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Abstract

Particle conservation equations for electrons and positive ions, together with Poisson’s equation
to account for space-charge effects on the electric field, have been solved for the electrode
sheath regions of electric arcs. For thermionic cathodes and the anode, we find that the
ambipolar diffusion approximation is generally valid. At the surface of the anode we find
that there is generally a small retarding electric field. For non-thermionic cathodes and no
ionisation due to the electric field in the sheath, we calculate unrealistically high sheath
voltages and even then, find that the electric fields at the cathode surface are insufficient for
field emission. It is suggested that photoionisation in the region close to the cathode may be
a principal source of electrons for non-thermionic cathodes.

1. Introduction

Although arc columns are reasonably well represented as plasmas which are
in local thermodynamic equilibrium, uncertainties exist as to the importance of
basic physical processes that occur in the electrode sheath regions. In particular,
there is uncertainty about the role of space-charge effects at the electrodes. For
arcs with thermionic cathodes such as thoriated tungsten, Delalondre and Simonin
(1990) and Zhu et al. (1992) have made analyses of the unified arc–cathode region
and obtained reasonable agreement with experimental results, but omitted any
consideration of space-charge effects. On the other hand, Zhou and Heberlein
(1994) and Benilov and Marotta (1995) have also made analyses for thermionic
cathodes, but have concluded that there is a space-charge sheath region which is
central to arc–cathode behaviour and have obtained sheath voltages of 12 V or
more for this region. For arcs with non-thermionic cathodes there is agreement
that an important space-charge region exists, but there is uncertainty as to
whether electrons are emitted by field emission from the cathode, or whether
electrons are mainly produced by ionisation in the space-charge region. In the
present paper it is suggested that a further mechanism may be dominant in
producing electrons near the cathode, namely, the photoionisation of neutral gas
atoms by resonance radiation from the arc plasma. Near the anode, there is
generally an increased positive electric field due to the constriction of the arc
at the electrode (Cobine 1958; Boulos et al. 1994). However, some papers have
presented calculations indicating that there is a thin region at the anode surface
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in which the electric field is negative (Dinulescu and Pfender 1980; Morrow and
Lowke 1993; Nemchinsky 1994).

These issues are important, not only for scientific reasons, but also to allow
quantitative calculations of heating effects on the electrodes by the arc plasma.
For example, in arc welding it is desirable to be able to calculate the degree of
melting (Lancaster 1984). The magnitude of the voltage drops at the electrodes
affects the energy deposited on the electrodes. In ‘Gas Metal Arc Welding’,
the cathode is generally of mild steel and is thus a non-thermionic emitter. If
the current at the cathode surface is carried by electron emission, there is a
significant cooling effect of the cathode through the electrons overcoming the
work function of the cathode. On the other hand, if the current at the cathode
surface is carried by positive ions, there is a major heating effect on the cathode
from the deposition of energy through the neutralisation of the positive ions.

The space-charge analyses of Zhou and Heberlein (1994) and Benilov and
Marotta (1995), for thermionic cathodes, were made assuming that the space-
charge region is collisionless and of a thickness equal to the mean free path of
the electrons. There are uncertainties as to the boundary conditions of electron
temperature and density on the plasma side of this space-charge region. In
the present paper we investigate the role of space-charge regions for thermionic
and non-thermionic cathodes and also for the anode, using electron transport
coefficients in a continuum approach. Solutions have been obtained spanning the
arc plasma, the region of neutral plasma where charge densities are perturbed by
diffusion from their equilibrium plasma values, and the space-charge region, where
densities of positive and negative charges are unequal. Temperature variations
of the plasma are omitted. Questions arise as to the validity of the use of the
transport coefficients if the space-charge regions are very thin and where there
are large gradients in charge densities, electric fields and temperature. However,
significant information is obtained about the gross features of space-charge effects
at the electrodes. Our results support the validity of the use of the ambipolar
diffusion approximation as used by Zhu et al. (1992) and Morrow and Lowke
(1993) to treat the non-equilibrium regions near thermionic cathodes and at the
anode.

2. Theory

We obtain the spatial variation of the electron and ion densities, and the
electric field in the electrode sheaths by solving the particle conservation equations
as well as Poisson’s equation. The problem is treated in one dimension, and only
steady-state properties of the arc are considered.

The electron current density, including contributions due to drift and diffusion,
is given by

je = −eneµeE − eD
dne

dz
, (1)

where e is the electron charge, ne is the electron number density, µe is the
electron mobility, E is the electric field, and D is the electron diffusion coefficient.

The ion current density is similarly given by
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j+ = en+µ+E , (2)

where n+ is the ion density and µ+ is the ion mobility, taken to be a factor of
100 less than the electron mobility. Diffusion current for the ions is neglected
since it is generally much smaller than the drift current.

The electron continuity equation is

dje

dz
= eS − eγn+ne , (3)

where S is a source function representing thermal ionisation and γ is the
recombination coefficient, both of which are taken to be constant within the
sheath and the plasma. The magnitude of S is set equal to γn2

eq, where neq
is the equilibrium value of ne for the plasma temperature. In our calculations
we have determined S using neq = 1 ·4 × 1017 cm−3, which is the equilibrium
electron density for argon at 15 000 K at 1 bar.

There is a similar equation for the continuity of positive ions given by

dj+

dz
= eS − eγn+ne . (4)

When equation (4) is subtracted from equation (3) and then integrated, we obtain
the total current density j, given by

j = je − j+ . (5)

In equation (3) we have omitted the term neαW usually used to represent
ionisation by the electric field; α is the ionisation coefficient, dependent on the
field, and W is the electron drift velocity. For electric fields which vary very
rapidly with distance, such a term will be highly inaccurate. For example at the
cathode surface where the electric field is very high, this term would give very
large ionisation, but the true ionisation at the cathode surface will be almost
zero, because electrons emitted from the surface have not gained sufficient energy
from the field to ionise the gas. In Section 4, we add a term to equation (3) to
give an approximate account of ionisation.

The space-charge effects are determined by Poisson’s equation

dE

dz
=

e

ε0
(n+ − ne) , (6)

where ε0 = 8 ·85× 10−12 C V−1 m−1 is the permittivity of free space. The electric
field E is related to the electric potential V by

dV

dz
= −E . (7)

Setting all of the spatial derivatives to zero and solving the resulting simultaneous
equations for a given value of j defines the equilibrium values of the variables,
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that is the values in the plasma of ne, n+, je, j+ and E. The value of V can be
arbitrarily set to zero at z = 0.

The equations (1)–(3) and (5)–(7) can be expressed as four coupled first-order
differential equations

dne

dz
= − 1

D

(
µeneE +

1
e
je

)
, (8)

dje

dz
= eS +

γ(j − je)ne
µ+E

, (9)

dE

dz
=

1
ε0

(
je − j
µ+E

− ene
)
, (10)

dV

dz
= − E , (11)

and two subsidiary equations

n+ =
je − j
eµ+E

, (12)

j+ = je − j . (13)

These equations define the six basic variables je, j+, ne, n+, E and V for a given
value of j.

Numerical solutions of these equations are not easily obtained by conventional
algorithms for solving differential equations. In the region close to and within the
uniform plasma, where ne ≈ n+, they become intolerably ‘stiff’ due to equation
(10). Stiff equations are discussed, for example, by Oran and Boris (1987) and
Curtiss and Hirschefelder (1952). By assuming that the ion and electron densities
are approximately equal in this region, the problem of stiffness can be solved.
We replace Poisson’s equations (6) and (10) with

ne = n+ , (14)

so the resulting coupled ordinary differential equations for this region are

dne

dz
=

1
eDµ+

[µej − (µe + µ+)je] , (15)

dje

dz
= eS − eγn2

e , (16)

dV

dz
=
j − je
eµ+ne

, (17)

with j+ given by equation (13). The value of E is defined by equation (12) with
n+ = ne, i.e.
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E =
je − j
eµ+ne

. (18)

Equations (15)–(17) are integrated using a ‘predictor corrector’ technique
(Hamming 1959), starting from the plasma, with je set at the equilibrium value
and ne perturbed to be slightly below the equilibrium value. Stepping towards the
electrode, a point is reached where the set of equations, which includes Poisson’s
equation, ceases to be stiff. From this point equations (8)–(11) can now be
integrated to complete the solution. Other solutions are possible if the integration
is commenced in the plasma, but with the value of ne perturbed slightly above
the equilibrium value, or with je perturbed either positively or negatively and
with ne at the equilibrium value. However, for these three solutions, the values
of ne at either the cathode or the anode increase above the plasma value so that
boundary conditions cannot be satisfied at the electrodes.

The point of changeover between the two sets of equations is determined by
the value of (n+−ne) calculated from Poisson’s equation (6). We evaluate ε from

ε ≡
∣∣∣∣n+ − ne

ne

∣∣∣∣ =
ε0

en

∣∣∣∣dEdz
∣∣∣∣ , (19)

where n is the value of ne (and n+) calculated from the approximate equations.
We evaluate dE/dz by differentiating equation (18) to obtain

dE

dz
=
nedje/dz − (je − j)dne/dz

eµ+n
2
e

, (20)

and use equations (15) and (16) to evaluate dne/dz and dje/dz, respectively. We
change to the use of equations (8)–(13), which includes Poisson’s equation, when
ε is above a specified value. The quantity ε can be considered a measure of the
relative error in ne and n+ when ignoring Poisson’s equation, and it is found
that problems of stiffness are avoided if the changeover to the equations (8)–(13)
occurs when ε increases to 0 ·0005 (0 ·05%). Such an error is small enough to
justify the approximation ne = n+ near the uniform plasma. Later changeovers
at larger integration distances allowing errors of up to 1% do not change the
character of the solutions.

3. Results

We have used a constant electron mobility, µe = 5000 cm2 s−1 V−1; µe =
W/E = σ/eneq where the electrical conductivity σ = 100 ohm−1cm−1 and
neq = 1 ·4 × 10−17 cm−3 are approximate values at 15 000 K for the electrode
sheaths (Murphy and Arundell 1994). The value of µe is about a factor of 10 lower
than the values of µe at low E/N from Huxley and Crompton (1974) due to the
influence of Coulomb collisions of electrons with ions. Ion mobility µ+ is taken
simply as µe/100 = 50 cm2 s−1 V−1. The largest uncertainty in the calculations
is the value chosen for the recombination coefficient γ, which is a function of
temperature. Only theoretical values exist for the high plasma temperatures of the
order of 20 000 K. The value of γ also defines the value of the source term S from
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S = γn2
eq. In a preliminary account of this work (Lowke and Quartel 1995), a value

of γ = 8 ·0× 10−10 cm3 s−1 was chosen to coincide with the sheath calculations
using the ambipolar diffusion of Morrow and Lowke (1993) and Zhu et al. (1992)
so that comparisons could be made. In the present paper, we give solutions for
γ = 10−11 cm3 s−1, at 15 000 K, this being more representative of both the value
of 10−12 cm3 s−1 from the theoretical work of Biberman et al. (1973), and the
value of 10−10 cm3 s−1 from the classical formula γ = 1 ·1× 10−8 ne T

−4 ·5 cm3 s−1

of Hinnov and Hirschberg (1962), discussed by Mitchner and Kruger (1973).
The electron diffusion coefficient D was calculated from kTµe/e, using a plasma
temperature of 15 000 K; k is Boltzmann’s constant. Then D = 5900 cm2 s−1 and
using neq = 1 ·4× 1017 cm3 , we have S = 1 ·96× 1023 cm3 s−1.

Fig. 1. Calculated electron and ion densities, electron and ion currents,
electric field, and potential in the anode sheath, for an arc with current
density j = 2 000 A cm−2 and with γ = 10−11 cm3 s−1.

The solution for the anode is shown in Fig. 1, with the anode boundary taken
to be the point where the electron density falls to zero. The change in direction
of the electric field is notable, and is due to the rapidly falling particle densities
producing a large diffusion current. This diffusion current is greater than the
drift current in the arc column and must therefore be offset by a negative drift
current at the anode, requiring a retarding electric field. Fig. 2, an enlargement
of the density curves closest to the anode, shows that space-charge plays a minor
role. The distance over which ne and n+ differ by more than 10% is of the
order of the electron mean free path and the voltage drop over this space-charge
sheath is about 0 ·2 V. It is seen from Fig. 1 that the anode voltage drop is
negative, and for this calculation is about 2 V. The current density for this
calculation of j = 2000 A cm−2 is chosen to be at about the value found for a
200 A free burning arc with a plane anode (Zhu et al. 1992). Of course the
present calculations do not take account of temperature variations. The cooler
plasma near the anode will lead to a reduced electrical conductivity and will
make a positive contribution to the anode fall.
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Fig. 2. Enlargement of the density solutions of Fig. 1 in the region close
to the anode. Note the small charge separation.

The current density j = 28 000A cm−2, for the cathode solution, shown in Fig.
3, is similarly chosen to be about the current density found at the cathode of a
200 A free burning arc (Zhu et al. 1992). The solution includes cases where the
cathode is a thermionic emitter and also cases where emission is by secondary
emission, the only difference being the position in Fig. 3 that is taken to be the
cathode boundary. If the cathode emits thermionic current, then the boundary
would be at the point where the value of je corresponds to the thermionic current.
For this range of the solution of Fig. 3, ne is approximately equal to n+ and
the ambipolar approximation is thus valid.

For non-thermionic cathodes, je at the electrode surface is generally much less
than j. Then the position of the cathode is further from the equilibrium plasma,
with Fig. 3 showing the limiting position where je = 0. At the cathode surface
there will be secondary emission of electrons due to the impinging positive ions.
Thus the position of the cathode is determined by the value of z for which
|je| = Γ|j+|, where Γ is the secondary emission coefficient of the surface for the
emission of electrons by positive ions. Values of Γ are typically ∼0 ·1 or less.
However, even with Γ as high as 0 ·2, the cathode-fall voltage from Fig. 3 is of
the order of megavolts and quite unrealistic.

In Fig. 4 we show an enlargement of the plot of electron and ion densities
near the cathode of Fig. 3. We notice that there is a large region of charge
separation near the electrode surface, where ion densities are several orders of
magnitude larger than electron densities. The discrepancy between the calculated
and observed potential difference between the plasma and the cathode, for
non-thermionic materials, is very large. For example, experimental values of
the total arc voltage with a cathode of iron are only about 20 V, whereas our
solution, even with a value of Γ of 0 ·2, shows a potential at the cathode of several
kilovolts for the earlier solution of Lowke and Quartel (1995) and megavolts for
the present solution. Furthermore, at the position where the electric field is of
the order of 3× 107 Vcm−1 which is necessary for field emission (Dolan and Dyke
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Fig. 3. Calculated electron and ion densities, electron and ion currents, electric field, and
potential in the cathode sheath, for an arc with current density j = 28 000 A cm−2 and with
γ = 10−11 cm3 s−1. Ionisation due to the electric field is not included.

Fig. 4. Enlargement of the density solutions of Fig. 3 in the region close to the cathode.
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1954), the potential of the cathode sheath is many orders of magnitude larger
than observed arc voltages.

4. Discussion

(4a) Ionisation in the Cathode Sheath

The unrealistically high voltages, calculated for non-thermionic cathodes,
suggest that there is a source of electrons in the cathode region other than
electrons from field emission. There are several possibilities. One is that the
electrons are produced from ionisation by high energy ions accelerated within the
sheath. But the ionisation cross sections for ions have a threshold approximately
double that for electrons (Phelps 1991), so that this process is unlikely to be as
significant as ionisation by electrons for the small arc voltages of the order of
20 V that are obtained using non-thermionic cathodes.

Fig. 5. Calculated quantities of Fig. 3, but with inclusion of ionisation
due to the electric field using ionisation coefficients.

We now consider the possibility that the dominant source of electrons is
ionisation by electrons accelerated by the electric field in the cathode sheath.
In Fig. 5 we show calculations as for Fig. 3, but including the term neαW in
equation (3). Values of α/N as a function of E/N were taken from Dutton
(1975). It is seen from a comparison of Figs 3 and 5 that inclusion of the
ionisation term reduces the thickness of the ionisation sheath to about 0 ·1 mm.
However, the magnitude of the sheath voltage is still extremely high, being about
30 kV compared to the voltages of tens of megavolts shown in Fig. 3.

To model electron ionisation in a more realistic way than using equilibrium
ionisation coefficients, an extra term in je was added to equation (3) to give
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dje

dz
= eS − eγn+ne −

je[E − E(0)] ln 2
Vi

; (21)

E(0) is the electric field in the uniform plasma and Vi is the ionisation potential.
This form is chosen because, neglecting the first two terms on the right of
equation (21), integration gives an electron current proportional to 2V/Vi , where
V = −

∫
Edz. Hence, moving from the cathode towards the uniform plasma, the

electron current is doubled whenever the potential increases by an amount Vi.

Fig. 6. Calculated quantities of Fig. 3, using a model for electron ionisation
within the sheath, as in equation (21).

Fig. 6 shows the cathode solution using this revised model, with Vi = 7 ·9 V
appropriate for iron vapour, but with γ set at the low value of 10−11 cm3 s−1.
The ionisation term dramatically increases the growth of the cathode current,
resulting in a cathode fall voltage of about 100 V, which is orders of magnitude
smaller than for Figs 3 and 5. Mechanisms such as two-step ionisation would
reduce still further the predicted voltage. Observed sheath voltages of the order
of 15 V for non-thermionic cathodes (Kesaev 1965) are still rather low, compared
with the calculated voltages of Fig. 6, particularly when it is considered that this
calculation gives an absolute maximum of ionisation growth due to the electric
field, assuming that there is a current doubling for every increase in the sheath
voltage equal to the ionisation potential. It is noted from Figs 5, 6 and 7 that
the electric field at the cathode is still below that necessary for field emission.

Another possibility is that ionisation within the cathode sheath region is enhanced
by photoionisation by radiation from the arc or that we have understated the
source term because of a low value of γ. We have inferred S from γn2

eq,
with γ = 10−11 cm3 s−1. But Chen (1969) predicts that γ can be as high as
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10−7 cm3 s−1. We find that on increasing γ and thus S by a factor of 104, with
γ = 10−7, the resulting cathode potential, for a non-thermionic emitter, is only
∼ 8 V. This solution is shown in Fig. 7 and is a much more realistic solution
than that of Figs 3 and 5.

Fig. 7. Calculated quantities of Fig. 3 near the cathode with a current
density of 28 000 A cm−2 but with γ = 10−7 cm3 s−1. Ionisation due to the
electric field is not included.

In all of our calculations, we have set the source term in the thin cathode
sheath equal to the equilibrium plasma value of γn2

eq. However, this relationship
does not always apply, for example, if electrons near the cathode are produced by
photoionisation by resonance radiation from the arc plasma. Recent calculations
have concluded that the radiation emission coefficient is increased by almost
two orders of magnitude through the inclusion of the resonance lines in the far
ultraviolet that are dominant at plasma temperatures of 20 000 K (Boulos et al.
1994).

(4b) Effect of Ion Diffusion

The effect of ion diffusion could be included in the present calculations by
adding a diffusion term −eD+ dn+/dz to equation (2) analogous to that in
equation (1), where D+ is the ion diffusion coefficient. For the transformed
equations in the ‘stiff’ portion of the solution, where ne ≈ n+, the effect of this
term is simply to produce an additional factor in the denominator of equation
(15) so that D is multiplied by [1 + (D+/µ+)/(D/µe)]. If the electron and
ion temperatures are equal, this factor is 2, using D/µe = D+/µ+ = kT/e.
Thus the effect of including ion diffusion is to double the effect of diffusion,
which is consistent with the formula for the ambipolar diffusion coefficient, of
Da = (D/µe +D+/µ+)/(1/µe + 1/µ+) (Llewellyn-Jones 1966). In this formula,
Da is doubled if D+/µ+ = D/µe instead of D+ being zero.
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Results of Figs 1 and 2 for the anode and of Fig. 3 for thermionic cathodes,
suggest that the ambipolar diffusion approximation should be valid, because ne
and n+ are almost equal. However, a close examination of the results of Fig. 3
indicates that significant voltages develop as soon as the ion current is more than
a few percent of the total current. If the ambipolar diffusion approximation is
valid, calculations for the sheath regions can be made, accounting for temperature
variations, but neglecting space-charge effects, as has been done by Delalondre
and Simonin (1990) and by Zhu et al. (1992).

(4c) Analytic Formulae for Sheath Properties

It is useful to derive approximate analytic formulae for the thickness of the
sheath regions. For the cathode space-charge region we assume that the electron
density is zero, and define z = 0 at the cathode boundary, where j = −j+. If b
is the space-charge sheath thickness, at z = b, E and j+ are approximately zero.
Integration of equation (4) gives

j+ = eS(z − b) , (22)

so that the sheath thickness is given by

b = j/eS = j/e γ n2
eq . (23)

Using equations (2), (4) and (22) we obtain

E
dE

dz
=

eS

ε0µ+

(z − b) . (24)

Integrating this equation and using the assumption that E ≈ 0 at x = b to
eliminate the constant of integration, we obtain the following formulae:

E =
√
eS/ε0µ+ (z − b) = (eγ/εoµ+) 1

2 neq (z − b) , (25)

n+ = j+/eµ+E = (ε0S/eµ+) 1
2 = (ε0γ/eµ+) 1

2neq . (26)

Similar formulae to the above were derived by Lowke and Davies (1977) in a different
application. The numerical solutions agree well with this analysis. Cathode
sheath thicknesses predicted by equation (23) are 0 ·89 cm and 0 ·9 × 10−4 cm,
for Figs 3 and 7, respectively.

An approximate formula can also be derived for the thickness ∆z of the
region dominated by ambipolar diffusion; for example, at the anode. Then je
is approximately given by −eDa dne/dz, where Da is the ambipolar diffusion
coefficient. From equation (3), the gradient of je will be of the same order as
eγn2

e. We make an approximation∣∣∣∣eDa
d2ne

dz2

∣∣∣∣ = eγn2
e . (27)
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Further approximating
∣∣d2ne/dz

2
∣∣ to be ne/∆z2, and using Da/µ = kT/e, we

obtain

∆z =
√
Da/γneq =

√
(kT/e)µ+

γneq
. (28)

Equation (28) gives a value ∆z = 0 ·01 cm for the diffusion-sheath thickness for
γ = 10−11 cm3 s−1, µ+ = 50 cm2 s−1V−1, neq = 1017 cm−3 and kT/e = 1, which
compares well with the calculations of Figs 1 and 3, and ∆z = 0 ·0001 cm for
γ = 10−7 cm3 s−1, which compares well with the calculation of Fig. 7.

5. Conclusion

Solutions to the equations of electron and ion continuity, and Poisson’s equation,
are calculated for the sheath regions of electric arcs. Even though no account
is taken of temperature variations near the electrodes, useful conclusions can be
made:

(1) For the anode region, the space-charge region is insignificant, and the
ambipolar diffusion approximation should be valid.

(2) Gradients in charge density at the anode are so large that the diffusion
current to the anode can be larger than the current in the column. Then a
negative electrode voltage with respect to the plasma is necessary to provide a
counter balancing negative drift current.

(3) For thermionic cathodes, the ambipolar-diffusion approximation should be
valid, but significant voltages develop for ion currents of more than a few percent.

(4) For non-thermionic cathodes such as iron, the results suggest that field
emission from the cathode is unlikely. Rather, the electron current is likely to be
produced by ionisation in the cathode sheath. It is suggested that photoionisation
by resonance radiation from the arc plasma, rather than ionisation from the
electric field, could be a dominant effect.

Acknowledgments

We are indebted to Dick Morrow and Tony Farmer, of our laboratories, for
suggestions and discussions throughout this work. This project was supported
in part by the Cooperative Research Centre for Materials Welding and Joining.
We are also grateful for the contributions of Robert Winn, at an early stage of
this project.

References

Benilov, M. S., and Marotta, A. (1995). J. Phys. D 28, 1869–82.
Biberman, L. M., Vorob’ ev, V. S., and Yakubov, I. T. (1973). Sov. Phys. Uspekhi 15, 375–531.
Boulos, M. I., Fauchais, P., and Pfender, E. (1994). ‘Thermal Plasmas: Fundamentals and

Applications’ (Plenum: New York).
Chen, C. J. (1969). J. Chem. Phys. 50, 1560–6.
Cobine, J. (1958). ‘Gaseous Conductors’ (Dover: New York).
Curtiss, C. F., and Hirschefelder, J. O. (1952). Proc. Nat. Acad. Sci. USA 38, 235
Delalondre, C., and Simonin, O. (1990). Coll de Physique 51, C5, 199–206.
Dinulescu, H. A., and Pfender, E. (1980). J. Appl. Phys. 51, 3149–57.
Dolan, W. W., and Dyke, W. P. (1954). Phys. Rev. 95, 327–32.
Dutton, J. (1975). J. Phys. Chem. Ref. Data. 4, 577–713.
Hamming, R. W. (1959). J. Assoc. Comput. Mach. 6, 37.



552 J. J. Lowke and J. C. Quartel

Hinnov, E., and Hirschberg, J. G. (1962). Phys. Rev. 125, 795.
Huxley, L. G. H., and Crompton, R. W. (1974). ‘The Diffusion and Drift of Electrons in

Gases’ (Wiley: New York).
Kesaev, I. G. (1965). Sov. Phys. Technical Phys. 9, 1146–54.
Lancaster, J. F. (1984). ‘The Physics of Welding’ (Pergamon: Oxford).
Llewellyn-Jones, F. (1966). ‘The Glow Discharge’ (Methuen: London).
Lowke, J. J., and Davies, D. K. (1977). J. Appl. Phys. 48, 4991–5000.
Lowke, J. J., and Quartel, J. C. (1995). Proc. Eleventh Int. Conf. on Gas Discharges and

Their Applications, Tokyo, Vol. 1, pp. 90–3.
Mitchner, M., and Kruger, C. H., Jr (1973). ‘Partially Ionised Gases’ (Wiley: New York).
Morrow, R., and Lowke, J. J. (1993). J. Phys. D 26, 634–42.
Murphy, A. B., and Arundell, C. J. (1994). Plasma Chem. Plasma Process 14, 451–90.
Nemchinsky, V. A. (1994). J. Phys. D 27, 2515–21.
Oran, E. S., and Boris, J. P. (1987). ‘Numerical Simulation of Reactive Flow’ (Elsevier: New

York).
Phelps, A. V. (1991). J. Phys. Chem. Ref. Data 20, 557.
Zhou, X., and Heberlein, J. (1994). Plasma Sources Sci. Technol. 3, 564–74.
Zhu, P., Lowke, J. J., and Morrow, R. (1992). J. Phys. D 25, 1221–30.

Manuscript received 8 August, accepted 18 November 1996


