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Abstract

The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma
with positrons. We have presented the region of existence of the ion-acoustic waves by
analysing the structure of the pseudopotential. The region of existence sensitively depends
on the positron to electron density ratio, the ion to electron mass ratio and the positron
to electron temperature ratio. It is shown that the maximum Mach number increases as
the positron temperature increases and the region of existence of the ion-acoustic waves
spreads as the positron temperature increases. The present theory is applicable to analyse
large amplitude ion-acoustic waves associated with positrons which may occur in space
plasmas.

1. Introduction

In contrast to the usual plasma with electrons and positive ions, it has been
known that the nonlinear waves in plasmas having positrons behave differently
(Rizzato 1988). In fact, electron–positron–ion plasmas appear in the early
universe (Rees 1983), active galactic nuclei (Miller and Witta 1987) and in
pulsar magnetospheres (Michel 1982). When positrons are introduced in the
plasma, the response of the plasma to disturbances is found to be drastically
modified. There are several reports on solitons with small amplitudes in plasma,
with a significant percentage of positrons (Tandberg Hansen and Emslie 1988).
An electron–positron–ion plasma is usually characterised as a fully ionised gas
consisting of electrons and positrons, the masses of which are equal (Tandberg
Hansen and Emslie 1988). Nonlinear waves propagating in such plasmas have
received a great deal of attention in investigating the nonlinear structures. The
studies of nonlinear waves have been focused on the wave structures, such as
solitons, double layers, vortices and so on. We have also suggested that the
high-speed streaming particles excite various kind of nonlinear waves in space
plasmas (Nejoh 1988, 1992, 1994a, 1994b, 1996a, 1996b; Nejoh and Sanuki 1994,
1995).

On the other hand, large amplitude nonlinear waves and, in particular, the
effect of the ratio of the ion to electron mass of large amplitude ion-acoustic
waves have not yet been studied in electron–positron–ion plasmas. Hence, in this
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paper, we investigate the region of existence of the large amplitude ion-acoustic
waves in the presence of ions with finite temperature and hot electrons and
positrons. We take a model where the dynamics of the nonlinear wave motion
is governed by the hydrodynamic equations, whereas the temperature of the
positron fluid is finite and the fluid follows the Boltzmann distribution.

The purpose of this paper is to derive the pseudopotential for ion-acoustic waves
in an electron–positron–ion plasma and to show the dependence of the existence of
ion-acoustic waves on the positron density and temperature. Stationary nonlinear
potential structures can be formulated in terms of an integral equation of the same
form as that governing the motion of particles in a potential well. The conditions
for existence of large amplitude nonlinear ion-acoustic waves will be confirmed by
considering the ratio of the positron to electron density, the ratio of the positron
to electron temperature and normalised potential in an electron–positron–ion
plasma. If there are no positrons, our results reduce to those obtained from
ordinary electron–ion plasma theory. However, we are interested in the case
where positrons exist in addition to electrons and positive ions in space.

The structure of this paper is as follows. In Section 2 we present the basic
hydrodynamic equations for an electron–positron–ion plasma and derive an energy
equation with the pseudopotential. In Section 3 we discuss the condition for
existence of large amplitude ion-acoustic waves on the basis of an energy equation.
The dependence of the pseudopotential on the normalised potential, the ratio of
the positron to electron density, the positron to electron temperature ratio and
the ratio of the ion to electron mass is presented. Section 4 is devoted to our
concluding discussion.

2. Theory

We consider a plasma consisting of electrons, positrons and positive ions.
In order to study one-dimensional propagation of large amplitude ion-acoustic
waves, we describe a set of the fluid equations. The nonlinear wave propagation
of low phase velocity is governed by the hydrodynamic equations of the species.
We assume that the phase velocity is much smaller than the electron (positron)
thermal velocity and is larger than the ion thermal velocity. The continuity
equation and the equation of motion for electrons are described by

∂

∂t
ne +

∂

∂x
(ne ve) = 0 , (1a)

(
∂

∂t
+ ve

∂

∂x

)
ve −

∂φ

∂x
= 0 . (1b)

We have the following equation for positrons:

np = a exp(−φ/β) . (2)
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The continuity equation and the equation of motion for ions are written as

∂

∂t
ni +

∂

∂x
(ni vi) = 0 , (3a)

(
∂

∂t
+ vi

∂

∂x

)
vi +

1

Q

∂φ

∂x
= 0 . (3b)

The Poisson equation is given by

∂2φ

∂x2 = ne − np − ni . (4)

Here the parameters α = np0/n0, β = Tp/Te and Q = mi/me are the ratio
between the unperturbed positron and electron densities, the ratio between the
positron temperature and electron temperature and the ion mass to electron mass
ratio, respectively. The variable n i stands for the ion density. The densities are
normalised by the unperturbed background electron density n0. The subscripts e,
p and i denote electrons, positrons and ions, respectively. The space coordinate x ,
time t , velocities and electrostatic potential φ are normalised by the electron Debye
length λD = (ε0 κTe/n0 e

2)1/2, the ion plasma period ω−1
i = (ε0mi/n0e

2)1/2, the
sound velocity Cs = (κTe/mi)

1/2, and κT e/e, respectively, where m i, ε0 and
e are the ion mass, the permittivity of the vacuum and the electric charge,
respectively. In equilibrium, we have ni0 + np0 = n0.

In the linear limit, equations (1a)–(4) give rise to the dispersion relation of the
ion-acoustic waves in an electron–positron–ion plasma. We derive the dispersion
relation as

ω2 =
1 + (1− α)/Q

α/β

k2

1 + (α/β)−1k2 , (5)

where ω and k are the frequency and the wave number.
In order to solve equations (1a)–(4), we consider the physical quantities derived

in the stationary state. We introduce a variable ξ = x −Mt and assume the
stationary state in the moving frame, where M denotes the speed of the nonlinear
structure. Integrating equations (1a) and (1b), we obtain the electron number
density as

ne =
1√

1 + 2φ/M2
. (6)

Integrating equations (3a) and (3b), we get the ion density

ni = (1− α)
1√

1− 2φ/QM2
, (7)
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where we used the boundary conditions ne → 1, np → α, n i → 1−α, v e, vp,
v i → 0, φ→ 0 at ξ → ±∞. From (6) and (7), equation (4) reduces to the
nonlinear Poisson equation

∂φ

∂x2 =
1√

1 + 2φ/M2
− α exp(−φ/β)− 1− α√

1− 2φ/QM2
≡ − ∂V (φ)

∂φ
, (8)

where V (φ) is the pseudopotential.
From equation (8), we obtain the energy integral

1
2

(
dφ

dx

)2

+ V (φ) = 0 . (9)

The pseudopotential reads as

V (φ) = M2(1−
√

1 + 2φ/M2) + αβ[1− exp(−φ/β)]

+QM2(1− α)(1−
√

1− 2φ/QM2) . (10)

It should be noted, from equation (10), that 0 < φ < QM2/2.
In order for the large amplitude ion-acoustic wave to exist, the following two

conditions must be satisfied:
(i) The pseudopotential must have a local maximum at the point φ = 0, and

the equation V (φ) = 0 should have at least one real solution. This condition
derives the inequality

1

M2 −
α

β
+

1− α
QM2 < 0 . (11)

We note that the condition (11) is a consequence of the inequality

d2V (φ)

dφ2 < 0 at φ = 0 . (12)

Moreover, it follows from (11) that supersonic ion-acoustic waves can exist in
electron–positron–ion plasmas.

(ii) Nonlinear ion-acoustic waves exist only when V (φM) ≥ 0, where the
maximum potential φM is determined by φM = QM2/2. The equation V (φ) = 0
can have only one real nonzero solution; this solution being positive. This
condition can be described as

αβ

[
1− exp

(
− QM2

2β

)]
+M2[1−

√
1 +Q+Q(1− α)] ≥ 0 . (13)

Fig. 1 illustrates the dependence of the maximum Mach number on the positron
temperature β, for which large amplitude ion-acoustic waves can exist, where
α = 0 ·97745 and Q = 1836, that is, the ions being protons. It is shown that
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only supersonic ion-acoustic waves can propagate and the positron temperature
increases the maximum Mach number in the plasma under consideration. The
maximum Mach number and, correspondingly, the maximum amplitude of the
ion-acoustic wave depend significantly on the parameters α and β. The region
for existence of the ion-acoustic wave is characterised by these conditions.

Fig. 1. Dependence of the maximum Mach number M on the
positron temperature β for α = 0 ·97745 and Q = 1836.

A complete analytical investigation of the ion-acoustic solitons in this system
is possible for the small amplitude wave limit (φ¿1). The specific results can be
obtained by expanding V (φ) in powers of φ and keeping up to the third-order
terms φ3. Accordingly, equation (10) takes the form

V (φ) ≈ 1

2M2

(
1− α

β
M2 +

1− α
Q

)
φ2 +

1

6M4

(
− 3 +

α

β2 M
4 + 3

1− α
Q2

)
φ3 .

(14)

Then, integrating (9) with (14), we obtain a soliton solution

φ =

M2

(
1− α

β
M2 +

1− α
Q

)
− 1 + 1

3

α

β2 M
4 +

1− α
Q2

sech2

(
1

2M

√
1− α

β
M2 +

1− α
Q

(ξ − ξ0)
)
.

It should be noted that the ion-acoustic soliton exists in the limiting case with
φ¿ 1. If there are no positrons, α→ 0, it is obvious that equations (10), (11)
and (14) reduce to the results obtained from ordinary electron–ion plasma theory.

We study the nonlinear potential structures for ion-acoustic waves on the basis
of equations (9)–(13) in the following section.
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3. Pseudopotential Structure and the Region of Large Amplitude Ion-acoustic
Waves

We consider the nonlinear wave structures of large amplitude ion-acoustic waves
in the case where the positron temperature and number density are important.
We show a bird’s eye view of the pseudopotential V (φ) in Fig. 2, in the case
of M = 1 ·1, β = 5, by numerical calculation. Fig. 3 illustrates the dependence
of V (φ) on the potential φ when M = 1 ·1, β = 5 and α = 0 ·95. In the case
where the positron temperature increases, we show a bird’s eye view of the
pseudopotential in Fig. 4 when M = 1 ·4, β = 20. Here we assume that Q = 1836.
The pseudopotential V (φ) versus φ in this case is also illustrated in Fig. 5 for
M = 1 ·4, β = 20 and α = 0 ·97.

Fig. 2. Bird’s eye view of the pseudopotential for the large
amplitude ion-acoustic waves in the case of M = 1 ·1 and β = 5.

Fig. 3. Pseudopotential V (φ)
against the electrostatic potential φ
for M = 1 ·1, β = 5 and α = 0 ·95.
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Fig. 4. Bird’s eye view of the pseudopotential for the large
amplitude ion-acoustic waves in the case of M = 1 ·4 and
β = 20.

Fig. 5. Pseudopotential V (φ)
against the electrostatic potential φ
for M = 1 ·4, β = 20 and α = 0 ·97.

In Fig. 6 we illustrate the region for existence of large amplitude ion-acoustic
waves, depending on the ratio α of the positron density to the background
electron density in the case of M = 1 ·1 and β = 5 (Fig. 6a). Large amplitude
ion-acoustic waves propagate in the lower region bounded by the curve but do
not exist in other regions. We show the region for existence in the φ–α plane in
Fig. 6b for M = 1 ·4 and β = 20. Ion waves exist in the lower region bounded by
the curve. It turns out that large amplitude ion-acoustic waves can propagate
under the proper conditions mentioned above.

4. Concluding Discussion

The nonlinear wave structures of large amplitude ion-acoustic waves were
studied in a plasma with positrons. We have presented the region for existence
of the ion-acoustic waves on the basis of the fluid equations. We investigated
the conditions for existence of the stationary supersonic ion-acoustic waves by
analysing the structures of the pseudopotential. Typical results are shown in
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Fig. 6. The φ–α plane where the ion-acoustic wave exists
in the case of (a) M = 1 ·1 and β = 5; (b) M = 1 ·4 and
β = 20, where Q = 1836. The region for existence of the large
amplitude ion-acoustic waves lies in the lower region bounded
by the two curves.

Figs 1–6. The properties of nonlinear ion-acoustic waves change drastically due
to the contribution of positrons. Thus we can show the characteristic features
of the waves presented here as follows:

(1) The supersonic ion-acoustic waves can propagate in the electron–positron–
ion plasma. The maximum Mach number increases as the positron
temperature increases.

(2) The conditions for existence of the large amplitude ion-acoustic waves
sensitively depend on the positron density, positron temperature and the
electrostatic potential.

(3) Unlike the case of the electron beam–plasma system, the ion-acoustic
wave exists when the positron density is nearly equal to the electron
density. The region for existence of the large amplitude ion-acoustic
waves spreads as the positron temperature increases.

The present investigation predicts new findings on large amplitude ion-acoustic
waves in an electron–positron–ion plasma. In actual situations, the large amplitude
ion-acoustic wave events associated with positrons are frequently observed in the
solar atmosphere. Hence, referring to the present studies, we can understand the
properties of large amplitude ion-acoustic waves in space where positrons exist.
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Although we have not referred to any specific observations, the present theory
is applicable to analyse large amplitude ion-acoustic shock and solitary waves
associated with positrons which may occur in space plasmas.
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