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Abstract

Operating just once with the naive Foldy–Wouthuysen–Tani transformation on the Schrödinger
equation for Qq̄ bound states, described by the Hamiltonian which includes Coulomb-like as
well as confining scalar potentials, we have calculated the heavy meson spectrum of D, D∗,
B and B∗. Based on a formulation recently proposed, their masses and wave functions are
expanded in 1/mQ, with a heavy quark mass mQ, up to the second order. The lowest order
equation is examined carefully to obtain a complete set of eigenfunctions for the Schrödinger
equation.

1. Introduction

Hadrons are composed of quarks and anti-quarks and are considered to be
governed by quantum chromodynamics, at least in principle. Since QCD describes
a strong coupling interaction, the perturbative calculation of physical properties of
hadrons is not so reliable, other than the deep inelastic region due to asymptotic
freedom, and hence other methods like lattice gauge theory have been developed
to take into account nonperturbative effects. However, the situation changed
dramatically when it was discovered that heavy mesons, composed of heavy quark
Q and light anti-quark q, can be systematically expanded in 1/mQ with a heavy
quark mass, mQ.

This theory, known as heavy quark effective theory (HQET) [1], has been
applied to many aspects of high energy physics and many kinds of physical
quantities of QCD which can be perturbatively calculated in 1/mQ. Especially
those regarding B meson physics, e.g. the lowest order form factor (which
is now called the Isgur–Wise function) of semileptonic weak decay processes
B → D`ν and the Kobayashi–Maskawa matrix element Vcb, have been calculated
by many people [3]. However, applications of HQET to higher order perturbative
calculations are very restricted so that only forms of higher order operators are

∗ Refereed paper based on a contribution to the Japan–Australia Workshop on Quarks,
Hadrons and Nuclei held at the Institute for Theoretical Physics, University of Adelaide, in
November 1995.

10.1071/PH96038         0004-9506/97/010163$05.00



    

164 T. Matsuki and T. Morii

obtained, whose coefficients should be obtained so that results can be fitted with
experimental data [2]. This is because most of the calculations based on HQET
do not introduce heavy meson wave functions and hence there is no way to
determine those coefficients within the model.

In former paper [4], using the Foldy–Wouthuysen–Tani transformation [5] we
have developed a formulation where the Schrödinger equation for a Qq bound
state can be expanded in terms of 1/mQ, that is, the resulting eigenvalues as well
as wave functions are obtained order by order in 1/mQ. In this paper, as one of
the applications of our formulation, we will calculate the heavy meson spectrum
of D, D∗, B and B∗. In order to do so, we would like to start by introducing
phenomenological dynamics, i.e. we assume Coulomb-like vector and confining
scalar potentials to Qq bound states (heavy mesons), expand the Hamiltonian
in 1/mQ and then perturbatively solve the Schrödinger equation in 1/mQ. The
angular part of the lowest order wave function is solved exactly. After extracting
the asymptotic forms of the lowest order wave function at both r → 0 and r →∞
and adopting the variational method, we numerically obtain the radial part of
the trial wave function which is expanded in polynomials of the radial variable
r. Then fitting the smallest eigenvalues of a Hamiltonian with masses of the
D and D∗ mesons, a strong coupling αs and other parameters included in the
scalar and vector potentials are determined uniquely. Using parameters obtained
this way, other mass levels are calculated and fitted with experimental data for
D/B mesons at the second order of perturbation. Meson wave functions obtained
thereby and expanded in 1/mQ may be used to calculate ordinary form factors
as well as Isgur–Wise functions for semileptonic weak decay processes.

All the above calculations are calculated up to 1/m2
Q and analysed order by

order in 1/mQ to determine parameters, as well as to compare with results of
the HQET. The final goal of this paper is to obtain higher orders of Isgur–Wise
functions, decay constants of heavy mesons, and the Kobayashi–Maskawa matrix
element Vcb, by using wave functions of heavy mesons obtained after calculating
the heavy meson spectrum.

Below we first give a formulation of this study and next give a qualitative
discussion of the results obtained.

2. The Hamiltonian

The Hamiltonian density for our problem is given by

H0 =

∫
dx3 [ q† c(x) (~αq · ~pq + βqmq) q

c(x) +Q†(x)(~αQ · ~pQ + βQmQ)Q(x) ] , (1)

Hint =

∫ ∫
dx3dx′

3
qc(x)Oi q

c(x)Vi(x− x′)Q(x′)OiQ(x′) , (2)

where we consider only a scalar confining potential, Os = 1, Vs = S(r), and a
vector potential, Ov = γµ, Vv = V (r), with a relative radial variable r, which we
think the best choice to phenomenologically describe the meson mass levels. The
state of Qq is defined by

|ψ〉 =

∫
d3x

∫
d3y ψαβ(x− y) qcα †(x) Q

†
β(y)|0〉 , (3)
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where qc(x) is the charge conjugate field of a light quark q, and the conjugate
state of Qq is defined by 〈ψ| = |ψ〉† with 〈0| ≡ |0〉†. From these definitions, we
obtain the Schrödinger equation

H ψ = (mQ + Ẽ)ψ , (4)

where the bound state mass E is split into two parts, mQ and Ẽ (E = mQ + Ẽ),
so that it expresses the fact that the heavy quark mass is dominant in the bound
state Qq, and ψ is nothing but the wave function which appears in the rhs of
Eq. (3).

Operating with the FWT transformation and a charge conjugation operator
only on a heavy quark sector in this equation at the centre of mass system of a
bound state, one can modify the Schrödinger equation to be

(HFWT −mQ)⊗ ψFWT = ẼψFWT , (5)

where the notation ⊗ is introduced to denote that gamma matrices of a light
anti-quark are multiplied from the left, while those of a heavy quark from the
right, and

HFWT = UcUFWT (p′Q) H U−1
FWT (pQ)U−1

c , ψFWT = UcUFWT (pQ)ψ , (6)

UFWT (p) = exp(W (p)~γQ ·
→
p̂) = cos W + ~γQ ·

→
p̂ sin W , (7)

→
p̂ =

→p

p
, tanW (p) =

p

m+ E
, (8)

Uc = γ0
Qγ

2
Q . (9)

As described first in this section, interaction terms are given by a confining
scalar potential and a Coulomb vector potential with transverse interaction [6,
7] and a total Hamiltonian is given by

H = (~αq · ~pq + βqmq) + (~αQ · ~pQ + βQmQ) + βqβQ S

+ {1− 1
2 [ ~αq · ~αQ + (~αq · ~n)(~αQ · ~n) ]}V , (10)

the where scalar and vector potentials are given by

S(r) =
r

a2 + b, V (r) = − 4
3

αs

r
and ~n =

~r

r
. (11)

The transformed Hamiltonian is expanded in 1/mQ and is given by

HFWT −mQ = H−1 +H0 +H1 +H2 + · · · , (12)

where
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H−1 = − (1 + βQ)mQ , (13)

H0 = ~αq ·~p+ βqmq − βqβQ S + {1 + 1
2 [ ~αq ·~αQ + (~αq ·~n)(~αQ ·~n) ]}V, (14)

H1 = − 1

2mQ

βQ ~p
2 +

1

mQ

~αQ ·(~p+ 1
2~q)S +

1

2mQ

~γQ ·~q V

− 1

2mQ

[~αq + (~αq ·~n)~n ] · [βQ(~p+ 1
2~q) + i ~q × βQ ~ΣQ]V , (15)

H2 =
1

2m2
Q

βqβQ (~p+ 1
2~q)

2S − i

4m2
Q

~q × ~p ·βqβQ ~ΣQ S

− 1

8m2
Q

~q2V − i

4m2
Q

~q × ~p ·~ΣQV

− 1

8m2
Q

[~αq + (~αq ·~n)~n ] · [(~p+ ~q) (~αQ ·~p) + ~p(~αQ ·(~p+ ~q) )

+ i ~q × ~p γ5
Q]V, (16)

···

Here Hi stands for the ith order expanded Hamiltonian terms and since a bound
state is at rest,

~p = ~pq = −~pQ, ~p ′ = ~pq
′ = −~pQ ′, ~q = ~p ′ − ~p , (17)

are defined, where primed quantities are final momenta. Details of the derivation
of equations in this section are given in the paper [8].

3. Perturbation

Using the Hamiltonian obtained in the last section, we give in this section
the Schrödinger equation order by order in 1/mQ. Details of the derivation in
this section will be given in a future paper [8]. First we introduce projection
operators:

Λ± =
1± βQ

2
, (18)

which correspond to positive- and negative-energy projection operators for a heavy
quark sector at the rest frame of a bound state. These are given by (1±6v)/2 in
the moving frame of a bound state with vµ the four-velocity of a bound state.
Then we expand the mass and wave function of a bound state in 1/mQ as

Ẽ = E`0 + E`1 + E`2 + · · · , (19)

ψFWT = ψ`0 + ψ`1 + ψ`2 + · · · , (20)
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where ` stands for a set of quantum numbers that distinguish independent
eigenfunctions of the lowest order Schrödinger equation, and a subscript i of E`i
and ψ`i for the order of 1/mQ.

(3a) Leading Order

The leading order Schrödinger equation in 1/mQ gives

ψ`0 = Λ− ⊗ ψ`0, (21)

whose explicit form is given by

ψ`0 = Ψ+
` = (0 Ψk

j m(~r)) , (22)

with

Ψk
j m(~r) =

1

r

(
uk(r)

−i vk(r)(~σ ·~n)

)
ykj m(Ω) , (23)

where j is the total angular momentum of a meson, m is its z component, k is a
quantum number which takes only values k = ±j, ±(j + 1) and 6= 0, and uk(r)
and vk(r) are polynomials of a radial variable r. ykj m(Ω) are functions of angles

and spinors of a total angular momentum, ~j = ~l+ ~sq + ~sQ. The operator for the

quantum number k is given by −βq(~Σq · ~̀+ 1) when it operates on (0 Ψk
j m(~r)).

Note that since charge conjugation is operated on the heavy quark sector
the Λ− projection operator appears in Eq. (21), i.e. positive components of Q
correpond to negative components of UcQ.

(3b) Zeroth Order

The zeroth order equations are given by

[ ~αq · ~p+ βq(mq + S) + V ]⊗ ψ`0 = E`0 ψ
`
0 , (24)

−2mQΛ+ ⊗ ψ`1 + 1
2Λ−[ ~αq · ~αQ + (~αq · ~n)(~αQ · ~n) ]V ⊗ ψ`0 = 0 . (25)

Eq. (24) gives the lowest non-trivial Schrödinger equation with a solution given
by Eq. (22) and ~n is defined in Eq. (11). The Λ+ components of wave functions
can be expanded in terms of the eigenfunctions,

Ψ−` = (Ψk
j m(~r) 0) . (26)

Expanding Λ+ ⊗ ψ`1 in terms of this set of eigenfunctions, one can obtain the
solution as

Λ+ ⊗ ψ`1 =
∑
`′

c` `
′

1−Ψ−`′ , (27)

with the coefficients
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c` `
′

1− =
1

4mQ

〈Ψ−`′ |[ ~αq · ~αQ + (~αq · ~n)(~αQ · ~n) ]V |Ψ+
` 〉 . (28)

Here the inner product is defined to be

〈Ψ−`′ |O|Ψ
+
`′〉 =

∫
d3r tr(Ψ−†` (O ⊗Ψ+

` )) , (29)

and the zeroth order wave functions are normalized to be 1,

〈Ψα
` |Ψ

β
`′〉 = δ` `′δ

αβ for α, β = + or − . (30)

(3c) First Order

The first order equation is given by

−2mQΛ+ ⊗ ψ`2 +H0 ⊗ ψ`1 +H1 ⊗ ψ`0 = E`0ψ
`
1 + E`1ψ

`
0 . (31)

Multiplying projection operators Λ± from the right in the above equation, and
expanding ψk1 in terms of Ψ+

k and Ψ−k as

ψ`1 =
∑
`

(c` `
′

1+Ψ+
`′ + c` `

′

1−Ψ−`′ ) , (32)

one obtains

E`1 =
∑
`′

c` `
′

1−〈Ψ+
` |Λ+H0Λ−|Ψ−`′ 〉+ 〈Ψ

+
` |Λ−H1Λ−|Ψ+

` 〉 , (33)

which gives the first order perturbation correction to the mass when one calculates
matrix elements of the rhs among eigenfunctions, and

c` k1+ =
1

E`0 − Ek0
[
∑
`′

c` `1−〈Ψ+
k |Λ+H0Λ−|Ψ−`′ 〉+ 〈Ψ

+
k |Λ−H1Λ−|Ψ+

` 〉], for k 6= `

(34)

ck k1+ = 0 . (35)

This completes the solution for ψ`1 since Λ−ψ
`
1, or c` `

′

1− , was obtained in the
previous subsection. Here we have used the normalization for the total wave
function ψ` as

〈ψ`|ψ`′〉 = δ` `′ . (36)

This definition is allowed because here we are not calculating the absolute value
of the form factors. The appropriate normalization will be determined in future
papers in which we will give several kinds of form factors. This way of solving
Eq. (31) is unique and we use this method below to solve similar equations
appearing Section 3d as well. One can obtain Λ+ ⊗ ψ`2 as
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Λ+ ⊗ ψ`2 =
∑
`′

c` `
′

2−Ψ−`′ , (37)

with the coefficients

c` `
′

2− =
1

2mQ

〈Ψ−`′ |((H0 − E`0)Λ+ ⊗ ψ`1 +H1Λ+ ⊗ ψ`0)〉 . (38)

(3d) Second Order

The second order equation is given by

− 2mQΛ+ ⊗ ψ`3 +H0 ⊗ ψ`2 +H1 ⊗ ψ`1 +H2 ⊗ ψ`0 = E`0ψ
`
2 + E`1ψ

`
1 + E`2ψ

`
0 . (39)

As in the above case (first order), we obtain

E`2 =
∑
`′

c` `
′

2−〈Ψ+
` |Λ+H0Λ−|Ψ−`′ 〉+ 〈Ψ

+
` |H1Λ− ⊗ ψ`1〉

+ 〈Ψ+
` |Λ−H2Λ−|Ψ+

` 〉 , (40)

which gives the second order perturbation corrections to the mass and

c` k2+ =
1

Ek0 − E`0
[
∑
`′

c` `
′

2−〈Ψ+
k |Λ+H0Λ−|Ψ−`′ 〉+ 〈Ψ

+
k |Λ+H1 ⊗ ψ`1〉

+ 〈Ψ+
k |Λ−H2Λ−|Ψ+

` 〉 − E`1 c` k1+], for k 6= ` (41)

ck k2+ = − 1
2

∑
`

(|ck `1+|2 + |ck `1−|2) . (42)

This completes the solution for ψk2 since Λ−ψ
k
2 , or c` `

′

2− , is obtained in the previous
subsection.

Although we do not need to, one can obtain Λ+ ⊗ ψ`3 as

Λ+ ⊗ ψ`3 =
∑
`′

c` `
′

3−Ψ−`′ , (43)

with the coefficients

c` `
′

3− =
1

2mQ

〈Ψ−`′ |((H0 − E`0)Λ+ ⊗ ψ`2 + (H1 − E`1)Λ+ ⊗ ψ`1 +H2Λ+ψ
`
0)〉 . (44)

4. Numerical Analysis

In this section we give a numerical analysis of the calculations obtained by
applying our formulation, i.e. perturbatively expanding the Hamiltonian given by
Eq. (4) in 1/mQ and computing all the matrix elements among eigenfunctions,
Ψ±` . In order to solve Eq. (24), we have to numerically solve an explicit form of
the wave function, Ψ+

` = (0 Ψk
j m), as
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Ψk
j m(~r) =

1

r

(
uk(r)

−i vk(r)(~σ · ~n) ykj m(Ω)

)
,

some properties of which are described in the paper [8]. As described in that
paper, the Schrödinger equation is reduced to

(
mq + S + V −∂r + k/r

∂r + k/r −mq − S + V

)(
uk(r)

vk(r)

)
= Ek0

(
uk(r)

vk(r)

)
,

Fig. 1. Plot of (a) D meson masses and (b) B meson masses. Values in parentheses are the
observed and input values. The best fit parameters are αs = G2

s/4π = 0 ·321, a = 1 ·44 GeV−1,
b = −0 ·221 GeV, mu = 0 ·01 GeV, mc = 1 ·5 GeV, and mb = 4 ·84 GeV with V (r) = −4αs/3
and S(r) = r/a2 + b. The state for each mass level is denoted by the corresponding lowest
eigenstate without any correction. In (b) the value of the B meson mass is the input.
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which is solved numerically by taking into account the asymptotic behaviours at
both r → 0 and r →∞ and their forms are given by

uk(r), vk(r) ∼ w(r) rγ exp

[
− (mq + b) r − 1

2

(
r

a

)2]
, (45)

where

γ =

√
k2 −

(
4αs

3

)2

(46)

and w(r) is a finite series of a polynomial r. In the case of a hydrogen atom,
for instance, only the potential V survives and a radial function, w(r) becomes
a hypergeometric function and its finite series of a polynomial gives discrete
energy levels. In our case, since the potential includes a scalar term we cannot
analytically solve the above reduced Schrödinger equation (5). If we are forced
to make the functions uk(r) and vk(r) finite series and relate the coefficients
of those functions via recursive equations, it leads to inconsistency among the
coefficients of each term, ri, of a polynomial. The results of our numerical
calculations using Eqs (4), (19), (33) and (40) are depicted in Fig. 1.

One can easily see degeneracy among the lowest lying pseudoscalar and vector
states in our formulation as follows. Define

|P 〉 = U−1
c (0 Ψ−1

0 0), |V, λ〉 = U−1
c (0 Ψ−1

1 λ) ,

where Ψk
j m is an eigenfunction obtained in the last chapter and quantum number

k can take only ±j, or ±(j + 1). Assigning those states to D mesons, one can
have

|P 〉 = |D±〉 or |D0〉, |V, λ〉 = |D∗〉 .

Since these states have the same quantum number k = −1, these have the same
masses as well as the same wave functions up to the zeroth order calculation in
1/mQ, which is nothing but the spin-flavour symmetry.
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