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Abstract

The Townsend–Huxley transverse diffusion experiment has been modelled using kinetic theory,
with the aim of explaining the successes and shortcomings of some current ratio formulae that
are based on hydrodynamic theory. These are shown to be essentially identical in form, apart
from the estimated magnitudes of the boundary layer corrections to the second and fourth
transverse position moments of the current density. The main reason for the shortcomings
is shown to be the inability of hydrodynamic theory to describe the relaxation of the input
electron energy distribution towards the steady state free space form. As a byproduct of the
studies, exact eigensolutions have been found for the associated ‘infinite slab’ problem, using
the constant collision frequency model with the two-term approximation.

1. Introduction

The experimental study of the behaviour of electron swarms in gases and
electrostatic fields has been one of the most important sources of accurate
information about low energy electron–molecule collision processes. Typically,
transport coefficients such as drift velocities, diffusion coefficients and reaction
rates have first been measured as functions of the electric field to density ratio
E/n0 and the gas temperature, and kinetic theory has subsequently been used
to relate the behaviour of these ‘macroscopic quantities’ with the variation of
collision cross sections with the collision energy. The transport coefficients are
quantities describing the evolution of the swarm in the absence of physical
boundaries, and the experiments should therefore ideally be performed in a ‘free
space environment’. The real experimental arrangements do, however, invariably
have material boundaries, and this to some extent influences the experimental
results and complicates their interpretation.

One may try to minimise the influence of the boundaries by using apparatus
dimensions large compared with the expected extent of the boundary layers. At
high E/n0 values, this is however often not possible, because of the onset of
electrical breakdown. Alternatively, one may use a variable length apparatus, and
attempt to subtract out the end effects by differencing, or measure at a series of
densities n0 and attempt an extrapolation of the results to conditions n0 →∞.
A more convenient way of approach would be to apply some theoretically or
empirically based correction formula, to allow precise values for the transport
coefficients to be obtained from single measurements.
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In the present paper, we present a theoretical study of boundary effects
in the Townsend–Huxley transverse diffusion experiment, which is designed to
measure accurately the ratio DT /µ between the transverse diffusion coefficient
DT and the mobility µ. The aim of the study has essentially been to explain
why a semi-empirical current ratio formula derived by Huxley (see Huxley and
Crompton 1974) has been more successful in the analysis of experimental data
than a formula derived by Lowke (1971) from a careful solution of the anisotropic
diffusion equation. Parts of the work have been presented briefly at two Swarm
Seminars (England and Skullerud 1991, 1993).

We will first discuss the experiment and the current ratio formulae, and show
how the latter for practical purposes can all be written in the same form but with
different numerical coefficients, and thus be easily compared. We then show how
to formulate a suitable kinetic theory description of the experiment, and further
present two complementary approaches to the solution of the kinetic equations,
one applicable in the weak field regime and the other in the strong field regime.
Only elastic ‘quasi-Lorentz gas models’ will be considered.

The work draws heavily on the vast literature on the associated one-dimensional
slab problem, for the quasi-Lorentz gas problem (e.g. Lowke et al. 1977; Braglia
and Lowke 1979; Robson 1981; Braglia 1982), and also for the pure Lorentz gas
problem (e.g. Davison and Sykes 1957; Williams 1971; Cole et al. 1984), the
steady state Townsend experiment (e.g. Sugawara et al. 1992; Robson 1995),
and the, in many ways rather similar, quasi-Rayleigh gas problem (e.g. Burscha
and Titulaer 1982; Beals and Protopopescu 1983; Naqvi et al. 1984). We have
abstained from trying to trace the origin of all ideas used, and apologise to those
who may find references lacking.

2. Idealised Townsend–Huxley Experiment

(2a) Experimental Conditions

The experimental setup is shown schematically in Fig. 1. For a more detailed
description, see e.g. Huxley and Crompton (1974). A steady stream of electrons
passes through a small circular aperture in the cathode and into a plane-parallel
drift gap. Drift and diffusion subsequently bring the electrons to a collecting
anode, which is divided into a central disk and an annular electrode—ideally
stretching out to infinity. The currents Ii and Io to the inner and outer parts
of the anode are measured, and from their ratio one can find or estimate the
value of DT /µ.

Ideally, the entrance aperture should be vanishingly small—in practice not
much larger than a mean free path—to allow the source to be approximated with
a delta-function. Also, the electric field should be the same on the two sides of
the entrance aperture, ensuring a ‘properly conditioned’ energy distribution for
the electrons on entry into the drift gap. Finally, one would prefer both anode
and cathode to be perfect absorbers, with electron reflection coefficient ρ = 0.

(2b) Current Ratio Formulae

We take the basic measured quantity to be the ratio between the current to
the outer electrode and the total current,

R = Io/(Ii + Io) . (1)
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The length of the drift gap is h, the radius of the central disk is b, and the gap
voltage Eh = U .

Fig. 1. The Townsend-Huxley experimental configuration, schematically.

An approximate expression for R is found by using Einstein’s formula for
the mean square radial displacement in a time t, replacing t by the mean drift
time h/vdr = h/µE, and assuming the current density Jz at the anode to be a
Gaussian random process:

〈r2〉J ≡
∫
r2Jzdr2

/ ∫
Jzdr2 = 4DT t , (2)

t→ t = h/µE , (3)

Jz(h) ∝ exp(−r2/〈r2〉J) . (4)

This gives a ratio formula

R =
∫ ∞
b

Jzd(r2)
/ ∫ ∞

0

Jzd(r2) = exp(−b2/〈r2〉J) , (5)

〈r2〉J = 4DTh/µE = 4h2(DT /µ)/U , (6)

which we rewrite as

R = exp[− 1
2 (b/h)2/δT ] , (7)

δT = 2(DT /µ)/U . (8)
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In a typical experiment, b/h will be of order 0 ·1 and R in the range 0 ·2–0 ·8
(Elford et al. 1992), and δT hence of order 0 ·1–1%.

More elaborate formulae for the ratio R have been derived by determining Jz
from the diffusion equation,

∇ · ~J = ∇ · (n~vdr −
⇒
D ·∇n) = 0 , (9)

~vdr = − vdrÊ ≡ vdr ẑ , (10)

⇒
D = DLÊÊ +DT (

⇒
1 −ÊÊ) . (11)

Thus, assuming the density to be zero on the electrode surfaces (except in the
entrance aperture), Lowke (1971) found an expression which may be written as

R = δ−2
L (t−3 + t−2 − δ−1

L t−1) exp(−t+ δ−1
L ) , (12)

δL = 2(DL/µ)/U , (13)

t = [1 + (DL/DT )(b/h)2] 1
2 /δL . (14)

Huxley (see Huxley and Crompton 1974) some years earlier had derived the
expression (assuming isotropic diffusion)

R = t−1 exp(−t+ δ−1
T ) , (15)

t = [1 + (b/h)2] 1
2 /δT . (16)

This derivation involved an error and it was therefore somewhat surprising that
the Huxley formula was found to be, in most cases, an excellent approximation,
yielding the same experimental DT /µ values over a large range of pressures p,
while the Lowke formula gives pressure-dependent values (Elford et al. 1992).
Extrapolation of the values obtained from the two ratio formulae towards p−1 → 0
gives, however, the same value within the experimental uncertainties.

(2c) Current Ratio Formulae and Transverse Position Moments

The various current ratio formulae (see Elford et al. 1992 for an extensive
survey) apparently have very different forms. However, we know that they all in
practice give quite similar results, and that the current distribution at the anode
is rather close to the Gaussian of equation (4).

Slight and cylindrically symmetrical deviations from a Gaussian may be
expressed in terms of a Laguerre polynomial series which, with the use of
the correct variance, starts with the second order polynomial. A convenient
approximate expression for the current density should thus be

Jz ∝ e−y[1 + c2L2(y) + . . .] , (17)

y = r2/〈r2〉J . (18)
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Since higher order terms are damped out quickly by diffusion, one would expect
a two-term expansion to be sufficiently accurate, giving rise to a current ratio
formula

R = e−y[1− c2y(2− y)] , (19)

c2 = 1
2 (〈y2〉 − 2) . (20)

In this approximation, R is determined by two parameters only, the variance
〈r2〉J and the excess γ4 = 2(〈r4〉J/〈r2〉2J − 2) = 4c2. The Huxley and Lowke
formulae give

Huxley : 〈r2〉J = 2h2δT ; c2 = 1
2δT .

Lowke : 〈r2〉J = 2h2δT (1− δL); c2 = 1
2δL(1− δ2L)/(1− δL)2 . (21)

A numerical comparison between the exact Lowke and Huxley formulae and
their respective two-parameter approximations reveals no noticeable differences in
the experimentally interesting range of parameters. The most obvious difference
between the Lowke and Huxley formulae is seen in the correction to the primitive
expression for the variance (equation 5); the Huxley formula gives zero correction.

3. Kinetic Theory: Formulation of the Problem

(3a) Spatial Moments of the Boltzmann Equation

In order to make comparisons with the Lowke and Huxley expressions, we
want to find the moments 〈r2〉J and 〈r4〉J of the current density at the anode,
with electrons starting at the cathode in the position (r = 0, z = 0), and without
assuming hydrodynamic behaviour. It will, however, be more convenient to
formulate the problem in Cartesian coordinates than in cylindrical coordinates, and
calculate the moments 〈x2〉J and 〈x4〉J instead. Assuming cylindrical symmetry for
the input distribution, we then have 〈r2〉J = 2〈x2〉J and 〈r4〉J = 2(〈x4〉J + 〈x2〉2J).

The transverse moments of the current density are obtained from the stationary
distribution function f(~r,~v) as

〈xn〉J/n! =
{ ∫

(xn/n!)vzf(~r,~v)d~vdxdy
/ ∫

vzf(~r,~v)dxdy
}
z=h

(22)

≡
{ ∫

vzf
[n](z,~v)d~v

/ ∫
vzf

[0](z,~v)d~v
}
z=h

, (23)

f [k](z,~v) = (1/k!)
∫
xkf(~r,~v)dxdy . (24)

Equations for the distribution moments f [k] are found by multiplication of the
stationary Boltzmann equation

(~v · ∇+ ~a · ∇~v + J)f(~r,~v) = 0 , (25)



558 J. P. England and H. R. Skullerud

where ~a = −e ~E/m is the acceleration of the electrons in the electrostatic field
and J the collision operator, with xk/k! and subsequent integration over dxdy.
This yields a hierarchy of equations

(vz∂z + a∂vz + J)f [k](z,~v) = vxf
[k−1](z,~v) , (26)

which can be solved for successively larger k-values, starting with the homogeneous
k = 0 equation.

(3b) Spherical Harmonics Expansion

The collision operator J is spherically symmetric, and therefore has the
spherical harmonics Ylm as its directional eigenfunctions. To take advantage of
this property, the distribution moments f [k] are conveniently expanded as

f [k](z,~v) = Σlmaxl=0 Σlm=0f
[k,m]
l (z, v)P [m]

l (vz/v) cos(mϕ) . (27)

Inserting this expansion into the f [k]-equation and projecting out the (l,m)
component yields a system of equations

l +m+ 1
2l + 3

{
v(∂z + 2a∂v2) + (l + 2)

a

v

}
f

[k,m]
l+1

+
l −m
2l − 1

{
v(∂z + 2a∂v2)− (l − 1)

a

v

}
f

[k,m]
l−1 + Jlf

[k,m]
l = R

[k,m]

l , (28)

R
[k,m]

l = 1
2v

{
(l +m+ 1)(l +m+ 2)

2l + 3
f

[k−1,m+1]
l+1 − (l −m− 1)(l −m)

2l − 1
f

[k−1,m+1]
l−1

}
+ 1

2v

{
1

2l + 1
f

[k−1,m−1]
l−1 − 1

2l + 3
f

[k−1,m−1]
l+1

}
. (29)

In the present study, we restrict our attention to the quasi-Lorentz gas model,
and the collision terms can then be written (see e.g. Kumar et al. 1980)

J0f
[k,0]
0 = − 2

m

m0

v−1∂v2

(
v3ν1

[
1 + 2

kBT

m
∂v2

]
f

[k,0]
0

)
, (30)

Jl>0f
[k,m]
l = νlf

[k,m]
l , (31)

νl = n0vσl = n0v

∫
(1− Pl(cosχ))dσ , (32)

where n0 is the number density of the neutral gas, χ the c.m. deflection angle
and dσ the differential cross section.

The moments 〈x2〉J and 〈x4〉J are found from the functions f [2,0]
1 and f

[4,0]
1 ,

respectively.

(3c) Boundary Conditions

In an actual experiment, some of the electrons impinging on the electrodes
will be absorbed, and the rest will be reflected or re-emitted with some usually
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unknown velocity distribution. In the present calculations, we will adopt a
specular reflection model with an energy- and direction-independent reflection
coefficient ρ, i.e. a part ρ of the electrons is assumed to be reflected elastically
with velocity vector (vx, vy, vz)→ (vx, vy,−vz). Our primary interest will be the
case ρ = 0.

The input distribution is assumed given, and concentrated in the origin
(x = y = z = 0), i.e.

f
[k]
in (z = 0, ~v) vz>0= fin(~v) δ0k . (33)

This gives as exact boundary conditions

f [k](z = 0, ~v) vz>0= ρf [k](z = 0,−~v) + fin(~v) δ0k , (34)

f [k](z = h,~v) vz<0= ρf [k](z = h,−~v) . (35)

In the ideal Townsend–Huxley experiment, we would have fin(~v) ∝ f(h,~v)vz>0.
In a truncated spherical harmonics expansion, these conditions can only be

fulfilled approximately, as discussed in detail e.g. by Davison and Sykes (1957).
The conceptually simplest would be to demand the conditions fulfilled in a
discrete number of directions, corresponding to the order lmax of the spherical
harmonics expansion, in such a way that the contributions from the first neglected
component vanish—the so-called Mark condition. An alternative is to demand
integrals over the boundary conditions to be fulfilled, e.g.∫

Ylm(v̂){Boundary conditions}dv̂ , (36)

using either only even or only odd l-values—so-called Marshak boundary conditions.

(3d) Length Scales and Admissible Approximations

There are a number of different length scales in electron transport problems,
and if they differ sufficiently, the problems may be simplified by using different
approximations on the different scales. Anisotropies relax typically on the scale
of a mean free path for momentum transfer, while energies, assuming elastic
collisions, relax on a scale of order (m0/m) 1

2 larger.
The diffusion equation—with the x- and y-directions integrated out—has a

general solution for the one-dimensional density N(z) of the form

N(z) = a+ b exp[(vdr/DL)z] , (37)

which indicates that the presence of the anode will have an influence over a
hydrodynamic length scale of order DL/vdr. Assuming the approximate validity of
the Nernst–Townsend relation, one will have DL/vdr ∼ kBTe/eE, where Te is the
kinetic electron temperature. Finally, in thermal equilibrium the electron density
should vary with the potential energy as exp(eU/kBT ) = exp(−eEz/kBT ), with
an associated thermodynamic length scale kBT/eE, T being the gas temperature.

The relevant length scales are thus
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L1 ∼ 1/n0σ1 Relaxation of anisotropies

Le ∼ (m0/m) 1
2 L1 Relaxation of energies

LB ∼ kBT/eE Thermodynamic (Boltzmann factor)

LD ∼ kBTe/eE Hydrodynamic (diffusion).

For sufficiently weak fields (E → 0, Te → T ), this yields three well separated
length scales,

L1 ¿ Le ¿ LB = LD ,

and three corresponding boundary layer regions; a thin region with large anisotropies
and essentially constant energy distribution; a region of medium thickness with
small anisotropies but varying energy distribution; and a hydrodynamic layer with
nearly isotropic velocity distribution and nearly constant energy distribution.

For the strong field case (Te À T and kBTe ∼ eELe), we find however only
two well separated length scales,

L1 ¿ Le ∼ LD ,

while LB shrinks towards zero. The merging of the energy relaxation and
diffusion length scales means that there is no separate boundary region left where
hydrodynamic theory gives an adequate description.

In the ‘energy relaxation region’, a two-term spherical harmonics expansion
of the distribution function should be a sufficiently accurate description, while
in the ‘anisotropy relaxation region’, a pure Lorentz gas description should be a
good approximation.

4. Separation of Variables: Eigenfunction Expansion Methods

(4a) Velocity Moment Approach

The velocity moment method, in which the Boltzmann equation is transformed
to a set of coupled velocity moment equations, has been very successfully used
to find ‘free space’ electron transport properties, as outlined e.g. by Robson and
Ness (1986). It would be calculationally very convenient if this method could be
used also for the present type of problems.

The procedure consists in first choosing a suitable velocity space basis set {ϕj(~v)}
and a complementary set of moment functions {ψi(~v)}, inserting expansions

f [k](z,~v) = ΣNj=1Z
[k]
j (z)ϕj(~v) (38)

in the kinetic equations, and forming equations for the expansion coefficients
Z

[k]
j (z) by multiplying with the moment functions and integrating over d~v. This

yields a system of equations of the form

B(d/dz)Z [k] = MZ [k] +D[k](z) , (39)
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where the matrix elements are

Bij =
∫
vzψi(~v)ϕj(~v)d~v , (40)

Mij =
∫
ψi(~v){a∂vz + J}ϕj(~v)d~v , (41)

D
[k]
i =

∫
vxψi(~v)f [k−1](z,~v)d~v . (42)

The general solution of the homogeneous equation (k = 0) may be written in
form

Z [0](z) = ΣNn=0c
[0]
n φn exp(λnz) , (43)

where (λn, φn) are the eigenvalues and eigenvectors of the generalised eigenproblem

Bφ = λMφ . (44)

The solutions of the inhomogenous equations (k > 0) are obtained by adding
convolution integrals to combinations of eigensolutions.

Numerical Method: Burnett Function Expansion . For mathematical convenience,
we use as basis set the so-called Burnett functions (see e.g. Kumar et al. 1980),

ϕj(~v)→ ϕ(rl)
m (~v/v0) , (45)

ϕ(rl)
m (~c) ∝ clYlm(ĉ)L

(l+ 1
2 )

r (c2)e−c
2
, (46)

v0 ∼ 〈v2〉 12 , (47)

where L
(l+ 1

2 )
r is an associated Laguerre polynomial, and as moment set the

functions ψj = exp(c2)ϕj .
Grouping the matrix elements in blocks ordered after the l-indices, M becomes

block tridiagonal, while in B only the blocks (l, l ± 1) are different from zero.
For even lmax values, B is singular, and the eigenproblem has no solution. The
basis set expansion thus has to be truncated at an odd value of lmax.

The eigenproblem was solved used the so-called QZ-algorithm (see e.g. Golub
and van Loan 1983). Three scattering models were used, all assuming isotropic
scattering (νl>1 = ν1); a constant collision frequency model, a constant cross
section model, and an electron–helium model with cross sections σ1 taken from
Huxley and Crompton (1974). Even or odd Marshak type boundary conditions∫

ψ(rl)
m {Boundary conditions}d~v

were then applied to find the expansion coefficients cn. Unphysical solutions are
avoided by using proper ‘half-space expansions’ (see e.g. Davison and Sykes 1957),
i.e. only eigensolutions with λn ≤ 0 are used at the cathode and correspondingly
only those with λn ≥ 0 at the anode.
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Results—and Problems. The method described above worked reasonably well
in the case of weak electric fields, i.e. when the electron mean energy was less than
about 20% above the thermal energy. The eigenvalues λ fell into three different
groups; the steady state value λ = 0 ·0 and the thermodynamic value λ = eE/kBT ;
values of order 1/L1 ∼ 1/n0σ1; and values of order 1/Le ∼ (m/m0)

1
2 /L1. In a

two-term expansion (lmax = 1), the group λ ∼ 1/L1 disappeared, as expected.
A problem arose with the constant cross section model beyond the two-term

approximation. The expansions in this case failed to converge, essentially because
the large λ ∼ 1/L1 eigenvalues became degenerate—reflecting the lack of variation
of the length scale with energy. The problem was overcome by using a modified
two-term expansion, where ‘one-energy group’ results (see e.g. Williams 1971)
were used to relate the fl>1 to f1 at the electrode. Comparison with Monte Carlo
simulations—which we have routinely run for testing—showed this to introduce
negligible error. The trick can be used also for other scattering models, and
for most practical purposes one can thus reduce the problems to ‘two-term
calculations with one-energy-group anisotropy corrections’.

When the electric field was increased, the method ceased to give useful results
in the anode region, i.e. when λn > 0. The first indication of trouble was that
the positive eigenvalues changed from being real to occur in complex conjugate
pairs. This was accompanied by basis size dependent oscillations in the calculated
density and mean energy profiles. Further increase of the field gave ‘number out
of range’ type results.

In the cathode region, no such problems occurred. However, since the anode
problem could not be solved, it also became impossible to determine the proper
input distribution.

To check the current ratio formulae for the Townsend–Huxley experiment, we
calculated the variance 〈r2〉J at the anode, using the constant mean free time
model and the helium model, at fields low enough to avoid complex eigenvalues.
The hydrodynamic electron temperature Te could then typically be increased to
order 10% above the gas temperature. The relative corrections to the variance
were found to agree with the prediction of the Lowke formula (equation 12)
within 1 ·2% for the helium model∗, and within from 0 ·2% at vanishing field to
12% at the highest field for the constant mean free time model.

The Lowke formula thus gives an excellent approximation to the correction to
the variance 〈x2〉J at weak fields (〈x4〉J was not calculated).

(4b) Constant Mean Free Time Model: Exact Two-term Eigensolutions

The velocity moment method just described has as its key ingredient the
solution of a generalised eigenproblem related to the operator v−1

z (a∂vz + J).
When the method converges, the calculated eigenvalues should be expected to
approach the exact eigenvalues of this operator, and the eigenfunctions to approach
the exact eigenfunctions. The problems associated with the method—the lack of
convergence for the positive eigenvalue part at intermediate and strong fields—may
henceforth reflect problems connected with the forms of the exact spectra and

∗ Already at these low E/N values, the difference between longitudinal and transverse diffusion
is substantial, and it is necessary to use the quantity δL and not δT in the correction formula
to get this degree of agreement.
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eigenfunctions. The problems are related only to the energy relaxation modes,
and can therefore be studied in a two-term approximation.

It turns out that for the constant collision frequency model, the eigenfunctions
and the spectrum can be found analytically, as will be outlined below.

The Eigenproblem and Its Structure. The equations to be solved are the direct
eigenequation

(a∂vz + J)ϕ = − λvzϕ , (48)

ϕ = ϕ0(v) + (vz/v)ϕ1(v) , (49)

and the adjoint equation

(−a∂vz + J̃)ψ = − λvzψ , (50)

ψ = ψ0(v) + (vz/v)ψ1(v) , (51)

where J̃ is the adjoint collision operator, defined by the relation
∫
ψ(Jϕ)d~v =∫

ϕ(J̃ψ)d~v.
The function sets ϕ and ψ are biorthogonal, with orthogonality relation

(λi − λj)
∫
vzϕiψjd~v = 0 . (52)

In an expansion of some function f(~v) in eigenfunctions ϕi, the expansion
coefficients can be found using

∫
d~vvzψi . . . as a projection operator—if the

expansion exists.
Letting ∂z → λ in the two-term kinetic equations, and assuming ν1(v)→ ν =

const., we obtain

λvϕ1 + a

(
2
v

+
d
dv

)
ϕ1 − 3

m

m0

νv−2 d
dv

(v3ϕ0)− 3ν
kBT

m0

v−2 d
dv

(
v2 d

dv
ϕ0

)
= 0 , (53)

λvψ1 − a
(

2
v

+
d
dv

)
ψ1 + 3

m

m0

νv−2 d
dv

(v3ψ0)− 3ν
kBT

m0

v−2 d
dv

(
v2 d

dv
ψ0

)
= 0 , (54)

λvϕ0 + a
d
dv
ϕ0 + νϕ1 = 0 , (55)

λvψ0 − a
d
dv
ψ0 + νψ1 = 0 . (56)

Eliminating ϕ1 and ψ1, and introducing new quantities

v2
W = 3kBT/m+ (m0/m)(a/ν)2 ≡ v2

T + v2
E , x = 3

2v
2/v2

W ,

Λ2 = (m0/m)(λ/ν)2v2
W , ε = vE/vW , (57)

these equations are transformed to
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xd2ϕ0/dx2 + [ 32 + (1 + 2
3εΛ)x]dϕ0/dx+ [ 32 + εΛ/2 + (Λ2/9)x]ϕ0 = 0 , (58)

xd2ψ0/dx2 + [ 32 − (1 + 2
3εΛ)x]dψ0/dx+ [−εΛ/2 + (Λ2/9)x]ψ0 = 0 . (59)

It is easily seen from this that ϕ0 and ψ0 are related by

ψ0 ∝ ϕ0 exp[(1 + 2
3εΛ)x] . (60)

The equations can be transformed to a standard form by methods as described
e.g. by Zwillinger (1989). We first insert for ϕ0 an expression

ϕ0(x) = g(x)e−αx (61)

to get an equation for g(x)

xd2g/dx2 + [ 32 + (1 + 2
3εΛ− 2α)x]dg/dx

+[ 32 (1− α) + εΛ/2 + {α2 − α(1 + 2
3εΛ) + (Λ2/9)}x]g = 0 . (62)

By choosing α to fulfill the condition

α2 − α(1 + 2
3εΛ) + Λ2/9 = 0 (63)

and introducing a new variable

z = (2α− 1− 2
3εΛ)x , (64)

this is transformed to a Laguerre equation

zd2g/dz2 + [ 32 − z]dg/dz + ng = 0 , (65)

n = ( 3
4 ){−1 + 1/(2α− 1− 2

3εΛ)} (= 0, 1, 2 . . .) , (66)

with solution g ∝ L(1/2)
n (z). From this we find the eigenvalues and eigenfunctions

to be

Λ(±)
n = 3

2

ε

1− ε2
(

1±
[
1 +

1− ε2

ε2
n(n+ 3

2 )
(n+ 3

4 )2

] 1
2
)
, (67)

ϕ
(n)
0 = L(1/2)

n

(
3

3 + 4n
x

)
exp

[
−

(
3 + 2n
3 + 4n

+ εΛn/3
)
x

]
, (68)

xϕ
(n)
1 = − (6m/m0)

1
2 [Λxϕ0/3 + εxdϕ0/dx] . (69)

The eigenfunctions ϕ(n)
0 are quite similar in appearance to the so-called Pagani

eigenfunctions found for the corresponding Rayleigh gas problem (see e.g. Burscha
and Titulaer 1982).
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Eigenfunctions, Spectra and Halfspace Completeness. At weak fields, ε→ 0, the
‘forwards and backwards propagating eigenfunctions’ (corresponding to negative
and positive eigenvalues, respectively) transform into each other on the operation
z → −z, with the eigenvalues Λ and the factor in the exponent of the eigenfunction
E(ϕ) approaching

Λ±n
ε→0→ ± 3

2 [n(n+ 3
2 )/(n+ 3

4 )2] 1
2 = ±[0, 1 ·3535, 1 ·4431, . . . , 1 ·50) , (70)

E(ϕ(n)) ε→0→ − 3 + 2n
3 + 4n

x = −[1, 0 ·7143, 0 ·6364, . . . , 0 ·50)x , (71)

with x→ mv2/2kBT .
The exponents are all of the order of the thermal Maxwellian values, and any

essentially thermal distribution f0 + (vz/v)f1(v) ought to be expandable in either
of the two sets of eigenfunctions, thus making it possible to satisfy the two-term
boundary conditions.

At strong fields, ε → 1, the situation is drastically different. The ‘cathode
eigensolutions’ have eigenvalues and exponents corresponding to the energy
relaxation length scale Le and mean steady state energies mv2

W /2,

Λ−n
ε→1→ − 3

4n(n+ 3
2 )/(n+ 3

4 )2 = −[0, 0 ·6122, 0 ·6942, . . . , 0 ·75) , (72)

E(ϕ(n)
− ) ε→1→ − (3 + 2n)(3 + 6n)

(3 + 4n)2
x = −[1, 0 ·9184, 0 ·8678, . . . , 0 ·75)x , (73)

while the ‘anode eigensolutions’ are essentially thermal,

Λ+
n
ε→1→ 3v2

E/v
2
T →∞ , (74)

λ+
n
ε→1→ (m/m0)(ν2/a)Λ+

n → eE/kBT , (75)

E(ϕ(n)
+ ) ε→1→ −

(
3 + 2n
3 + 4n

+ Λ+
n /3

)
x→ −mv2/2kBT . (76)

To satisfy the anode boundary condition—assuming for the moment a perfectly
absorbing electrode—one has to subtract the negative halfspace part of the
‘hydrodynamic’ λ = 0 mode ϕ−0 from the distribution function, i.e. one has to
perform the expansion

exp(−x) vz/v<0
= Σc+nϕ

(n)
+ , (77)

to get the full anode space solution

f(z,~v) ∝ e−x − Σc+nϕ
(n)
+ e−λ

+
n (h−z) . (78)

It is immediately clear that a function exp(−x) cannot be expanded in polynomials
around another exponential exp(−x/x0), when x0 ∼ T/Te ¿ 1. Thus, the ‘anode
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eigensolutions’ do not form a complete set in the relevant function space at strong
fields.

(4c) Summary of Findings

At weak fields, i.e. when the free space steady state kinetic energy of the
electrons is not more then 10–20% above the thermal energy, the velocity moment
approach works nicely. Approximate eigenvalues and eigenfunctions are found,
Marshak type boundary conditions are easily fulfilled, and the position moment
〈r2〉J(z = h) can be calculated accurately—the calculations giving results in close
agreement with the prediction of Lowke’s current ratio formula.

By using simple one-energy-group results for correction, one can truncate the
spherical harmonics expansion of the distribution at lmax = 1, without significant
error.

For the constant collision frequency model, exact eigenfunctions have been
found. An attempt to use these in further calculations was however not very
successful—the expansions of the anode and cathode distribution functions in
exact eigenfunctions converge extremely slowly. This was as expected, however,
from results for the rather similar quasi-Rayleigh gas problem (Burscha and
Titulaer 1982; Naqvi et al. 1984).

The velocity moment method becomes unsuitable at stronger fields, for the
anode problem. A physical explanation of this failure can be given as follows.
The exact eigenfunctions, as well as the approximate eigenfunctions found in
the velocity moment approach, reflect how a ‘free space system’ by itself can
generate distribution modes ϕ(z,~v). There are two sources of energy available,
the electric field and the thermal motions of the gas molecules. The electric field
can furnish energy only to electrons drifting in the direction of the electric force,
i.e. in the positive z-direction—and therefore can only contribute to the mean
energy for the λ ≤ 0 eigenfunctions. Modes propagating and decaying in the
direction against the field can only aquire energy from the thermal motions—and
the λ > 0 eigenfunctions hence all have mean energies of order the thermal
energy, and a spatial behaviour approximately given by the Boltzmann factor
exp(eEz/kBT ).

To satisfy the anode boundary condition, the negative halfspace part of the
distribution function must be expanded in backwards propagating eigenfunctions.
However, when the electron kinetic temperature Te is not close to the gas
temperature T , this expansion diverges—and divergence in fact occurs already
at (Te/T − 1) ∼ 0 ·25.

The difficulties in modelling the anode region at strong fields arise from a
physically unsound separation of variables f → ΣZ(z)W (v2)Ylm(v̂). This is most
easily seen by considering a cold gas model, where the electrons will never gain
energy in a collision: The anode problem can be viewed as a problem of describing
the ‘missing electrons’—those that would have travelled backwards from the
anode if it were not there. Between collisions, the ‘missing electrons’ will move
on characteristics (mv2/2− eEz) = constant, while the collisions will take them
from one of these characteristics to another one with lower total energy. They
can thus not move backwards from the anode without losing kinetic energy. The
separation of variables used in the foregoing does, however, implicitly assume
that this is possible.
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The anode problem—and preferrably the whole slab problem—should, in view
of this, be reformulated in coordinates which reflect the coupling between kinetic
and potential energy. The anode and cathode boundaries would then, however,
no longer coincide with any coordinate axes, and this would introduce some new
complications. These should however not be as fatal as those resulting from the
present approach.

5. The Cold Gas Model: A Finite Difference Approach

The correction terms in the current ratio formula (equation 19) are of order
(D/µ)/U , and will only be of importance when the mean electron energy
m〈v2〉/2 ∼ eD/µ is not small compared to eU . In a real experiment, one will
always have eU À kBT , and the correction terms are hence only of practical
importance at strong fields, i.e. when m〈v2〉 À kBT . To investigate this case,
we will model the Townsend–Huxley experiment numerically in the cold gas
limit kBT → 0, using a finite difference approach. The thermal motions may be
included afterwards as perturbation terms, if felt necessary.

(5a) Kinetic Equations and Boundary Conditions

We want to find the second and the fourth transverse position moment at the
anode. In the spherical harmonics representation of the f [k]s, these are given by

( 1
2 )〈x2〉J =

∫
vf

[2]
1 d~v

/ ∫
vf

[0]
1 d~v , (79)

( 1
4 !)〈x4〉J =

∫
vf

[4]
1 d~v

/ ∫
vf

[0]
1 d~v . (80)

In a two-term approximation, one will only have to solve equations for a few f
[k]
l

to find these moments—and two of these equations are trivial (see equations 28
and 29);

f [0] = f
[0]
0 + (vz/v)f

[0]
1 , (81)

f [1] = (vx/v)f
[1]
1 = (vx/v)(v/ν)f

[0]
0 , (82)

f [2] = f
[2]
0 + (vz/v)f

[2]
1 , (83)

f [3] = (vx/v)f
[3]
1 = (vx/v)(v/ν)f

[2]
0 , (84)

f [4] = f
[4]
0 + (vz/v)f

[4]
1 . (85)

Further, the f [k]
1 for even k are obtained directly from the corresponding f0;

f
[k]
1 = −(v/ν)(∂z + 2a∂v2)f

[k]
0 (k = 0, 2, 4) , (86)

and can be eliminated from the kinetic equations, to give
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(∂z + 2a∂v2)(v3/ν)(∂z + 2a∂v2)f
[k]
0

+6
m

m0

∂v2

(
v3ν

[
1 + 2

kBT

m
∂v2

]
f

[k]
0

)
=

{
(v3/ν)f [k−2]

0 k = 2,4

0 k = 0
. (87)

We use Mark boundary conditions, i.e. we demand equations (34) and (35) to
be fulfilled at the zeros of P2(vz/v), that is for vz/v = ±1/

√
3. This will result

in an error of order 0 ·2 mean free paths in the so-called Milne extrapolation
length (see e.g. Williams 1971), which is irrelevant in the present context. The
boundary conditions can then be written, after eliminating the f1,{

v(∂z + 2a∂v2) +
1− ρ
1 + ρ

ν
√

3
}
f

[k]
0 = 0 anode (88){

v(∂z + 2a∂v2)−
1− ρ
1 + ρ

ν
√

3
}
f

[k]
0 = − 1

1 + ρ
ν
√

3 fin δ0k cathode. (89)

To make the equations more amenable for numerical computation, we introduce a
suitable hydrodynamic length scale LD and corresponding dimensionless quantities:

Hydrodynamic length scale : LD = DT /vdr

Microscopic length unit : λ0 = (3m/m0)
1
2LD

Cross section unit : σ0 = 1/n0λ0

Reduced cross section : s = σ/σ0

Reduced temperature : Θ = (kBT/m)/(aLD)

= (kBT )/(eDT /µ)

Reduced length : ζ = z/LD = (3m/m0)
1
2 z/λ0

Reduced energy : η = (3m/m0)
1
2 v2/2aλ0

= (mv2/2)/(eDT /µ)

to get the kinetic equations in the form

(∂ζ + ∂η)(η/s)(∂ζ + ∂η)f
[k]
0 + 2∂η(η2sf

[k]
0 )

= − 2Θ∂η(η2∂ηf
[k]
0 ) + L2

D (η/s) f [k−2]
0 . (90)

For the cold gas case, Θ = 0, these are parabolic equations, which are readily
changed into canonical form by the coordinate transformations

p = η + ζ , η = (p+ q)/2 ,

q = η − ζ , ζ = (p− q)/2 , (91)
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which give

∂q(η2sf
[k]
0 ) = ∂p(η2sf

[k]
0 ) + 2∂p[(η/s)∂p]f

[k]
0 − 1

2L
2
D (η/s)f [k−2]

0 +O(Θ) . (92)

We note that the characteristics q = constant are curves of constant total
energy—and that the transformation to the canonical form thus has forced on us
coordinates taking proper account of the coupling between kinetic and potential
energy.

The transformed anode and cathode boundary conditions are

1− ρ
1 + ρ

f
[k]
0 + (2/s)(m/m0)

1
2 ∂pf

[k]
0 = 0 anode (93)

1− ρ
1 + ρ

f
[k]
0 − (2/s)(m/m0)

1
2 ∂pf

[k]
0 =

1
1 + ρ

finδ0k cathode . (94)

(5b) Solution Method

The kinetic equations (92) were solved numerically—with Θ = 0—using the
Crank–Nicholson finite difference scheme (see e.g. Press et al. 1989), using collision
models of type ν ∝ vγ . The coordinate system and the direction of integration
are illustrated in Fig. 2. The coordinate system is similar to the one used by
Sugawara et al. (1992) in a study of the steady state Townsend experiment.
The integration would start at (ζ = 0, η = ηmax) and proceed from one constant
total energy characteristic to the next by the solution of a tridiagonal matrix
equation, to end up at (ζ = ζh, η = 0).

Fig. 2. Coordinate system used for
integrating the cold gas kinetic equations.
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Two extra boundary conditions had to be added, at η → 0 and at η = ηmax,
the chosen cut-off value. These boundaries are in a sense non-physical. No
electron will ever come totally to rest (η = 0), and ηmax should be chosen large
enough that only a negligible portion of the electrons would ever reach the
corresponding kinetic energy.

For the ηmax boundary, a perfectly absorbing boundary condition was used
(equation 93 with ρ = 0). This gave smoother solutions at large η-values than
e.g. to force the distribution—or its derivative—to zero at this boundary.

In the η → 0 limit, it has been argued that a correct condition to use would
be a demand that the distribution be continuous at ~v = 0 (see e.g. Segur et al.
1983). In the two-term approximation, this implies that f1

v→0−→ = 0. However, in
the cold gas case this condition can only be justified if σ1(v)

v→0−→σ0 = constant,
i.e. for γ = 1 in our calculations, and it also turned out to give numerically
unstable results for other γ-values. We chose instead to use a weaker ‘free
boundary condition’,

∂2
pf

[k]
0

v→0−→ 0 ,

also taking care not to place grid points on the η = 0 axis—and this worked well.
To start the integration from the cathode, the anode distribution was needed,

and was therefore calculated first. This calculation only necessitated considering
the upper left triangle in Fig. 2 (η ≤ ηmax, ζ ≥ ζh−ηmax), as the anode boundary
is without influence outside this region.

At the cathode boundary, it was necessary to modify the difference scheme
to connect properly the high and low η regions on the cathode surface. In
the ‘cathode triangle’ of Fig. 2, a (p, η) finite difference scheme—with inferior
stability properties—was therefore used instead of the (p, q) scheme.

The calculations were started using a small gap length ζh, and the length was
subsequently increased until the numerically calculated values of 〈x2〉J and the
excess γ4 showed the expected asymptotic behaviour 〈x2〉J ∝ ζh and γ4 ∝ 1/ζh.

(5c) Numerical Results

Calculations were performed with collision frequencies ν ∝ vγ , and γ ∈
[−0 ·5, 2 ·0]. For γ < −0 ·5, our numerical scheme—which used constant step sizes
(∆p,∆q)—became unstable. To investigate the possible influence of the surface
conditions, two different reflection coefficients were used, ρ = 0 (our ideal model
experiment), and ρ = 0 ·9. Further, to see how a neglect of the variation of the
energy distribution in the electrode layers would affect the results, we performed
calculations not only with the anode distribution as input, but also using the
free space steady state distribution.

The main results were the values of the relative correction to the variance of
the anode current distribution (see equation 21),

δ2 = (〈r2〉J/2− h2 δT )/δ2T

= (〈r2〉J/2− 2hDT /vdr)/(2DT /vdr)2 , (95)
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and the reduced excess

δ4 = 1
2γ4 ζh, where ζh = h/(2DT /vdr) . (96)

Fig. 3 shows the variation of δ2 with the gap length ζh, for the constant
mean free path (γ = 1) and the constant mean free time (γ = 0) models, and
two different input distributions. Perfect absorption (ρ = 0) was assumed. The
differences between the ‘S’ curves and the ‘A’ curves reflect the energy relaxation
processes in the cathode region. The ‘S’ curves reach asymptotic values in a
distance of order one hydrodynamic relaxation length. In the ‘A’ case, the cathode
distribution has a larger mean energy than the steady state and, therefore the
rate of diffusion is initially larger than for the ‘S’ case. For ‘soft’ interactions
(γ < 0), fast electrons collide less often than slow ones, and the cooling regions in
these cases therefore stretch considerably further out in the gap than suggested
by the hydrodynamic length scale.

Fig. 3. Relative correction δ2 (see equation 95) to the variance of
the anode current distribution, as a function of the reduced gap
length ζh, for the constant mean free path (γ = 1) and the constant
mean free time (γ = 0) models: A, ‘anode’ input distribution; S,
‘steady state’ input distribution.

Calculations for other γ-values showed an increasingly longer ‘cooling length’ with
decreasing γ, reflecting the very long high energy tails of the corresponding velocity
distributions and the reduction of collision probability with increasing energy.

In an actual diffusion experiment, the reduced gap length ζh will always be
large, and only values of δ2 and δ4 in the limit ζh →∞ are therefore of practical
importance. Fig. 4 and Fig. 5 show these limiting values as functions of γ. Also
shown are the values predicted by Lowke’s current ratio formula (equation 12).
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Fig. 4. Asymptotic (ζh →∞) value of the relative correction δ2 (equation 95) to the variance
of the anode current distribution, as a function of the interaction parameter γ (ν ∝ vγ): A,
‘anode’ input distribution; S, ‘steady state’ input distribution.

Fig. 5. Asymptotic (ζh → ∞) value of the reduced excess δ4 (equation 96) for the ideal
Townsend–Huxley experiment, as a function of the interaction parameter γ (ν ∝ vγ).
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The δ2 values in Fig. 4 were obtained with ‘anode distribution input’ and
reflection coefficients 0 ·0 and 0 ·9, and with ‘steady state input’ and reflection
coefficient 0 ·0. The Lowke formula approximates the steady state input results
reasonably well, but when the more realistic ‘anode input’ is used it even gives
the wrong sign for the correction when γ < 0. Huxley’s current ratio formula
predicts δ2 = 0 ·0, which is a better overall approximation. The value of the
reflection coefficient is obviously not of great importance.

The limiting δ4 values were, within a few percent, independent of both input
distribution and reflection coefficient. In Fig. 5 we therefore show only one set of
results—for anode distribution input and ρ = 0. There is no striking similarity
between the calculated curve and the one obtained from the Lowke formula—or
from the Huxley formula, which predicts δ4 = 1. Neither of those formulae show
a minimum of δ4 ≈ 0 at γ ≈ 0.

6. Conclusions

The Townsend–Huxley transverse diffusion experiment has been modelled by
formulating the associated kinetic theory problem in the form of transverse
position moments of the distribution function, and solving the kinetic equations
by two complementary methods. At near-thermal electron energies, a velocity
moment based eigenfunction expansion method was used, and at high electron
energies—the ‘cold gas limit’—a finite difference scheme in ‘skewed coordinates’.
As a by-product of the studies, we have also found exact eigenfunctions for
the ‘slab problem’, for the constant collision frequency model in the two-term
approximation.

The eigenfunction expansion methods do not take implicitly into account the
coupling between kinetic and potential energy. As a direct result of this, they
cannot be used to model the anode region except at very weak fields. This
finding should apply also to other ‘external field slab problems’. However, it
seems as if a coordinate transformation might possibly lead to a way of bypassing
this shortcoming.

An analysis of the form of the various current ratio formulae existing in the
literature revealed that they all—for practical purposes—can be fully characterised
by only the second and the fourth transverse position moment of the current
density at the anode.

The difference between Huxley’s formula (see Huxley and Crompton 1974) and
Lowke’s (1971) formula is to be found mainly in the value they predict for the
second moment. Huxley’s formula just gives the simple estimate

〈r2〉J = 4DTh/vdr ,

without any correction at all, while Lowke’s formula adds to this a multiplicative
factor

1− 2(DL/µ)/U ,

where U is the gap voltage. These two formulae give essentially the same
expression for the fourth order distortion from a Gaussian current density profile,
apart from a factor DL/DT .
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The velocity moment calculations showed the Lowke formula to give an excellent
estimate of the magnitude of the end effects at electron energies close to thermal.
This is as expected from a consideration of the hydrodynamic length scale, since
LD ∼ D/vdr is large compared to the kinetic energy relaxation length scale.
However, at weak fields the boundary effects are not of practical importance in
the Townsend–Huxley experiment.

The strong field calculations showed that the corrections to the simple expression
for 〈r2〉J depend strongly on the velocity distribution of the electrons on entry into
the diffusion gap—and on how the distribution subsequently relaxes towards the
free space steady state distribution. The form of the input distribution, and the
energy relaxation, are not—and cannot be—taken into account in hydrodynamic
theory. The corrections are most important for ‘soft’ interaction models γ < 0.
For these models, the Lowke formula gives corrections of the wrong sign. On the
other hand, the Huxley formula implies no corrections, and is better for that
reason.

The value of the electron reflection coefficient of the electrodes is of only
minor importance for the correction factors. This observation may seem to be
in some contrast with the findings of Braglia and Lowke (1979). However, their
calculations were based on an extremely ‘hard’ interaction model, where the
corrections are not of significance anyhow.

For practical purposes it seems as if the simple ratio formula given by equations
(5) and (6),

R = exp{− 1
4 (b/h)2U/(DT /µ)} ,

will be as good as any, and this simplifies the analysis of the experiments. When
end effects are of importance, ‘differencing’ seems to be the only certain way of
proceeding to obtain correct DT /µ values.
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