper we show the results of the second simulation.
We have used a Fujitsui VPP500 computer and analysed 550 gauge configurations.
Each configuration is taken after every 1000 sweeps. Three different values of
the quark masses K = 0 ·160, 0 ·164 and 0 ·1665 are adopted to extract physical
quantities in the chiral limit. The statistical errors are estimated by the jackknife
procedure.

Hadron masses are extracted by the χ2 fitting of the data in the interval
5 ≤ t ≤ 10. By using the physical hadron masses mπ,ρ,K = 135, 770 and 498 MeV,
one obtains a−1 = 1 ·42 GeV (a = 0 ·14 fm), m = 4 ·8 MeV and ms = 125 MeV.
This also predicts the nucleon mass as mN = 1 ·13 GeV. The physical volume of
the lattice is V = (2 ·24)3 × 2 ·8 fm4.

A χ2 fitting in the interval 5 ≤ t ≤ 10 is also applied for the connected and
disconnected part of the matrix elements. Shown in Fig. 2 are the data for
the correlation function R(t) for K = 0 ·164. For connected u, d contributions
(δucon., δdcon.), one can see a clear non-vanishing linear slope in 5 ≤ t ≤ 10, while
the disconnected u−d contribution (δudis., δddis.) has a very small slope, if at all.

Fig. 2. R(t) as a function of t for a medium–heavy quark mass
K = 0 ·164. The black (white) circles denote the connected
amplitude δucon.(δdcon.), while the black triangles denote the
disconnected amplitude δudis. = δddis..

Table 1 shows the results of the data extrapolated down to the chiral limit.
The results compared with that for ∆q in [3] with the same lattice size and β.



       

Tensor Charge of the Nucleon 209

Table 1. Comparison of the tensor and axial charges measured
on the lattice

δu ≡ δucon. + δudis., δd ≡ δdcon. + δddis., δs ≡ δsdis., and the
same definitions also hold for ∆q

Tensor charge δq (this work) Axial charge ∆q (ref. [3])
163 × 20, β = 5 ·7 163 × 20, β = 5 ·7

550 gauge configurations 260 gauge configurations
(µ2 = 3 GeV2) (µ2 = 3 GeV2)

δucon. = +0 ·89 (2) ∆ucon. = +0 ·76 (4)
δudis. = −0 ·05 (6) ∆udis. = −0 ·12 (4)
δu = +0 ·84 (6) ∆u = +0 ·64 (5)

δdcon. = −0 ·18 (1) ∆dcon. = −0 ·23 (2)
δddis. = −0 ·05 (6) ∆ddis. = −0 ·12 (4)
δd = −0 ·23 (6) ∆d = −0 ·35 (5)

δs = −0 ·05 (10) ∆s = −0 ·11 (3)

δΣ = +0 ·56 (13) ∆Σ = +0 ·18 (10)

5. Summary and Discussion

In our simulation, we have found the following.

(1) For the connected part of the tensor/axial charge, the following inequalities
hold:

| δu | > | ∆u | , | δd | < | ∆d | . (9)

This is different from the prediction of relativistic quark models which
have the universal inequality eq. (5).

(2) The disconnected part still has large statistical error and one cannot
make definite conclusions from our simulation. Nevertheless, there is
an indication that (i) the disconnected part is flavour independent, i.e.
δudis. ∼ δddis. ∼ δsdis., and (ii) they are small but slightly negative.

(3) Flavour-singlet tensor charge δΣ = δu + δd + δs is not suppressed as
opposed to ∆Σ:

δΣ(3GeV2) = 0 ·56 (13) ↔ ∆Σ(3GeV2) = 0 ·18(10) , (10)

which implies that there is no ‘transversity crisis’ for the tensor charge.

Now, what we need to understand is the origin of the smallness of the
disconnected part of the tensor charge. Since the operator qσµνγ5q (qγµγ5q) is
a charge conjugation odd (even) operator, δq (∆q) can be interpreted as q-spin
− q-spin (q-spin + q-spin). This indicates that there is a large cancellation of
the quark-spin content and the anti-quark-spin content of the nucleon. Also, the
disconnected tensor charge is zero in any order of perturbation theory in massless
QCD, which might have some relation to its smallness in the non-perturbative
regime. To clarify the above issue, we are currently collecting more data on
δqdis. and ∆qdis. simultaneously with a 163 × 20 lattice (β = 5 ·7).
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