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Abstract

Ongoing work aimed at developing highly efficient methods of populating a chosen sublevel of
an energy level highlights the need to understand off-resonant effects in coherent excitation.
This motivated us to re-examine some aspects of the theory of coherent excitation in a
three-state system with a view to obtaining algebraic expressions for off-resonant eigenvalues
and eigenvectors. Earlier work gives simple closed-form expressions for the eigenvalues
this system, expressions applying even when the system is not on two-photon resonance.
We present here expressions of similar simplicity for the components of the normalised
eigenvectors. The analytic properties of these components explain the observed sensitivity of
the stimulated-Raman-adiabatic-passage process (STIRAP) to the condition of two-photon
resonance. None of the eigenstates is ‘trapped’ or ‘dark’ unless the system is on two-photon
resonance; off resonance, all states have nonzero projections on the unperturbed intermediate
state. A simple argument shows that no dressed state can be adiabatically connected to both
the unperturbed initial and final states when the system is off two-photon resonance. That is,
adiabatic transfer from initial to final state requires that these be degenerate before and after
the STIRAP pulse sequence, and this implies zero two-photon detuning. However, substantial
transfer probabilities are observed experimentally for very small two-photon detunings. We
show that such systems are characterised by very sharp avoided crossings of two eigenvalues,
and that the observed population transfer can be understood as an effect of non adiabatic
transitions occurring at the avoided crossings.

1. Introduction

The search for efficient ways of preparing atoms or molecules in a selected
excited state is a major theme of atomic and molecular physics. There is particular
current interest in accessing high vibrational levels efficiently and selectively, and
in transferring population ‘via’ a decaying state without the detrimental effect of
radiative loss. It has long been recognised that adiabatic procedures, in which an
atom remains at all times in one eigenstate of a smoothly changing Hamiltonian,
offer opportunities for complete population transfer in two-level (e.g. Hamadani
et al. 1975; Avrillier et al. 1981; Adams et al. 1985) and three-level systems
(Oreg et al. 1984, 1985; Carroll and Hioe 1986a, 1986b, 1987a, 1987b, 1988a,
1988b, 1989; Hioe 1987; Carroll 1989; Kuklinski et al. 1989). Implementation of
this theoretical ideal in multilevel systems poses technical problems that have,
in recent years, been successfully overcome with the use of a coherent pulsed
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excitation mechanism termed ‘stimulated Raman adiabatic passage’ (STIRAP)
(Gaubatz et al. 1990; Schiemann et al. 1992). This method has been demonstrated
on atoms (Rubahn et al. 1991; Broers et al. 1992) and molecules (Gaubatz et al.
1990; Dam et al. 1990; Schiemann et al. 1993; Halfmann and Bergmann 1996),
and is being used as an experimental tool in crossed-beam reactive-scattering
experiments (Ditmann et al. 1992; Külz et al. 1996), for spectroscopic studies
(Süssmann et al. 1994) and in the context of atomic interferometry (Marte et al.
1991; Kasevich et al. 1991; Kasevich and Chu 1991, 1992; Lawall and Prentiss
1994; Goldner et al. 1994). Bergmann and Shore (1995) have recently reviewed
STIRAP.

(1a) Overview of the STIRAP Process

The simplest STIRAP scheme involves three non degenerate states of an atom
or molecule: the initial state, an intermediate state, and the target final state.
Two overlapping pulses of coherent laser light induce the desired transition from
initial state to final state. One laser pulse, the ‘pump’ pulse, couples the initial and
intermediate states. The other, the ‘Stokes’ pulse, couples the intermediate and
final states. Typically, the carrier frequencies of the laser light are near, but not
necessarily equal to, the values corresponding to the bare-state resonances. The
two carrier frequencies together must be tuned to two-photon resonance. Fig. 1
shows schematically the so-called lambda configuration, in which the intermediate
state lies highest in energy. Detunings ∆p from one-photon resonance and ∆3

from two-photon resonance are indicated.

Fig. 1. Coupling scheme typical of
a STIRAP experiment in the lambda
configuration. The pump laser, with
Rabi frequency Ωp, has its carrier
frequency ωp detuned by ∆p from
resonance with the intermediate level
|2〉. The Stokes laser has carrier
frequency ωs and Rabi frequency Ωs.
The two lasers are detuned by ∆3

from two-photon resonance with the
final level |3〉

The pulsed nature of the interaction between the laser light and the atoms or
molecules can be produced either by causing the particles to traverse overlapping
continuous-wave laser beams or by illuminating essentially stationary particles
with pulsed lasers. The crucial distinguishing characteristic of STIRAP, in
contrast to conventional stimulated Raman excitation, is that the overlapping
pulses must be ordered counter-intuitively; that is, the atom or molecule must
encounter the Stokes pulse first.
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If two-photon resonance is maintained, and if the pulses meet certain coherence
and adiabaticity conditions (Gaubatz et al. 1990; He et al. 1990; Kuhn et al.
1992; Bergmann and Shore 1995), then complete population transfer occurs.
During the transfer, no population ever appears in the intermediate state. Thus,
the possibility of spontaneous decay of the intermediate state cannot reduce the
efficiency of the transfer, even when the duration of the light pulses is much
longer than the lifetime of the intermediate state. This effect is closely related
to the phenomenon of the dark resonance, which was perhaps the first of the
coherently driven three-state phenomena to be recognised (Arimondo and Orriols
1976; Alzetta et al. 1979; Orriols 1979; Narducci et al. 1990; Manka et al. 1991).

The concept of the original three-state STIRAP scheme has been adapted to a
variety of more elaborate systems (Dam et al. 1990; Shore et al. 1991, 1992; Oreg
et al. 1992), involving interaction with the continuum (Carroll and Hioe 1992,
1993, 1995; Nakajima et al. 1994) or additional quantum states (Shore et al.
1995; Martin et al. 1995, 1996) to describe real atoms and molecules better. The
inclusion of additional levels, such as magnetic sublevels, introduces new features:
there may be more than one dark intermediate level and the target level may
contain degenerate sublevels. Recent theoretical (Shore et al. 1995; Martin et al.
1995) and experimental (Martin 1995; Martin et al. 1996) studies have revealed
interesting properties of the STIRAP-type coherent population-transfer process
in multilevel systems where the participating quantum states are degenerate or
nearly so. In particular, this work has shown how to use STIRAP for transfer of
population into a selected magnetic sublevel, that is, to produce orientation of
electronic or rotational angular momentum. The selectivity is provided merely
by changing the carrier frequency of one laser. In this situation, coupling occurs
to more than one of the distinct non degenerate final states; for, although
two-photon resonance occurs with only one of the manifold of final levels at any
time, coupling to adjacent magnetic sublevels may be nonzero as well.

Both theoretical modelling and experimental observation have shown that,
although STIRAP is relatively insensitive to single-photon resonance, the efficiency
of population transfer relies critically on the occurrence of two-photon resonance.
The two-photon linewidth in STIRAP is very narrow. Thermally induced Doppler
shifts, such as are encountered in a gas cell or in other than highly collimated
particle beams, are one example of effects preventing the establishment of
two-photon resonance for all atoms or molecules exposed to the laser light. On
two-photon resonance, the efficiency of transfer is insensitive to details of the
laser pulses such as pulse shape or total pulse energy, provided that these are
such as to meet the adiabaticity conditions. The only critical characteristic of
the pulse sequence is the separation between the two pulses; this should be about
one quarter of their width.

The present work was motivated by a desire to understand further how the
transfer process is influenced by detuning from two-photon resonance and the
relevance of adiabatic versus non adiabatic processes. These effects are most
readily explored in the simplest STIRAP system: the three-state system. Our
algebraic analysis shows that the relevance of non adiabatic processes has been
underestimated in recent discussions (Gaubatz et al. 1990; He et al. 1990; Kuhn
et al. 1992; Bergmann and Shore 1995), at least partly because there has not been
a full appreciation of the importance of non adiabatic transitions when slightly
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detuned from two-photon resonance. Some numerical studies of non adiabatic
processes in STIRAP have also been presented (Danileiko et al. 1994).

(1b) Adiabatic and Non Adiabatic Evolution

The essential ingredients of STIRAP are the counter-intuitive order of the
laser pulses and the related evolution of the eigenstates of the time-dependent
Hamiltonian. When coherent radiation is present, the Hamiltonian of the system
as a whole includes both atomic-excitation energy and field-interaction energy;
its eigenstates are the dressed states. As the Hamiltonian changes with varying
laser-light intensity, the instantaneous dressed states change their composition.
We use the term ‘adiabatic state’ to refer to such time-varying dressed states.
For excitation on two-photon resonance, an adiabatic state connects the initial
and final bare-atom states. This adiabatic state, called the STIRAP state, is
also orthogonal to the intermediate state at all times during the pulse sequence.
The counter-intuitive order of the laser pulses ensures that the system enters
the STIRAP state (Gaubatz et al. 1990). If the system remains in the STIRAP
state at all times, then the intermediate state is never populated during the
population transfer, though its presence is necessary to define the orientation of
the STIRAP state in Hilbert space.

The STIRAP state can be an effective conduit for population transfer only if
it remains populated during the pulse sequence. This introduces the notion of
adiabatic evolution of the system. During an adiabatic process, the environment
of the atom or molecule changes sufficiently slowly that the particle remains at
all times in one adiabatic state. A non adiabatic (or diabatic) process involves
transitions between the adiabatic states. The original concept of STIRAP involved
the system entering the STIRAP state and remaining in it as it evolves from the
initial unperturbed state through a superposition of atomic states to the final
target state.

In principle, the construction of instantaneous dressed states poses no great
numerical challenge even in multilevel systems: one need only diagonalise a finite
matrix by means of a similarity transform. The columns of the transformation
matrix, suitably ordered and normalised, provide the desired adiabatic states.
Nevertheless, it is instructive to obtain analytic expressions for these components,
when possible, in order to identify key components at early and late times
in the pulse sequence, and so to identify conditions under which the desired
population transfer will occur. Analytic expressions are also useful in designing
an experiment, in that they may lead to estimates of one-photon and two-photon
line widths.

Section 2 presents the required analytic expressions and Section 3 uses them
to explore the time development of the eigenvalues and eigenvectors during a
typical STIRAP pulse sequence. This is done for a variety of detunings, including
examples of completely off-resonance cases. A simple argument shows that, when
the system is off two-photon resonance, none of the adiabatic states connects the
initial state at the start of the STIRAP pulse sequence to the final state at the
end. Such a connection requires that the initial and final states be degenerate,
and this implies two-photon resonance.

It is emphasised in Section 3d that strictly adiabatic population transfer occurs
only when the laser carrier frequencies are tuned exactly to two-photon resonance.
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In any real experiment this resonance condition cannot be established for all
particles; diabatic processes are necessarily involved. From the considerations
presented in Section 3d , it seems that such diabatic processes can be efficient
if the two-photon detuning is small. Danileiko et al. (1994) have presented
numerical studies of diabatic transition probabilities in STIRAP, calculated using
Landau–Zener formalism. Off two-photon resonance, all dressed states acquire
nonzero components of the intermediate state. The extent of this is discussed in
Section 3d .

(1c) Relationship to Previous Work

Treatment of coherent excitation in a three-state system requires solutions to a
cubic eigenvalue equation. Algebraic expressions for the roots of a cubic equation
are well known (e.g. Abramowitz and Stegun 1973), and these can be reduced
to a simple form in this case. This has been presented in other contexts by
Radmore and Knight (1982) and Wilson and Hahn (1982). Nevertheless, it does
not seem to be widely recognised that the eigenvalues of a three-state system
have a simple form when the system is off two-photon resonance (e.g. comments
by Sarkisyan and Ter-Mikaelyan 1978; Agarwal et al. 1979; Chang and Schlier
1980; Kuz’min and Sazonov 1980; Kuz’min 1981; Kancheva et al. 1981; Senitzky
1982; Carroll and Hioe 1987a, 1988a; Coulston and Bergmann 1992; Kuhn et
al. 1992). Some previous treatments of the eigenvalue problem used expansions,
assuming that the two-photon detuning is small (Agarwal et al. 1979; Chang and
Schlier 1980).

Section 2b presents full solutions to the eigenvalue problem in a form appropriate
for the present purpose. Given the eigenvalues of a matrix, elementary procedures
can, in principle, provide unnormalised eigenvectors. Formal expressions for the
normalisation factors follow directly (Radmore and Knight 1982; Radmore 1982).
However, complications arise when a normalisation factor goes to zero or when
eigenvalues are degenerate. In any chosen formulation, these singularities are
likely to occur at some time during a STIRAP pulse sequence. Complete analysis
of STIRAP, with the unambiguous pairing of a given eigenvector to its eigenvalue,
requires a robust and explicit normalisation procedure.

We propose such a procedure in Section 2c by exploiting the formal equivalence
between rotations of three-vectors and the time evolution of the system’s three
dressed states under the influence of a STIRAP pulse sequence. This method
reduces the eigenvector problem to one of determining the orientation of a
triad of automatically orthonormal vectors in a Hilbert space. Relatively simple
expressions for the normalised components of the eigenvectors result. We show
explicitly that, when the system is off two-photon resonance, none of the dressed
states is orthogonal to the intermediate state for all values of the Rabi frequencies.
This result has been noted previously (Radmore and Knight 1982; Radmore
1982). Here we use it to explore the dependence of STIRAP on two-photon
resonance.

The only previous analytical treatment of off-two-photon-resonance effects in
STIRAP was performed using the ‘interaction picture’ (Coulston and Bergmann
1992; Kuhn et al. 1992). This formalism gives simple expressions for both eigenvalues
and eigenvectors. However, off two-photon resonance, the interaction-picture
eigenvectors have oscillatory components, and this complicates the interpretation.
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2. General Three-state Excitation

(2a) The Hamiltonian

The initial state |1〉, intermediate state |2〉 and final state |3〉 have energies
E1, E2 and E3 respectively in the unperturbed, or bare-atom, basis. We set
E1 to zero. The pump and Stokes fields, with carrier frequencies ωp and ωs

respectively, cause a coherent mixing of basis states, described by the usual
rotating-wave-approximation Hamiltonian (e.g. Shore 1990)

H =
h̄

2


0 Ωp 0

Ωp 2∆p Ωs

0 Ωs 2∆3

 . (1)

We have chosen phases so that the Hamiltonian is real. In equation (1), Ωp

and Ωs are the Rabi frequencies describing the interaction with the pump and
Stokes fields respectively and ∆p, ∆3 are detunings from resonance. These are
defined by

∆p = ωp − E2/h̄ ,

∆s = ωp − |E2 − E3|/h̄ , (2)

∆3 = ∆p −∆s .

[We are considering here the lambda configuration depicted in Fig. 1, in which E2

is greater than both E1 and E3. In the ladder configuration, where E1 < E2 < E3,
the last line of equation (2) reads: ∆3 = ∆p + ∆s.] The Hamiltonian of equation
(1) differs from that of Gaubatz et al. (1990) and He et al. (1990) by a shift in
the origin of the energy scale.

In STIRAP, the Rabi frequencies are time-varying and the detunings are fixed.
Two-photon resonance corresponds to ∆3 = 0. For convenience, we refer to the
condition ∆p = ∆3 = 0 as one-photon resonance. The term pump resonance
refers to ∆p = 0 and the condition ∆s = 0 is called Stokes resonance.

(2b) Eigenvalues

The eigenvalues of H are the roots of the secular equation which, in this case,
is the cubic equation

ω3 − 2(∆p + ∆3)ω
2 − (Ω2

p + Ω2
s − 4∆p∆3)ω + 2Ω2

p∆3 = 0 . (3)

The general solutions of this equation are

ω0 = 2
3

(
∆p + ∆3 + Ω̃ cos

ζ

3

)
,

ω+ = 2
3

(
∆p + ∆3 + Ω̃ cos

2π − ζ
3

)
, (4)

ω− = 2
3

(
∆p + ∆3 + Ω̃ cos

2π + ζ

3

)
,
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where the auxiliary variables Ω̃ and ζ are defined by

Ω̃ = [3(Ω2
p + Ω2

s ) + 4(∆2
p −∆p∆3 + ∆2

3)]
1
2 , (5)

ζ = 2π − arccos
[9(Ω2

p + Ω2
s )− 4(2∆p −∆3)(2∆3 −∆p)](∆p + ∆3)− 27Ω2

p∆3

Ω̃3
.

(6)

That equations (4–6) give solutions of equation (3) can be verified by direct
substitution. The superscripts labelling the roots of equations (4) have been
chosen to conform with standard labels in the literature of STIRAP (Kuklinski
et al. 1989; Gaubatz et al. 1990). Details are given in Appendix A. The
labelling depends on the appearance of the 2π in the definition of ζ and on the
range adopted for the inverse cosine function. We choose the range such that
π < ζ < 2π. Since it then follows that∣∣∣∣ cos

(
ζ

3

)∣∣∣∣ ≤ 1
2 ,

1
2 ≤

∣∣∣∣ cos

(
2π − ζ

3

)∣∣∣∣ ≤ 1 , (7)

−1 ≤
∣∣∣∣ cos

(
2π + ζ

3

)∣∣∣∣ ≤ − 1
2 ,

equations (4) show that the eigenvalues are always ordered,

ω− ≤ ω0 ≤ ω+ (8)

for all values of Rabi frequencies and detunings. This result is useful for
understanding the behaviour of the three-state system undergoing a STIRAP
pulse sequence.

(2c) Eigenvectors and Mixing Angles

The simplest procedure for constructing an eigenvector, given an eigenvalue, is
to set one component of the eigenvector to unity, so that the eigenvector equation
becomes a set of inhomogeneous equations. Application of, say, Kramer’s rule
then provides analytic expressions for each of the eigenvector components in
terms of matrix elements and eigenvalues. Apart from the algebraic complexity
of the resulting normalisation factors, this procedure is unsatisfactory when
the eigenvector component chosen to be unity is, in fact, zero; for then the
normalisation factor is infinite. Any choice of eigenvector component will produce
this effect in some circumstances, and this can cause a problem in the construction
of an algebraic description valid for the whole of a STIRAP pulse sequence.

To avoid difficulties associated with direct normalisation and to obtain expressions
valid for all values of the parameters, we instead exploit the formal correspondence
between three-dimensional Hilbert space and ordinary three-space. On this view,
the eigenvectors are obtained by rotating the triad of Cartesian basis vectors
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|1〉 =

 1
0
0

 , |2〉 =

 0
1
0

 , |3〉 =

 0
0
1

 . (9)

This produces a triad of automatically normalised mutually orthogonal real vectors
as the dressed states. The time-dependent components of these rotated vectors
are the probability amplitudes for population transfer.

General rotations of a three-vector can be described by the three-dimensional
rotation matrix D(α, β, γ), where α, β, γ are Euler angles. We start with the
definition of Euler angles given in Zare (1988). To relate the resulting expressions
to the two-photon-resonance expressions of Gaubatz et al. (1990), we identify
|a0〉 with a rotated state |1〉, |a−〉 with a rotated state |3〉 and we introduce the
left-handed mixing angles

Φ = −α, Θ = −β , φ = −γ . (10)

This leads to the following parametrisation for the dressed states:

|α0〉 = cos Θ|1〉+ sin Φ sin Θ|2〉 − cos Φ sin Θ|3〉 ,

|a+〉 = sin Θ sinφ|1〉 − (sin Φ cos Θ sinφ− cos Φ cosφ)|2〉

+ (cos Φ cos Θ sinφ+ sin Φ cosφ)|3〉 ,

|a−〉 = sin Θ cosφ|1〉 − (sin Φ cos Θ cosφ+ cos Φ sinφ)|2〉

+ (cos Φ cos Θ cosφ− sin Φ sinφ)|3〉 . (11)

The equations for two-photon resonance (Gaubatz et al. 1990) are recovered by
setting Φ to zero.

In these terms, the objective of complete population transfer corresponds to
rotating a dressed-state vector from |1〉 to |3〉. In the usual picture of STIRAP,
which assumes two-photon resonance, the transfer involves the variation of the
mixing angle Θ from zero to π/2, while maintaining Φ at zero. This is effectively
a rotation of the triad about the direction corresponding to state |2〉. When
two-photon detuning is present, it is no longer adequate to visualise the process
as a simple rotation about the direction of state |2〉.

(2d) Ranges of the Mixing Angles

The set of Euler angles is in two-to-one correspondence with the set of all
possible three-dimensional rotations (e.g. Messiah 1962). Thus, the range of Θ
can be restricted to 0 ≤ Θ ≤ π without loss of generality. In addition to this, the
overall phase of each state vector is arbitrary. We follow the phase convention of
Gaubatz et al . (1990), requiring that the components of basis state |1〉 is never
negative. Equations (11) show that this combination of choices restricts both Θ
and φ to the first quadrant:
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0 < Θ < π/2, 0 < φ < π/2 . (12)

There is no a priori limit on the range of Φ. However, the nature of the
problem is such that Φ always lies in the range

−π/2 < Φ < π/2 . (13)

This is shown in Appendix E.

(2e) Expressions for the Mixing Angles

Equations (11) define parametrisations of the eigenvectors |ai〉 in terms of
mixing angles. Expressions for the mixing angles in terms of detunings and Rabi
frequencies can be obtained by matching the components of an eigenvector with
solutions to the eigenvector equations. The results for Θ and Φ are

Θ =


π/2 if Ωs = 0 and either

∆3 = 0 or ∆3 = ∆p

arctan

∣∣∣∣ Ωp[(ω0 − 2∆3)
2 + Ω2

s ]
1/2

(ω0 − 2∆p)(ω0 − 2∆3)− Ω2
s

∣∣∣∣ , otherwise

(14)

and

tanΦ =

{
0 if Θ = 0

(2∆3 − ω0)/Ωs, otherwise .
(15)

These are derived in Appendix C.
It is not possible to find one expression for φ that is valid for all values of

the parameters; different expressions must be used in different cases. Appendix
D contains a detailed discussion, leading to the scheme set out in Table 1. This
scheme is rather complicated, but it should be recognised that there are many
special cases in which a singularity may occur. Table 1 covers these with just
eight expressions.

(2f) Two-photon Resonance

On two-photon resonance, ∆3 = 0 and equation (3) is easy to solve, giving

ω0 = 0 ,

ω± = ∆p ± (Ω2
p + Ω2

s + ∆2
p)

1
2 . (16)

The reduction of equations (4–6) to equations (16) by setting ∆3 = 0 is not
straightforward; this is discussed in Appendix B. Equation (16) differs from the
corresponding expression of Gaubatz et al. (1990) because of the different choice
of the zero of the energy scale (see Section 2a).
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Table 1. Method of calculating the angle φ

Conditions on angles Conditions on detunings tan φA

∆3 ≤ 0 < ∆p or

∣∣∣∣∣ X+ sin Φ− Ωs cos Φ
(Ωs sin Φ +X+ cos Φ) cos Θ

∣∣∣∣∣
Θ ≤ π/20 ∆3 > 0 and ∆p = 0 ∣∣∣∣∣ (Ωs sin Φ +X−cos Φ) cos Θ

X− sin Φ− Ωs cos Φ

∣∣∣∣∣otherwise






∆p ≤ ∆3 < 0 or

∣∣∣∣∣ Y + cos Φ
ΩpX

+ sin Θ− Y + sin Φ cos Θ

∣∣∣∣∣
Θ > π/20 and |Φ| ≤ π/20 ∆3 = 0 and ∆p > 0 ∣∣∣∣∣ΩpX

− sin Θ + Y − sin Φ cos Θ

Y − cos Φ

∣∣∣∣∣otherwise






0 ≤ ∆p < ∆3

∣∣∣∣∣ ΩpΩs sin Φ

ΩpΩs cos Φ cos Θ + Z+ sin Θ

∣∣∣∣∣
∆3 < 0 and ∆p = 0

∣∣∣∣∣ΩpΩs cos Φ cos Θ + Z− sin Θ

ΩpΩs sin Φ

∣∣∣∣∣
Otherwise

∆3 > 0 and either

∣∣∣∣∣ΩpΩs sinΘ + Y − cos Φ cos Θ

Y − sin Φ

∣∣∣∣∣
∆p < 0 or ∆p = ∆3

otherwise

∣∣∣∣∣ Y + sin Φ
ΩpΩs sin Θ + Y + cos Φ cos Θ

∣∣∣∣∣






A Xi = ωi − 2∆3, Y i = Ω2

s − (ωi − 2∆3)(ω
i − 2∆p), Zi = Ω2

p − ωi(ωi − 2∆p) .

Since both ∆3 and ω0 are zero on two-photon resonance, equation (14) gives
directly, in this case,

tan Θ = Ωp/Ωs , (17)

in agreement with Gaubatz et al. (1990). Equation (15) then gives Φ = 0, as
foreshadowed in Section 2c. Suitable expressions for tanφ are therefore the top
two entries in Table 1 when Ωs is much smaller than Ωs, and the third and
fourth entries otherwise. Insertion of equations (16) and (17) into the top four
expressions in Table 1 leads to the same result:

tanφ =
(Ω2

p + Ω2
s )

1
2

(Ω2
p + Ω2

s + ∆2
p)

1
2 + ∆p

. (18)

This agrees with the expression of Gaubatz et al. (1990) when the different
location of the zero of energy is taken into account.

3. Results with the STIRAP Pulse Sequence

We now use the algebraic results of Section 2 to examine the evolution of the
eigenvalues and eigenvectors under the influence of a sequence of laser pulses
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typical of STIRAP. Our objective is to identify conditions that lead to substantial
likelihood of the desired population transfer.

(3a) The Pulse Sequence

In STIRAP, the Rabi frequencies are time-varying in such a way that the pump
frequency Ωp(t) is zero early in the pulse sequence and the Stokes frequency
Ωs(t) is zero late in the sequence. A convenient representation of such a pulse
sequence is

Ωp(t) = Ω0 p(t− τ) , Ωs(t) = Ω0 p(t) , (19)

where p(t) is a pulse envelope of unit maximum value. A useful choice, giving a
pulse shape reminiscent of a Gaussian but limited to a finite duration, is (Shore
et al. 1991, 1992; Oreg et al. 1992)

p(t) =

{
sin4(πt/T ), 0 < t < T

0, otherwise .
(20)

To produce optimal overlap, we choose τ = 0 ·2T in all figures below. Fig. 2
shows the resulting pulse sequence.

Fig. 2. Time development of Rabi
frequency in a typical STIRAP
sequence of laser pulses. The Rabi
frequency of the pump pulse (Ωp) is
shown by the full curve and that of
the Stokes pulse (Ωs) by the broken
curve. Each pulse has duration of T
and a maximum Rabi frequency of
Ω0. The Stokes pulse leads the pump
pulse by τ = 0 ·2T .

Insofar as adiabatic passage occurs, the results are independent of T and of
the amplitude Ω0. The latter provides a convenient energy scale. The results of
experiment and computer simulations suggest that there is no loss of significant
generality either in the choice of this pulse shape (rather than, say, a Gaussian)
or in choosing the pump and Stokes pulses to have the same amplitude. This
reflects the robustness of STIRAP against variation in the details of the pulses.

(3b) Adiabatic Eigenvalues

Plots of adiabatic eigenvalues offer guides for predicting population transfer:
if the evolution is adiabatic, then the system tracks the course of an eigenvalue.
Fig. 3 shows, for a range of values of detunings ∆p and ∆3, plots of the time
development of the eigenvalues ωi (equations 4) as the system encounters the
STIRAP pulse sequence of Fig. 2. The panels are ordered with increasing ∆3 to
the right and decreasing ∆p down. Fig. 3g is the case of one-photon resonance.
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Fig. 3. Time evolution of the eigenvalues ω of a three-state system encountering the STIRAP
pulse sequence shown in Fig. 2. The panels show results for various detunings, as indicated
at the top and to the right. The full curves show values of ω0 and the broken curves values
of ω+ and ω−. All eigenvalues and detunings are normalised to the peak Rabi frequency Ω0.
Special cases are: g one-photon resonance, g–i two-photon resonance, a, d, g, j, m pump
resonance, and c, e, g Stokes resonance.
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The central row of panels (Figs 3g–3i) shows cases of two-photon resonance. The
left column (Figs 3a, 3d , 3g , 3j , 3m) contains cases of pump resonance (∆p = 0)
and Figs 3c, 3e, 3g cases of Stokes resonance (∆p = ∆3, that is ∆s = 0). Results
for negative values of ∆p can be obtained by a symmetry operation: to obtain
the plot for −∆p, ∆3 turn the plot for ∆p,−∆3 upside down and exchange the
labels ω+ and ω−.

By definition, the system starts in state |1〉; the energy of this state serves
as the zero point. The energies of the unperturbed states are 0, h̄∆p and
h̄∆3. These equal the initial and final dressed eigenvalues. When ∆p 6= ∆3 and
neither detuning is zero, the asymptotic eigenvalues of the dressed states are
distinct. If a system with these detunings evolves adiabatically from the outset,
then it populates the dressed state with zero asymptotic eigenvalue. Which
dressed state this is depends on the ordering of ∆p and ∆3 with respect to zero.
Continued adiabatic evolution then results in the system returning to state |1〉,
the initial state. The final state, which has an asymptotic eigenvalue of ∆3, is
not adiabatically accessible in this case.

This argument shows that adiabatic transfer of population from state |1〉 to
state |3〉 can only occur if these two states are degenerate, and this implies
∆3 = 0, that is, two-photon resonance. On the other hand, many of the panels
of Fig. 3 show sharp avoided crossings, raising the possibility of the desired
transfer of population occurring by diabatic transitions near these crossings. This
possibility is considered case by case in the next section.

(3c) Adiabatic and Diabatic Population Transfer

Triad-orientation Diagrams

The eigenvectors of a three-state system span a space isomorphic with real
3-space. This permits a pictorial representation of their evolution during a
typical STIRAP pulse sequence. The evolution is modelled by the motion of
an orthonormal triad of vectors relative to the directions of the unperturbed
states |1〉, |2〉 and |3〉. The required orientation angles are just the Euler angles
introduced in Section 2c.

Fig. 4 consists of such a pictorial representation for the simplest case: that
of one-photon resonance. Each panel of Fig. 4 shows the orientation of the
triad of dressed states at the indicated times during the pulse sequence. For
convenience, the Rabi frequencies at the times chosen are listed in Table 2. For
the case shown in Fig. 4, eigenvector |a0〉 initially corresponds with state |1〉.
Thus, |a0〉 is the system state vector if adiabatic following occurs. To aid in the
visualisation of the rotation, broken lines indicate the components of |a+〉 and
|a−〉, where practicable.

The remainder of this section explores the details in Fig. 4 and in other more
general cases to assess the possibilities for a transfer of population from state |1〉
to state |3〉.

Standard STIRAP

In its usual form, the concept of STIRAP assumes two-photon resonance.
Fig. 4 shows the special case of one-photon resonance; the other cases are shown
in Figs 5 and 6. Fig. 5 pertains to a system with positive pump detuning and
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Fig. 6 to negative pump detuning. The times chosen are the same as in Fig. 4.
Figs 3g–3i are the relevant eigenvalue plots. On one-photon resonance (Fig. 3g),
the eigenvalues are three-fold degenerate before and after the pulse sequence. At
nonzero pump detunings, one of the unperturbed eigenenergies is distinct, but
there remains a two-fold degeneracy: between ω0 and ω− if ∆p is positive and
between ω0 and ω+ when ∆3 is negative.

Fig. 4. Orientations of the triad of vectors representing the dressed states |a0〉, |a+〉 and
|a−〉 of a three-state system on one-photon resonance at six times during the pulse sequence of
Fig. 2, as indicated. The unperturbed states are shown as |1〉 (initial state), |2〉 (intermediate
state) and |3〉 (final state). The eigenstate |a0〉, which corresponds with state |1〉 initially,
is the state vector of the system if adiabatic following occurs. Broken lines indicate the
components of |a+〉 and |a−〉, where practicable.

Table 2. Values of the Rabi frequencies Ωp and
Ωs at times t used in Figs 4–7 and 9–12

t/T Ωp/Ω0 Ωs/Ω0

0 ·1 0 ·000 0 ·009
0 ·3 0 ·009 0 ·428
0 ·5 0 ·428 1 ·000
0 ·7 1 ·000 0 ·428
0 ·9 0 ·428 0 ·009
1 ·1 0 ·009 0 ·000

The motions of the eigenvectors illustrated in Figs 4–6 show several points
of similarity. In the first part of the STIRAP pulse sequence, the pump Rabi
frequency Ωp is zero, and so Θ is zero (equation 17). The first panels of Figs 4–6
show the situation at this time, when the eigenstate |a0〉 coincides with the
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Fig. 5. As in Fig. 4, but for two-photon resonance with positive pump detuning (∆p = 0 ·1Ω0).

Fig. 6. As in Fig. 4, but for two-photon resonance with negative pump detuning (∆p = −0 ·1Ω0).
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initial state |1〉. As the pump pulse arrives, Θ starts to increase. After some
time, the Stokes pulse reaches its maximum intensity. The system at this time
is shown in the third panels of Figs 4–6 (t/T = 0 ·5). Subsequently, the Stokes
pulse starts to decrease in intensity while the pump-pulse intensity rises to its
maximum value at t/T = 0 ·7. The final part of the pulse sequence starts after
the Stokes pulse has died away. This means that Θ has increased to π/2, so
that |a0〉 lies along the desired final state |3〉, as shown in the last panels. If
adiabatic following has occurred, then the system will have followed |a0〉, moving
smoothly from state |1〉 to state |3〉.

The value of φ during the pulse sequence depends on the detuning ∆p, according
to equation (15). If ∆p is zero, then φ is π/4 at all times, as shown in Fig 4.
With nonzero pump detuning, φ varies during the pulse sequence. For positive
∆p, φ starts at zero and rapidly increases toward π/4 in the early part of the
pulse sequence. During this time, Θ remains at zero (first panel of Fig. 5). In the
middle part of the pulse sequence, φ changes little as Θ moves from zero to π/2.
After the Stokes pulse has died away, φ returns to zero. Complementary behaviour
occurs when ∆p is negative: φ starts and finishes at π/2 and has values a little
greater than π/4 in the middle part of the pulse sequence, as indicated in Fig. 6.

This motion of the triad for a system on two-photon resonance can be described
as a rotation about the |2〉 direction (the variation of Θ) combined with, if ∆p is
non zero, and a rotation about the instantaneous |a0〉 direction (the φ variation).
At no time during the pulse sequence does |a0〉 contain any component of the
intermediate state |2〉, regardless of the value of ∆p. In other words, Φ is zero
at all times on two-photon resonance.

Off-resonance Systems

The three cases of two-photon resonance are the only situations in which the
mixing angle Φ is always zero. It is clear from the rotation picture that this is
the cause of a0

2 always being zero. In this subsection, we examine the evolution of
systems in which the unperturbed states |1〉, |2〉 and |3〉 are all non degenerate;
that is, ∆p 6= ∆3 and neither is zero. There are six such generic cases, defined
by the relative ordering of ∆p, ∆3 and zero. The three cases with ∆p > 0
are treated here. The relationship between these and the cases with ∆p < 0 is
analogous to that between the cases in Figs 5 and 6.

Fig. 7 shows a case in which ∆p and ∆3 are opposite in sign. The corresponding
eigenvector plot is Fig. 3k . In this situation, |a0〉 coincides with |1〉 early in the
pulse sequence and evolves toward |3〉, like in the case of two-photon resonance.
Indeed, all but the last panel of Fig. 7 are very similar to the corresponding
panels in Fig. 5. However, as the Stokes pulse dies away, there is a sudden
realignment so that |a0〉 returns to |1〉 at the end of the pulse sequence. If
adiabatic following were to occur, there would be no change of state.

The realignment occurs at the avoided crossing between ω0 and ω− shown
in Fig. 3k . When eigenvalues change rapidly, as near an avoided crossing,
the possibility of diabatic transitions is high. The triad-orientation plot clearly
suggests that the state vector of the system is likely to retain its direction during
the eigenvectors’ sudden motion, so that, in the case shown in Fig. 7, the system
will probably move from state |a0〉 to state |a−〉. This state then evolves to state
|3〉 as the pulse sequence ends, so effecting the desired transfer of population.
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Fig. 7. As in Fig. 4, but for the off-resonance case with ∆p opposite in sign to ∆3

(∆p = 0 ·1Ω0, ∆3 = −0 ·1Ω0).

Fig. 8. As in Fig. 7, but a detail of the sudden realignment occurring late in the pulse
sequence. The values of ∆p and ∆3 are the same as in Fig. 7. Note that the time intervals
between panels are not equal.
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The rapidity of the motion occurring between the last two panels of Fig. 7 is
illustrated in Fig. 8, which shows views during the relevant period of time. For
these parameter values, the angle Φ covers almost half of its entire range within
a time of about 0 ·004T . The other two mixing angles also undergo large changes
of value. It is interesting that, notwithstanding the magnitude of the changes
in mixing angles, the eigenvector |a+〉 changes little during the realignment. As
Fig. 8 illustrates, the motion is chiefly one of rotation about the direction of
|a+〉.

During the realignment, rates of change of all mixing angles briefly exceed 500
rad per dimensionless time unit. This is over one hundred times greater than
values typical away from the avoided crossing. It is unlikely that the system
would adiabatically follow such rapid motion of the eigenvectors. Experimental
studies support this view. Gaubatz et al. (1990), in a study of STIRAP in Na2

molecules, list (their Table III) values of the range of two-photon detunings over
which the efficiency of population transfer exceeds 50% of the maximum observed
efficiency. That range varied from 0 ·32Ω0 when ∆p = 0, down to 0 ·09Ω0 at
∆p = 10Ω0, although the maximum transfer efficiency observed with the latter
value of ∆p was about 10%. Thus, detunings of the order of those used in Figs 7
and 8 are small enough to allow some significant population transfer.

Figs 9 and 10 show the other two cases of off-resonant systems that are treated
here. The corresponding eigenvector plots are Figs 3f and 3b. The behaviour
here contrasts markedly with that shown in Figs 4–7, in that |a0〉 does not
coincide with state |1〉 at the beginning of the pulse sequence. State |1〉 initially
corresponds to |a−〉 when both detunings are positive, the situations shown in
Figs 9 and 10, and with |a+〉 when both are negative. If the system follows
these dressed states adiabatically, then it returns to state |1〉 at the end of the
pulse sequence. In all of these cases, however, there is a rapid realignment of
the dressed states soon after the pump pulse arrives, leading to the possibility of
the system making a transition to state |a0〉. This realignment corresponds to
the sharp avoided crossings in Figs 3f and 3b. In cases where 0 > |∆3| > |∆p|
(Figs 3f , 9), this would lead to the desired transfer of population; for |a0〉 evolves
to |3〉 at the end of the pulse sequence.

The case shown in Fig. 10, in which ∆p lies between zero and ∆3, is clearly less
favourable for transfer than any of the cases so far discussed. In these situations,
|a0〉 evolves not to |3〉 but to |2〉 as the pulse sequence passes. To obtain the
desired population transfer, the system must make a second diabatic transition.
The eigenvalue plot, Fig. 3b, shows a second avoided crossing occurring somewhat
after midway through the pulse sequence, but this is clearly much less sharp
then the first avoided crossing. Thus, conditions are much less favourable for the
second diabatic transition than for the first.

Pump and Stokes Resonance

Fig. 11 illustrates pump and Fig. 12 Stokes resonance. The corresponding
eigenvector plots are Figs 3d and 3e respectively. In both cases, there is a
two-fold degeneracy before and after the pulse sequence and one sharp avoided
crossing.

In the case of pump resonance (Fig. 11), |a0〉 is aligned with |1〉 at the
beginning of the pulse sequence, and evolves toward |3〉 as the sequence progresses.



    

Coherent Population Transfer 299

Fig. 9. As in Fig. 4, but for the off-resonance case with ∆3 intermediate between zero and
∆p (∆p = 0 ·5Ω0, ∆3 = 0 ·1Ω0). Eigenstate |a0〉 is not the state vector of the system early
in the pulse sequence.

Fig. 10. As in Fig. 9, but for the off-resonance case with ∆p intermediate between zero and
∆3 (∆p = 0 ·1Ω0, ∆3 = 0 ·5Ω0).
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Fig. 11. As in Fig. 4, but for pump resonance (∆p = 0, ∆3 = 0 ·1Ω0). In this case, eigenstate
|a0〉 is probably not the state vector of the system at the end of the pulse sequence.

Fig. 12. As in Fig. 4, but for Stokes resonance (∆p = 0 ·1Ω0, ∆3 = 0). Here, the system
starts in eigenstate |a−〉 but probably makes a diabatic transition to state |a0〉 early in the
pulse sequence.
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For the parameter values used in Fig. 11, the avoided crossings are even sharper
than in the case shown in Fig. 8, with mixing-angle rates of change an order of
magnitude larger during the realignment. Thus, there is likely to be a diabatic
transition from |a0〉 to |a+〉 (to |a−〉 when ∆3 is negative) leading to the desired
population transfer.

The case of Stokes-beam resonance shown in Figs 12 and 3e is similar. Here,
the system starts in |a−〉, makes a diabatic transition to |a0〉 early in the pulse
sequence and then evolves adiabatically to |3〉.

Summary

The above discussion suggests that adiabaticity is not as crucial a requirement
for efficient population transfer as has been previously supposed. Indeed, it
is shown in Section 2b that truly adiabatic population transfer requires exact
two-photon resonance. Even the slightest detuning from resonance, as is inevitable
in an experiment, will cause an avoided crossing with an accompanying rapid
realignment of the eigenvectors. The present section demonstrates that this does
not matter if the detuning is a small fraction of the peak Rabi frequency; for
then a diabatic transfer will occur at the avoided crossing, resulting in the desired
population transfer.

Of the cases considered in this section, one is clearly less favourable for
population transfer than the rest. This is the case shown in Figs 10 and 3b, which
requires two diabatic transitions to achieve the desired transfer of population; all
other cases require at most one. In practical terms, this means that one should
avoid situations in which the pump detuning ∆p is of the same sign as and
smaller in magnitude than the two-photon detuning ∆3. For efficient transfer,
the detunings should be as small as possible, with ∆p not lying between zero
and ∆3.

(3d) Dark States

On two-photon resonance, the dressed state |a0〉 has zero projection on |2〉 at
all times. This is an important feature of STIRAP. Equation (25) in Appendix C
shows that an eigenvector has zero projection on |2〉 when its eigenvalue equals
2∆3. This occurs for |a0〉 at all times on two-photon resonance; for then ω0 and
∆3 are both zero throughout the pulse sequence. Fig. 3 shows that it does not
happen in general. Indeed, ω = 2∆3 is consistent with the eigenvalue equation
(equation 3) only if either ∆3 = 0 or Ωs = 0, as substitution shows.

Although the component a0
2 of state |2〉 in |a0〉 is not zero off two-photon

resonance, its value is small if the detunings are small. For example, in the case
shown in Fig. 7, a0

2 is initially zero and rises to about 0 ·086 in the middle of the
pulse sequence. It then declines as the system approaches the avoided crossing
with state |a−〉. The behaviour of a0

2 and a−2 in the region of the avoided crossing
is shown in Fig. 13a. Each component is substantial for a brief period. We define
a2 as the component of |2〉 in the state vector occupied by the system; a2 is a
time-varying linear combination of a0

2 and a−2 . Its maximum value depends on
when the diabatic transition occurs, but cannot be less than the value at which
the curves in Fig. 13a cross. This is about 0 ·40. Whether this and the nonzero
value of a0

2 earlier in the pulse sequence cause serious loss of population depends
on the lifetime of state |2〉 compared with the duration of the laser pulses.
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Fig. 13. Magnitudes |ai2| of the |2〉-component of eigenstates involved in an avoided crossing
in the region of that crossing for (a) ∆p = 0 ·1Ω0 and ∆3 = −0 ·1Ω0, (b) ∆p = 0 ·5Ω0 and
∆3 = 0 ·1Ω0, and (c) ∆p = 0 and ∆3 = 0 ·1Ω0.

Figs 13b and 13c show components of |2〉 in the regions of the avoided
crossings for the cases of 0 > |∆3| > |∆p| (Figs 3f and 9) and pump resonance
(Figs 3d and 11). The behaviour for Stokes resonance is similar to that shown in
Fig. 13c. In each case, the value of a0

2 is small away from the avoided crossing.
The curves cross at a value of 0 ·28 in Fig. 13b and 0 ·45 in Fig. 13c. Thus,
the off-resonant case of Fig. 13b has the least lower bound on a2. However, the
important quantity is not the maximum value of a2, but rather its integral over
the pulse sequence. On this view, Fig. 13c represents the most favourable of the
situations shown in Fig. 13, because the crossing is comparatively abrupt. This
emphasises once again the importance of minimising detuning.

4. Summary

The general problem of coherent adiabatic population transfer among three
states has been solved algebraically. The resulting expressions encompass all
situations of resonance or the lack thereof. These expressions are applied to
the process of stimulated Raman scattering with adiabatic passage (STIRAP)
in order to explore the sensitivity to two-photon resonance and to examine the
relative importance of adiabatic evolution and diabatic transitions. We emphasise
three basic points.

First, there is no adiabatic connection between the initial state |1〉 and the
final state |3〉 unless one has exact two-photon resonance. This may seem
central, but its importance is diminished by the second point: the importance of
diabatic transitions between dressed states. When detunings are small, diabatic
transitions are efficient in ensuring that the desired population transfer occurs.
Thirdly, all eigenstates have non zero components of the intermediate state |2〉
off two-photon resonance. This means that both population and coherence can
be lost. However, if detunings are small, the rate of loss may be low enough to
be tolerable.
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Appendix A: Labelling the Eigenvalues

The labels of the eigenvalues used in this paper conform with those used by
Kuklinski et al. (1989) and Gaubatz et al. (1990) in the case of two-photon
resonance. Expressions for the eigenvalues on two-photon resonance (equations 16)
are obtained much more easily by direct solution of the eigenvalue equation
(equation 3) than by setting ∆3 = 0 in equations (4–6). Indeed, Appendix
B shows that reduction of equations (4–6) to the two-photon case causes all
information on labelling to be lost.

Verification that the labelling of the roots in equations (4) corresponds to that
in equations (16) is easily done by examining the case of one-photon resonance,
for which ∆p = ∆3 = 0. Substitution of this in equations (5) and (6) gives
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ζ = 3π/2, since the value of the inverse cosine function is taken to lie in the range
[0, π]. This gives the desired verification, by direct substitution in equations (4).

Appendix B: Reduction of the General Eigenvalue Expressions to the Case of
Two-photon Resonance

In the case of two-photon resonance (∆3 = 0), equation (6) gives

ζ = 2π − arccos
∆p(9Ω2

p + 9Ω2
s + 8∆2

p)

(3Ω2
p + 3Ω2

s + 4∆2
p)

3
2

. (21)

To show that equations (4) do indeed reproduce equations (16) for this value of
ζ, it is necessary to obtain an expression for ζ/3. In principle, this is contained
in the trigonometric identity

4 cos3(ζ/3)− 3 cos(ζ/3) = cos ζ , (22)

an equation which cannot, in general, be solved algebraically. However, it is
straightforward to verify that

cos(ζ/3) = −∆p(3Ω2
p + 3Ω2

s + 4∆2
p)−1/2 (23)

satisfies equation (22) when ζ is given by equation (21).
Application of equation (23) is not as simple as it may appear; for, if ζ is

a solution to equation (22), then so is 2π ± ζ. That is, the right-hand side of
equation (23) can refer to the cosine of any of the three angles required. Indeed,
these are simply the three roots of equation (22). Thus, use of equation (22)
causes all information on the labelling of the eigenvectors to be lost. Equations
(7) provide the way forward. Clearly, the right-hand side of equation (23) is
bounded by ± 1

2 , approaching these limits when ∆2
p À Ω2

p + Ω2
s . Thus, equation

(23) can be used directly in equations (4), and a little algebraic manipulation
shows that this reduces them to equations (16).

Appendix C: Values of the Mixing Angles Θ and Φ

Equations (11) define a parametrisation of |ai〉 using mixing angles. Expressions
for the mixing angles in terms of the detunings and Rabi frequencies are obtained
by matching the components aik of an eigenvector, defined by

|ai〉 = ai1|1〉+ ai2|2〉+ ai3|3〉 for i = −, 0,+ , (24)

with solutions to the eigenvector equations:

−ωiai1 + Ωpa
i
2 = 0,

Ωpa
i
1 + (2∆p − ωi)ai2 + Ωsa

i
3 = 0 , (25)

Ωsa
i
2 + (2∆3 − ωi)ai3 = 0 .
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Only two of these three equations are linearly independent. In some situations,
the choice of equations matters. For example, on two-photon resonance both ∆3

and ω0 are zero, and so, when calculating the components of |a0〉, the first and
last lines of equation (20) are identical. No pair of equations (25) works in all
situations.

It may seem that mixing angle Φ is the most straightforward to obtain, since
equation (11) shows that tan Φ is given by the ratio −a0

2/a
0
3. However, it is

equally clear that this cannot work when Θ is zero; for then equation (11)
contains no information on Φ. It is necessary to calculate Θ first.

Equation (11) gives

tan Θ =
[(a0

2)
2 + (a0

3)
2]

1
2

|a0
1|

. (26)

Ratios of the components a0
k can be determined from the second line of equation

(25) and one other. We use the last line of equation (25) except when Ωs = 0
and either ∆3 = ∆p or ∆3 = 0. In these cases, ω0 = 2∆3, and so the last line of
equation (25) contains no information about the components of |a0〉. Inspection
shows that Θ = π/2 in both situations. We thus obtain equation (14). It can
be seen that the argument of the arctan function in equation (14) is strictly
indeterminate when ω0 = 2∆3 and Ωs = 0.

Note that Θ cannot be zero unless a Rabi frequency is zero. This can be
deduced from equations (25) and (11) in the following way. Equations (25) show
that, if two components of an eigenvector are zero and both Ωp and Ωs are
nonzero, then the third component of the eigenvector must also be zero. But this
is a contradiction, since we require eigenvectors to be always normalisable. Thus,
at most one component of any eigenvector can be zero when both Ωp and Ωs

are nonzero. However, the first line of equation (11) shows that two components
of |a0〉 are zero when Θ is zero. Thus, Θ cannot be zero when both Ωp and
Ωs are nonzero. Of course, the manner in which the system evolves when one
Rabi frequency is zero is crucial to STIRAP and so these cases require detailed
consideration.

Having obtained Θ, Φ can be calculated. This is given by the ratio −a0
2/a

0
3

unless Θ equals zero. In this case, Φ is indistinguishable from φ. Equations
(11) show that the eigenvectors depend only on φ−Φ when Θ equals zero. We
choose to set Φ to zero in this situation, leading to equation (15).

If Φ is a solution of equation (15), then so is Φ + π. Which of these is
correct can be checked by examining the relative sign of a pair of eigenvector
components, but the correct choice of a pair for this purpose depends on the
value of φ. Thus, the question of the quadrant of Φ is deferred to Appendix E,
after the calculation of φ. This calculation requires expressions for Φ, but these
are insensitive to a difference of π.

Appendix D: Values of the Mixing Angle φ

There are many possible expressions for the angle φ. Any pair of the components
of either |a+〉 or |a−〉 could be chosen, and, for each of these six choices, any
pair of equations (25) could supply expressions for the ratio of components.
However, each of these choices has special cases in which it fails. The general
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rules applying to the identification of these cases are obtained from equations
(11) and (25). As an example, consider the middle line of equation (11). When
Θ = π/2, this equation reads

|a+〉 = sinφ|1〉+ cos Φ cosφ|2〉+ sin Φ cosφ|3〉.

The ratio a+
2 /a

+
3 is now independent of φ, and so clearly cannot be used to

obtain the value of φ. Considerations of this sort lead to the rules summarised
in Table 3. Similar constraints apply in the choice of pairs of equations from
equations (25) to obtain expressions for the component ratios. Taking equations
(25) in conjunction with the eigenvalue equation (equation 3) gives the rules in
Table 4.

Table 3. Constraints on the choice of component
ratios for use in the calculation of φ arising from

the form of equations (11)

If Θ = 0: Use a+
2 /a

+
3 or a−2 /a

−
3

If Φ = 0: Do not use a+
1 /a

+
3 or a−1 /a

−
3

If Φ = ±π/2: Do not use a+
1 /a

+
2 or a−1 /a

−
2

If Θ = π/2: Do not use a+
2 /a

+
3 or a−2 /a

−
3

Table 4. Constraints on the choice of pairs of equations for obtaining
expressions for component ratios

If Ωp = 0: Use second and third lines of equations (25) if ωi = 0,
otherwise do not use this pair

If Ωs = 0: Use first and second lines of equations (25) if ωi = 2 ∆3,
otherwise do not use this pair

If ∆3 = 0: Do not use first line of equation (25) together with last line

Use of the rules in Tables 3 and 4 ensures that the chosen eigenvector
components are not both zero and that their ratio contains some dependence on
φ. For the sake of numerical stability, it is desirable that both are not close
to zero. Examination of all the special cases arising when one Rabi frequency
is zero leads to the scheme set out in Table 1. The spline points are located
arbitrarily at π/20 in the interests of numerical stability. The scheme given
Table 1 is not unique; other choices of expressions are possible, some of which are
as good. However, we doubt that fewer expressions could be employed without
endangering numerical stability.

Appendix E: Range of the Mixing Angle Φ

The final step in the calculation of the mixing angles is the determination of
the range of the angle Φ. The standard root of equation (15) lies in the range
[−π/2, π/2]. Whether or not this is the correct solution can be determined by
examining ratios of eigenvector projections. For example, inspection of equation
(11) shows that, if −π/2 < Φ < π/2, then the ratio a0

3/a
0
1 is negative. An

expression for this ratio can be obtained from equations (25); if it is found to
be positive, then π must be added to Φ. Unfortunately, as in the computation
of φ, complications arise in various special cases. For example, the ratio a0

3/a
0
1
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cannot contain the desired information if Θ equals either zero or π/2. Also, the
rules in Table 4 must be followed in selecting the pair of equations (25) to use in
obtaining the expression for the selected ratio. This must be done separately for
various cases. We verify below that, when all of the special cases are examined,
Φ always lies in the range −π/2 ≤ Φ ≤ π/2 as stated in equation (13).

The Mixing Angle Θ neither Zero nor π/2

In this case, state |a0〉 has non zero projections on at least two of the
unperturbed states. The cases of Φ = ±π/2 require no further examination, so
it is convenient to consider the ratio a0

3/a
0
1. Equation (11) gives

a0
3/a

0
1 = − cos Φ tan Θ . (28)

An independent expression for a0
3/a

0
1 can be obtained from equations (25),

observing the constraints in Table 4. Since Θ is neither zero nor π/2, Ωp 6= 0,
leading to the result

− π/2 ≤ Φ ≤ π/2 if

{
4∆3(∆3 −∆p) < Ω2

p if ω0 = 2∆3

(ω0 − 2∆p)(ω0 − 2∆3) < Ω2
p otherwise .

(29)

Manipulation of the eigenvalue equation shows that these conditions are always
fulfilled when Ωp 6= 0.

The Mixing Angle Θ = π/2

Equation (28) is not useful in this case; information on the quadrant of Φ
must be obtained from another dressed state. The second and third lines of
equation (11) reduce to

a+
2 /a

+
1 = − cos Φ cotφ, a−2 /a

−
1 = − cos Φ tanφ . (30)

Using Table 4 to select the appropriate pairs from equations (25), we conclude
that

−π/2 ≤ Φ ≤ π/2 if

{
ω+ ≥ 0, if ∆p ≥ 0

ω− < 0, otherwise.
(31)

It is clear from the behaviour of the eigenvalues that the conditions of equation
(31) are always fulfilled.

The Mixing Angle Θ = 0

Equation (28) is again not useful. Here, |a0〉 equals |1〉 and |a±〉 are independent
of |1〉. Thus our phase convention provides no information on the quadrant of
Φ. We treat this case by examining the development of the dressed states under
a STIRAP pulse sequence, requiring that, as the states |a±〉 gain projections on
|1〉, no sudden change in the phases of a±2 and a±3 should occur. In all situations,
this rule requires Φ to lie in the range [−π/2, π/2] when Θ = 0.
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